Генератор сигналов: функциональный генератор своими руками. Схемы простых генераторов низкой частоты Звуковой генератор зг 10 схема описание

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор . Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы .

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.

Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор . Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора , сборкой которого мы и занимаемся:

А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

(151.5 KiB, 6,062 hits)

(130.7 KiB, 3,494 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):

Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат SPRINT LAYOUT .

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.

Явное преимущество по простоте и стабильности в работе показал генератор по предложенной в схеме (на рис. 1 она упрощена). Там лампа накаливания, действующая как бареттер, подключена к выходу усилителя тока на транзисторе, чтобы снизить нагрузку на цепь генератора. Такой же усилитель предусмотрен и в схеме . Но оказалось, что при выходном напряжении 1 В исключение усилителя на параметрах генератора не сказывается: нить лампы почти не нагревается, а амплитуда выходного сигнала при перестройке частоты практически не изменяется. Возможно, при выходном напряжении 4 В усилитель полезен, но для задающего генератора (ЗГ) необходимости в нем нет. Кроме усилителей на транзисторах, при проверке на макете вместо обычных ОУ были опробованы и микросхемы SSM2135 и SSM2275, обеспечивающие значительно больший выходной ток. В этом случае лампа может разогреваться без всякого дополнительного усилителя, но тоже никакой разницы в стабильности амплитуды и уровне искажений не замечено. В схеме генератора из наименьшие искажения сигнала достигаются при определенном оптимальном выходном напряжении, выбираемом с помощью подстроечного резистора. В генераторе по схеме, показанной на рис. 1 в , никаких регуляторов не предусмотрено, а амплитуду выходного сигнала можно изменить подбором резистора R3. Для получения напряжения 1 В потребовался резистор R3 сопротивлением около 13 кОм.

Увеличение амплитуды одновременно позволяет повысить верхнюю граничную частоту генерации при тех же элементах. На мой взгляд, необходимость в использовании частоты выше 100 кГц в практике занятий звукотехни-кой возникает крайне редко. При экспериментах обнаружилось, что коэффициент гармоник и выходное напряжение несколько изменяются при замене лампы стабилизации. При измерениях в макете ЗГ использованы микролампы оптронов. На частоте 1 кГц результаты получены следующие: для ОЭП-2 Кг равен 0,11 и 0,068%; для ОЭП,23 и 0,095%; для ОЭП,1 и 0,12% (по два экземпляра). Для нескольких ламп других типов Кг оказался равным 0,17, 0,081, 0,2 и 0,077%. Измерения показали, что разогрев нити чрезвычайно мал (сопротивление фоторезистора оптрона практически не изменяется), хотя стабилизация амплитуды ЗГ очень эффективна. Не хуже стабилизируют амплитуду выходного сигнала и полевые транзисторы, но искажения получаются больше.

Нужно отметить, что на самой высокой частоте (100 кГц) в исследуемом варианте ЗГ могут работать не все ОУ. Легко обеспечивают генерацию на этой частоте сдвоенные ОУ ОР275 или NE5532, а микросхема SSM2135 - на частотах не выше 92 кГц.

Представленных здесь сведений по схемам вполне достаточно для изготовления измерительного генератора, но за более подробной информацией и методикой расчета можно обратиться к статьям .

Для получения максимального выходного напряжения около 10 В эфф. необходим выходной усилитель, повышающий напряжение задающего генератора в 10 раз. В полноценном приборе нужно контролировать частоту и напряжение выходного сигнала. Проще всего снабдить генератор простыми частотомером и вольтметром. Эти совершенно независимые устройства размещены на отдельных платах, что облегчало экспериментальную проверку всех узлов и устраняло их взаимовлияние.

Полная схема измерительного генератора с частотомером и вольтметром показана на рис. 2.

На одной плате собран задающий генератор (DA1), на второй - частотомер (DA3), на третьей - выходной усилитель и вольтметр (DA2). Получается, что весь прибор, кроме блока питания , собран всего на трех микросхемах, поэтому монтаж легко выполнить на отрезках макетной печатной платы.

Основные технические параметры

Частотные интервалы ЗГ и частотомера, Гц, в поддиапазоне
I......................7...110
II....................89...1220
III.................828...11370
IV...............8340...114500
Напряжение на выходе генератора, В..................0...10
Затухание аттенюатора, дБ. .10/20/30/40
Выходное сопротивление,
Ом.....................100/160
Коэффициент гармоник ЗГ, %, в поддиапазоне
I (выше 30 Гц) .............0,16
II......................0,105
III......................0,065
IV.......................0,09

Для каждого из поддиапазонов указано среднее значение коэффициента гармоник, которое получено без всякого подбора элементов (кроме выбора лампы накаливания) при измерениях сигнала на выходе задающего генератора. При перестройке частоты амплитуда сигнала изменялась очень мало.

Задающий генератор на микросхеме DA2 работает в четырех поддиапазонах с небольшим перекрытием по краям. Перестройка частоты осуществляется с помощью сдвоенного переменного резистора R17. Для перестройки можно использовать и одиночный резистор, но перекрытие в поддиапазоне окажется значительно меньше. При наличии встроенного частотомера нет необходимости точно подгонять границы диапазонов или обеспечивать линейное изменение частоты, применяя переменные резисторы группы Б с нелинейной характеристикой регулирования. Пользуясь шкалой частотомера, требуемую частоту сигнала генератора можно выставить без труда.

Простые аналоговые частотомеры обычно собирают на микросхемах ТТЛ, так как на них проще обеспечить измерение высоких частот. Поэтому некоторые неожиданности возникли при подключении такого частотомера, который вносил заметные помехи: на частоте 100 кГц ИНИ показал увеличение коэффициента гармоник до 0,7 %. В этом приборе использована микросхема КМОП К561ЛА7 (DD1). Потребляемый ток и помехи от частотомера получаются значительно меньше. Чтобы свести эти помехи к минимуму, сопротивление разделительного резистора R1 нужно выбирать не менее 100 кОм, