Блок питания своими руками. Схемы блоков питания своими руками Основные компоненты для схемы простого блока питания


Данный блок питания имеет цифровой вольтметр, для контроля выходного напряжения и амперметр, для контроля тока нагрузки. Прежде чем написать данную статью, блок питания был повторен несколькими радиолюбителями и, нареканий в работе не было. Выходное напряжение плавно регулируется от 0 до 30в. Блок питания имеет плавную регулировку ограничения по току. Максимальный выходной ток был рассчитан на 3А. Схемотехническое решение несложно и данный блок питания может изготовить начинающий радиолюбитель. При наличии исправных компонентов конструкция запускается сразу.

Схема блока питания представлена на рисунке (схема в высоком качестве прилагается - см. список файлов в конце статьи).


Выпрямленное напряжение +38В, после конденсатора С1 , подается на регулирующий транзистор VT2 и транзистор VT1 . На транзисторе VT1 , стабилитроне VD3 , конденсаторе С2 и резисторах R1 собран стабилизатор, который используется для питания микросхемы DA1 . На выходе стабилизатора напряжение +33в. В блоке питания используется микросхема KIA324P , питание которой составляет +36в. при однополярном источнике. На микросхеме DA2.3 , резисторах R9 ,R10 , R13 , DA1 собран источник опорного напряжения +5в. Данное напряжение подается на регулятор выходного напряжения (резистор R25 ) и на резистор R7 , максимальный ток защиты блока питания. В данном случае, для максимального тока защиты 3А оно равно 1,66в. На микросхеме DA2.4 собран узел защиты устройства по току, датчиком которого является резистор R3 . Резистором R4 регулируется порог срабатывания защиты. Для индикации порога срабатывания защиты используется двухцветный диод (красный и зеленый) фирмы Kingbright L-59SRSGC-CC с общим катодом диаметром линзы 5мм. Если устройство работает нормально светодиод светится зеленым цветом, при перегрузке по току или коротком замыкании в нагрузке, светодиод загорается красным цветом. Если нет такой модели или подобной, то можно вместо одного светодиода использовать два светодиода красного и зеленого свечения, или с цветом по желанию пользователя.

Резистором R23 устанавливается верхняя граница выходного напряжения источника питания.

На микросхеме DA2.4 , резисторах R2 -R4 , R7 , R14 собран узел защиты и ограничения по току. С выхода (8) DA2.3 на резистор R7 подается опорное напряжение +5в. Резистором R7 устанавливается порог срабатывания при максимальном токе нагрузки. Как только появилась перегрузка напряжение с выхода (14) DA2.4 через диод VD5 подается на не инвертирующий вход микросхемы DA2.2 ножка (3) транзистор VT2 начинает запираться и напряжение на выходе блока питания начинает уменьшаться.

Налаживание блока питания сводится к следующим операциям.

При включении питания микросхемы DA2 не должно быть в панельке. Транзистор VT1 не должен нагреваться. Вместо резистора R1 впаивают подстроечный резистор. Подстроечным резистором на положительном выводе C2 устанавливают напряжение +33 вольта. После чего, значение переменного резистора замеряют омметром и в схему (при выключенном питании) впаивают постоянный резистор с полученным значением. Выводим резисторы R23 и R25 в среднее положение, резистор R7 на максимальный уровень, а резистор R4 на минимальный. Вставляем в панельку микросхему и включаем блок питания. На ножке (4) DA2 должно быть напряжение, заданное на выходе VT1 . На выходе (8) DA2.3 должно быть напряжение +5вольт. Затем замеряем напряжение на выходе блока питания и резисторами R23 и R25 убеждаемся, что оно регулируется. Следующий этап. Выводим движок резистора R25 на максимум, а подстроечным резистором R23 устанавливаем на выходе напряжение +30 вольт. Затем переводим плавно движок резистора R25 в положение минимум и убеждаемся, что напряжение плавно уменьшается до 0 вольт.

Индикатор напряжения и тока собран на контроллере ATtiny26L , схема которого представлена на рисунке.




Клеммы X1 , X2 , X4 , X5 , X6 , X7 подключаются к аналогичным клеммам блока питания.

Настройка блока индикации сводится к установке резисторами R28 и R31 значений выходного напряжения и тока нагрузки. Сумма резисторов R28 и R29 должна составлять 10ком, а сумма резисторов R30 и R31 должна составлять 22 ком. Изначально блок индикации показывает выходное напряжение. При нажатии на кнопку SA1 индицируется ток, при этом десятичная точка переносится в первый разряд. Например: индикация напряжения 22,7 В., а индикация тока 2,58 А. Подключение блока индикации к блоку питания осуществляется по следующей схеме:



На следующих рисунках показаны печатные платы блока питания и блока индикации.


Печатные платы блока питания и блока индикации собраны на фольгированном одностороннем стеклотекстолите. Размер платы блока питания 120 х 60 мм, блока индикации 57 х 58 мм. В конструкции применены резисторы МЛТ-0,125, электролитические конденсаторы типа серии LP jamicon и конденсаторы серии К-73.

Индикаторы и блоке индикации любого цвета свечения с общим анодом.

Обмотка III и IV трансформатора Т1 изначально рассчитывалась на питание блока индикации на микросхеме КР572ПВ2 . Я думаю, подключить ее для питания индикации на контроллере не представит никакой сложности для радиолюбителя.

Успехов в повторении конструкции.

P.S.Ниже я привожу слова одного из первых, а если точнее, одной из первых женщин, повторивших данную конструкцию:

«Мне доводилось повторять многие схемы подобных устройств, но считаю новую разработку А.Н. Патрина довольно успешной, легко повторяемой, и поэтому, такой БП будет полезным многим радиолюбителям. Сама использую его уже более полутора лет – работает безотказно. Что касается индикации выходного напряжения и тока, то можно применить, как цифровой вариант – авторский, так и стрелочные приборы. Все зависит от желания и возможностей радиолюбителей. Желаю всем успехов в повторении».

Гусева Светлана Михайловна специалист по КИП и А


Файлы для загрузки:
Файл Описание Размер файла
BP_Plata1.jpg Печатная плата блока питания (высокое качество) 536 Kb
BL_IN_Plata2.jpg Печатная плата блока индикации (высокое качество) 318 Kb
schematics.rar Схемы в формате SPLAN 18 Kb

Рано или поздно перед радиолюбителем возникает проблема изготовления универсального блока питания (БП), который пригодился бы на «все случаи жизни». То есть имел достаточную мощность, надёжность и регулируемое в широких пределах выходное напряжение, к тому же защищал нагрузку от «чрезмерного потребления» тока при испытаниях и не боялся коротких замыканий.

Предлагается, по мнению автора, наиболее удовлетворяющий этим условиям достаточно простой для повторения БП, обеспечивающий стабилизированное напряжение 1 ,5-24 В при выходном токе до ЗА. Кроме того, он может работать в режиме источника тока с возможностью плавной регулировки тока стабилизации в пределах 10-100 мА или с фиксированными значениями тока 0,1 А, 1 А, 3 А.

Рассмотрим схему блока питания (см.рис.). Основой её является традиционная схема стабилизатора напряжения, «сердцем» - микросхема КР142ЕН12, которая в настоящее время доступна широкому кругу радиолюбителей. В качестве силового трансформатора выбран довольно мощный унифицированный накальный трансформатор ТН-56, который имеет четыре вторичные обмотки с допустимым током 3,4 А и напряжением каждой 6,3 В. В зависимости от требуемого выходного напряжения переключателем SA2 подключаются две, три или четыре последовательно соединённые обмотки. Это необходимо для уменьшения мощности, рассеиваемой на регулирующем элементе, а, следовательно, повышения КПД устройства и облегчения температурного режима. Действительно, в самом неблагоприятном режиме, при максимальной разности между входным и выходным напряжениями (конечно, если выходное напряжение соответствует диапазону, указанному переключателем SA2) и максимальном токе ЗА рассеиваемая на регулирующем элементе мощность составит: Ppacc.max = (Uвx.max-2Uvd-Uвых.min)*Imax (1) Ррасс.max = (12,6-2*0,7-1,5)*3 = 29,1 Вт, где Uвх.max - максимальное входное действующее напряжение данного диапазона; Uвых.min - минимальное выходное напряжение данного диапазона; Uvd - падение напряжения на диоде выпрямительного моста. Легко проверить, что без разделения выходного напряжения на диапазоны рассеиваемая регулирующим элементом мощность достигает 70 Вт.

Переменное напряжение выпрямляется диодным мостом VD1-VD4 и сглаживается на конденсаторе С5. Предохранитель FU2 защищает трансформатор при выходе из строя диодов выпрямителя. Транзисторы VT1, VT2 служат для увеличения выходного тока БП и облегчения режима работы интегрального стабилизатора DA1. Резистором R1 задаётся ток через DA1, открывающий VT2:
IDA1 = Uбэvt2/R1 = 0,7/51 = 0,014 А, (2)
где Uбэvt2 - открывающее напряжение эмиттер-база транзистора VT2. При токе 14 мА микросхема DA1 может работать без радиатора. Для повышения стабильности выходного напряжения регулирующее напряжение снимается с линейки резисторов R2-R4, подключенной к выходу микросхемы и подаётся на «управляющий» вывод 01 DA1 через развязывающий диод VD6. Регулировка выходного напряжения осуществляется резисторами: R4 - «ГРУБО» и R3 - «ТОЧНО». Стабилизатор тока выполнен на DA1, токозадающих резисторах R5-R9 и развязывающем диоде VD7. Выбор необходимого дискретного тока стабилизации осуществляется переключателем SA3. Кроме того, на пределе «10-100 мА» возможна плавная регулировка тока резистором R9. При необходимости можно изменить ток стабилизации, изменив номиналы задающих резисторов используя формулу:
R = 1,35/Iстаб, (3)
где R - сопротивление токозадающего резистора, Ом; Iстаб - ток стабилизации, А. Мощность токозадающих резисторов определяется по формуле:
Р = I*I*R, (4)
где I - ток стабилизации диапазона; R - сопротивление резистора. Реально мощность токозадающих резисторов из соображения надёжности сознательно увеличена. Так резистор R8 типа С5-16В выбран мощностью 10 Вт. В режиме стабилизации тока (переключатель SA3 в положении «ЗА») на резисторе рассеивается мощность 3,8 Вт. И если даже поставить пятиваттный резистор, то его загрузка по мощности составит 72% от максимально допустимой. Аналогично R7 типа С5-16В имеет мощность 5 Вт, но также можно применить МЛТ-2. Резистор R6 типа МЛТ-2, но можно поставить МЛТ-1. R9- проволочный переменный резистор типа ППЗ-43 мощностью 3 Вт. R5 типа МЛТ-1. Эти резисторы надо располагать так, чтобы они охлаждались наилучшим образом и не грели по возможности другие элементы схемы, а также друг друга. Для наглядности регулировки (устанавливаемого тока) на лимбе резистора R9 делают отметки 10, 20, 50, 75 и 100 мА, воспользовавшись внешним миллиамперметром (тестером), подключив его непосредственно к гнёздам БП.

Дополнительные удобства при работе с БП обеспечивает вольтметр pV, в качестве которого используется микроамперметр типа М95 с током полного отклонения 0,15 мА.
Сопротивление резистора R11 подбирается так, чтобы конечному значению шкалы соответствовало напряжение 30 В. Также можно использовать любую другую измерительную головку с током полного отклонения до 1,5 мА, подобрав токоограничительный резистор R11.
В качестве переключателей SA2, SA3 используются галетные - типа 11П3НМП. Для увеличения допустимого коммутируемого тока эквивалентные выводы трёх галет запараллелены. Фиксатор установлен в зависимости от количества положений.
Конденсатор С5 сборный и состоит из пяти параллельно включенных конденсаторов типа К50-12 ёмкостью 2000 мкФ х 50 В.

Транзистор VT1 установлен снаружи на радиаторе площадью 400 см2. Его можно заменить на КТ803А, КТ808А, VT2 может быть заменён на КТ816Г. Пару транзисторов VT1, VT2 можно заменить одним КТ827А, Б, В или Д. Диоды VD6, VD7 любые, лучше германиевые с меньшим прямым падением напряжения и обратным не менее 30 В. Диоды VD1 -VD4 типа КД206А, КД202А, Б, В или аналогичные устанавливаются на радиаторах.

При самостоятельном изготовлении трансформатора TV1 можно руководствоваться методикой, описанной в . Габаритная мощность трансформатора должна быть не менее 100 Вт, лучше 120Вт. При этом можно будет домотать ещё одну обмотку напряжением 6,3 В. В этом случае добавится ещё один диапазон 24 - 30 В, что обеспечит при токе нагрузки 3 А диапазон регулирования выходного напряжения 1,5-30 В.

Наладка блока питания проводится по известной методике и особенностей не имеет. Правильно собранный БП начинает работать сразу. При работе с БП вначале переключателем SA2 выбирают необходимый диапазон выходного напряжения, резисторами «ГРУБО» и «ТОЧНО» выставляют требуемое выходное напряжение, ориентируясь по показаниям встроенного вольтметра. Переключателем SA3 выбирают предел ограничения тока и подключают нагрузку. Следует отметить, что при всей простоте схемы данный блок питания совмещает два устройства: стабилизатор напряжения плюс стабилизатор тока. БП не боится коротких замыканий и даже может защитить элементы подключаемого к нему электронного устройства, что очень важно при проведении различных испытаний в радиолюбительской практике.

ЛИТЕРАТУРА
1. Нефёдов А.В., Аксёнов А.И., Элементы схем бытовой радиоаппаратуры, микросхемы: Справоч-ник.-М: Радиосвязь, 1993.
2. Акимов Н.Н., Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: Справочник.-Минск.: Беларусь, 1994.
3. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя/Р.М.Терещук, К.М.Терещук.-Киев: Наукова думка, 1988.

Радиохобби 05-1999

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Линейный регулятор

LM317

1 КР142ЕН12 В блокнот
VT1 Биполярный транзистор

КТ819ГМ

1 В блокнот
VT2 Биполярный транзистор

КТ814Г

1 В блокнот
VD1-VD4 Диод

КД206А

4 В блокнот
VD5 Диод

КД212А

1 В блокнот
VD6, VD7 Диод

Д9Е

2 В блокнот
С1-С4, С7 Конденсатор 2.2 нФ 63 В 5 В блокнот
С5 10000 мкФ 50 В 1 В блокнот
С6 Электролитический конденсатор 220 мкФ 63 В 1 В блокнот
R1 Резистор

51 Ом

1 В блокнот
R2 Резистор

1.2 кОм

1 В блокнот
R3 Переменный резистор 3.3 кОм 1 В блокнот
R4 Переменный резистор 22 кОм 1 В блокнот
R5 Резистор

13 Ом

1 1 Вт В блокнот
R6 Резистор

4.3 Ом

1 2 Вт В блокнот
R7 Резистор

1.2 Ом

1 5 Вт В блокнот
R8 Резистор

0.43 Ом

1 10 Вт В блокнот
R9 Переменный резистор 100 Ом 1 3 Вт В блокнот
R10 Резистор

Вниманию радиолюбителей представляется разработка блока питания для домашней лаборатории . Достоинство данного БП в том, что не нужны дополнительные обмотки на силовом трансформаторе. Микросхема DA1 работает с однополярным питанием. Выходное напряжение плавно регулируется от 0 до 30в. Блок питания имеет плавную регулировку ограничения по току.

Схемотехническое решение несложно и данный блок питания может изготовить начинающий радиолюбитель.

Выпрямленное напряжение +38В, после конденсатора С1, подается на регулирующий транзистор VT2 и транзистор VT1. На транзисторе VT1, диоде VD2, конденсаторе С2 и резисторах R1, R2, R3 собран стабилизатор, который используется для питания микросхемы DA1. Диод VD2 представляет собой трехвыводной, регулируемый, параллельный стабилизатор напряжения. На выходе стабилизатора, резистором R2 устанавливается напряжение +6,5 вольт, т. к. предельное питающее напряжение микросхемы DA1 VDD = 8 вольт. На операционном усилителе DA1.1 TLC2272 собрана регулирующая часть напряжения блока питания. Резистором R14 регулируется выходное напряжение блока питания. На один из контактов резистора R14 подается опорное напряжение, равное 2,5 вольта. Точность данного напряжения, в небольших пределах, устанавливается подбором резистора R9.

Через резистор R15, регулируемое резистором R14, напряжение подается на вход 3 операционного усилителя DA1.1. Через данный операционный усилитель производится обработка выходного напряжения блока питания. Резистором R11 регулируется верхний предел выходного напряжения. Как уже говорилось, микросхема DA1 питается однополярным напряжением 6,5В. И, тем не менее, на выходе блока питания удалось получить выходное напряжение равное 0 в.

На микросхеме DA1.2 построен узел защиты блока питания по току и от КЗ. Таких схемотехнических решений узлов защиты было описано множество в различной РЛ литературе и поэтому подробно не рассматривается.

Принципиальная схема блока питания показана на рис.1.

Налаживание блока питания начинают с подачи напряжения +37…38 В. На конденсатор С1. С помощью резистора R2 выставляют на коллекторе VT1 напряжение +6,5В. Микросхему DA1 в панельку не вставляют. После того, как выходное напряжение на ножке 8 панельки DA1 установлено +6,5В, выключают питание и вставляют в панельку микросхему. После включают питание и, если напряжение на ножке 8 DA1 отличается от +6,5В, производят его подстройку. Резистор R14 должен быть выведен на 0, т.е. в нижнее по схеме положение. После того, как напряжение питания микросхемы установлено, устанавливают опорное напряжение +2,5В на верхнем выводе переменного резистора R14. Если оно отличается от указанного в схеме, подбирают резистор R9. После этого резистор R14 переводят в верхнее положение и подстроечным резистором R11 устанавливают верхний предел выходного напряжения +30В. Выходное нижнее напряжение без резистора R16 равно 3,3 мВ, что не сказывается на показании цифрового индикатора и показания равны 0в. Если между ножками 1 и 2 микросхемы DA1.1 включить резистор 1,3МОм., то нижний предел выходного напряжения уменьшится до 0,3 мВ. Контактные площадки для резистора R16 в печатной плате предусмотрены. Затем подключают реостатное сопротивление в нагрузку и проверяют параметры узла защиты. При необходимости подбирают резисторы R6 и R8.
В данной конструкции можно использовать следующие компоненты.

VD2, VD3 - KPU2EH19, вместо транзистора VT2 TIP147 можно использовать отечественный транзистор КТ825, VT3 – BD139, BD140, VT1 – любой кремневый малой или средней мощности транзистор с напряжением Uк не менее 50в. Подстроечные резисторы R2 и R11 из серии СП5. Силовой трансформатор можно применить на мощность 100 … 160Вт. Резистор R16 с характеристикой ТК не хуже 30 ppm/ Со и должен быть, либо проволочного, либо металло-фольгированного типа. Блок питания собран на печатной плате размером 85 x 65 мм.

Узел опорного напряжения на VD3 можно заменить узлом на микросхеме TLE2425 – 2,5v. Входное напряжение данной микросхемы может варьироваться от 4 до 40в. Выходное напряжение стабильно – 2.5в.

Во время настройки вместо микросхемы TLC2272 экспериментально была применена микросхема TLC2262. Все параметры остались равными заданным, отклонений режимов не наблюдалось.
При испытаниях данной конструкции на питание микросхемы подавалось не 6,5 В, а 5 В. При этом резистор R9 = 1,6к. Узел питания микросхемы был заменен узлом, показанным на рис.5.

Если микросхема TLC2272 не в корпусе DIP-8, а SOIC-8, то можно поступить следующим образом, не переделывая печатной платы. Из изолированного материала готовится подложка - прямоугольник, размером 20 х 5 мм. На данный прямоугольник, клеем «МОМЕНТ», приклеивается «лапками к верху», т.е. вверх ногами, микросхема. Расположение микросхемы на подложке показано на рис.6.

После чего, получившийся «бутерброд» приклеивают, все тем же клеем, на обратной стороне печатной платы, предварительно удалив панельку DIP-8 (если она впаивалась). Подложку с микросхемой приклеивают, располагая равномерно между контактными площадками микросхемы на печатной плате. Ножка 1 микросхемы должна быть напротив контактной площадки, принадлежащей ножке 1 микросхемы DA1, или сдвинута чуть ниже. После этой операции, с помощью гибких проводников и паяльника соединяем ножки микросхемы и контактные площадки на печатной плате.

Радиолюбителями было собрано несколько экземпляров данных блоков питания. Все они начинали работать сразу и показали заданные результаты.

При разработке конструкции учитывалась не дорогая база деталей, минимум деталей, простота в налаживании и обращении, а так же выходные параметры, наиболее приемлемые среди радиолюбителей.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Операционный усилитель

TLC2272

1 В блокнот
VT1 Биполярный транзистор

2N2222A

1 В блокнот
VT2 Биполярный транзистор

TIP147

1 В блокнот
VT3 Биполярный транзистор

КТ815Г

1 В блокнот
VD1 Диодный мост

RS602

1 В блокнот
VD2, VD3 ИС источника опорного напряжения

TL431

2 В блокнот
VD4 Светодиод

АЛ307Б

1 В блокнот
VD5 Выпрямительный диод

1N4148

1 В блокнот
С1 Электролитический конденсатор 10000 мкФ 50 В 1 В блокнот
С2 Конденсатор 510 пФ 1 В блокнот
С3 Конденсатор 3.3 нФ 1 В блокнот
С4 Конденсатор 100 нФ 1 В блокнот
С5 Конденсатор 150 нФ 1 В блокнот
С6 Конденсатор 470 нФ 1 В блокнот
R1, R8 Резистор

3 кОм

2 В блокнот
R2 Подстроечный резистор 10 кОм 1 В блокнот
R3 Резистор

4.53 кОм

1 1% В блокнот
R4, R6 Резистор

4.7 кОм

2 В блокнот
R5, R17 Резистор

2 кОм

2 В блокнот
R7 Переменный резистор 4.7 кОм 1 В блокнот
R9 Резистор

2 кОм

1 подбор В блокнот
R10 Резистор

510 Ом

1 В блокнот
R11 Подстроечный резистор 1.5 кОм 1 В блокнот
R12 Резистор

1 кОм

1 В блокнот
R13, R15 Резистор

10 кОм

2 В блокнот
R14 Переменный резистор 2.2 кОм 1 В блокнот
R16 Резистор

1.3 МОм

1 В блокнот
R18 Резистор

68 Ом

1 0.5 Вт В блокнот
R19 Резистор

300 Ом

1 0.5 Вт В блокнот
R20 Резистор

47 Ом

1 0.5 Вт В блокнот
Rn Резистор

0.2 Ом

1 проволочный В блокнот
TP1 Трансформатор 100 - 160Вт 1 В блокнот
FU1 Предохранитель 2 А 1 В блокнот
SA1 Выключатель 1 В блокнот
Схема рис. 4
DA2 Стабилизатор TLE2425 1 В блокнот
VD5 Выпрямительный диод


У многих из нас скопились различные блоки питания от ноутбуков, принтеров или мониторов напряжением +12, +19, +22. Это отличные источники питания, имеющие защиту и от короткого замыкания и от перегрева. Тогда как в домашней, радиолюбительской практике, постоянно требуется регулируемый, стабилизированный источник. Если не целесообразно вносить изменения в схему уже имеющихся блоков питания, то на помощь придет совсем несложная приставка к такому блоку.

Понадобится

Для сборки любительской приставки с плавной регулировкой выходного напряжения нам понадобятся:
  • - монтажная коробочка;
  • - два гнезда внутренним диаметром 5.2 мм;
  • - потенциометр 10 кОм;
  • - два постоянных резистора 22 кОм каждый;
  • - панельный .
Статья будет состоять из нескольких законченных частей, в каждой из которых будут подробно описаны шаги, особенности и подводные камни используемых компонентов.

Понижающий DС-DC преобразователь на микросхеме lm2596

Микросхема lm2596, на которой реализован модуль, хороша тем, что имеет защиту от перегрева и защиту от короткого замыкания, но имеет несколько особенностей.
Посмотрите на типовой вариант ее включения, в данном случае, микросхема редакции выходного фиксированного напряжения +5 вольт, но, для сути это не важно:


Поддержание стабильного уровня напряжения, обеспечивается подключением выхода обратной связи четвертой (Feed Back) ножки микросхемы, подключенной непосредственно к выходу стабилизированного напряжения.
В рассматриваемом конкретном модуле, применена редакция микросхемы с изменяемым выходным напряжением, но принцип регулирования выходного напряжения тот же:


К выходу модуля, подключается резистивный делитель R1- R2 с верхним включенным подстроечным резистором R1, вводя сопротивление, которого, выходное напряжение микросхемы можно менять. В этом модуле R1 = 10 кОм R2 = 0.3 кОм. Плохо то, что регулировка не плавная и осуществляется только на последних 5-6 оборотах подстроечного резистора.
Для осуществления плавной регулировки выходного напряжения, радиолюбители исключают резистор R2, а подстроечный резистор R1 меняют на переменный. Схема выходит вот такой:


А как раз вот тут, возникает уже серьезная проблема. Дело в том, в течении эксплуатации переменного резистора, рано или поздно, контакт (его прилегание к резистивной подковке) среднего вывода нарушается и вывод 4 (Feed Back) микросхемы оказывается (пусть и на миллисекунду) в воздухе. Это ведет к мгновенному выходу микросхемы из строя.
Ситуация так же плоха, когда для подсоединения переменного резистора используются проводники – резистор получается выносной – это, так же может способствовать потере контакта. Потому, штатный резистивный делитель R1 и R2 следует выпаять, а вместо него, впаять два постоянных прямо на плате – этим решается проблема потери контакта с переменным резистором при любых случаях. Сам переменный резистор, следует припаять уже к выводам распаянных.
На схеме, R1= 22 кОм и R2=22 кОм, а R3=10 кОм.


На реальной схеме. R2 был сопротивлением соответствующим его маркировке, а вот R1 меня удивил, хотя на нем и нанесена маркировка 10 кОм на самом деле, его номинальное сопротивление оказалось 2 кОм.


Удалите R2 и поставьте на его месте каплю припоя. Удалите резистор R1 и переверните плату на обратную сторону:


Припаяйте два новых R1 и R2 резистора руководствуясь фотографией. Как видно, будущие проводники переменного резистора R3 будут подключаться к трем точкам делителя.
Всё, отложим модуль в сторону.
На очереди панельный ампервольтметр.

Вольтамперметр DSN-VC288

DSN-VC288 не годится для сборки лабораторного источника питания, так как минимальный ток, который с его помощью можно измерить составляет 10 мА.
Но ампервольтметр отлично подходит для сборки любительской конструкции, а потому, применю я именно его.
Вид с обратной стороны такой:


Обратите внимание на расположение разъемов и доступных регулировочных элементов и особенно на высоту разъема измерения тока:


Поскольку, выбранный мной для этой самоделки корпус не имеет достаточной высоты, то металлические штырьки токового разъема DSN-VC288 мне пришлось скусить, а прилагающиеся толстые проводники - напаять на штырьки непосредственно. Перед пайкой, сделайте на концах проводков по петельке, и насадив каждую на каждый штырек паяйте – для надежности:

Схема

Принципиальная схема соединения DSN-VC288 и lm2596


Левая часть DSN-VC288:
  • - черный тонкий провод не подключается ни к чему, заизолируете его конец;
  • - желтый тонкий соедините с плюсовым выходом модуля lm2596 – НАГРУЗКА «ПЛЮС»;
  • - красный тонкий соедините с плюсовым входом модуля lm2596.
Правая часть DSN-VC288:
  • - черный толстый соедините с минусовым выходом модуля lm2596;

Окончательная сборка блока

Монтажную коробочку я использовал размерами 85 x 58 x 33 мм.:


Нанеся разметку карандашом, диском дремеля, я вырезал окно для DSN-VC288 по размеру внутреннего бортика прибора. При этом, вначале я пропилил диагонали, а за тем, отпиливал отдельные сектора по периметру размеченного прямоугольника. Плоским напильником придется поработать, понемногу подгоняя окно под внутренний бортик DSN-VC288:


На этих фото, крышка не прозрачная. Прозрачную я решил использовать позднее, но это не важно, кроме прозрачности, они абсолютно одинаковые.
Так же, наметьте отверстие под нарезной воротник переменного резистора:


Обратите внимание, что монтажные ушки базовой половины коробочки обрезаны. А на саму микросхему, имеет смысл наклеить небольшой радиатор. У меня под рукой были готовые, но, нетрудно выпилить подобный из радиатора, допустим, старой видеокарты. Подобный я выпиливал для установки на PCH чип ноутбука, ничего сложного =)


Монтажные ушки помешали бы при установке вот таких гнезд 5.2мм:


В итоге, у вас должно получиться именно вот что:
При этом, слева находится входное гнездо, справа – выход:

Проверка

Подайте питание на приставку и посмотрите на дисплей. В зависимости от положения оси переменного резистора вольты прибор может показывать разные, а вот ток, должен быть по нулям. Если это не так, значит, прибор придется откалибровать. Хотя, я много раз читал, что заводом это уже сделано, и ничего от нас делать не придется, но все-таки.
Но вначале обратите внимание на верхний левый угол платы DSN-VC288, два металлизированных отверстия предназначены для установки прибора на ноль.


Итак, если без нагрузки прибор показывает некий ток, то:
  • - выключите приставку;
  • - надежно замкните пинцетом эти два контакта;
  • - включите приставку;
  • - удалите пинцет;
  • - отключите нашу приставку от блока питания, и подключите ее вновь.

Испытания на нагрузку

Мощного резистора у меня нет, но был кусочек нихромовой спирали:


В холодном состоянии сопротивление составило около 15 ом, в горячем, около 17 ом.
На видео, вы можете посмотреть испытания получившейся приставки как раз на такую нагрузку, ток я сравнивал с образцовым прибором. Блок питания был взят на 12 вольт от давно исчезнувшего ноутбука. Так же на видео виден диапазон регулируемого напряжения на выходе приставки.

Итог

  • - приставка не боится короткого замыкания;
  • - не боится перегрева;
  • - не боится обрыва цепей регулировочного резистора, при его обрыве, напряжения автоматически падает до безопасного уровня ниже полутора вольт;
  • - приставка, так же легко выдержит, если вход и выход будут при подключении перепутаны местами – такое случалось;
  • - применение найдется любому внешнему блоку питания от 7 вольт и до 30 вольт максимум.

На два напряжения (+5 и +12 В) представлена на рис. 1:

Стабилизатор обеспечивает на выходе два напряжения: 5 В, при токе 0,75 А; 12 В при токе около 200 мА. Основное напряжение, формируемое импульсным стабилизатором, является напряжение +5 вольт. Второе напряжение получается за счёт автотрансформаторного обмотки II трансформатора Т1.

Статья "Лабораторный блок питания", была опубликована в журнале за 1980 год №11. По первоисточнику, в 80-ые же годы был изготовлен действующий блок питания, работающий по настоящее время.

Основными преимуществами лабораторного питания являются:

Широкий диапазон выходных напряжений (0... ±40 В);

Возможность плавной регулировки напряжений в плечах как раздельно, так и симметрично;

Схему повышающего можно реализовать на контроллере импульсного преобразователя МС33063А/МС34063А, или их российском аналоге КР1156ЕУ5Р/КФ1156ЕУ5Т. Микросхемы МС33063А/МС34063А отличаются друг от друга только типом исполнения корпуса, т.е. DIP-8 или SO8 соответственно. Входное напряжение от 3 до 40 вольт.

В этой схеме на выходе преобразователя выдается 28 вольт, при входном напряжении 12 вольт, ток нагрузки при этом будет составлять 175 миллиампер.

Другое значение напряжения на выходе повышающего можно получить, изменяя соотношение R1/R2 по формуле:

V вых=1,25 х(1+R2/R1) .

Для реализации кроме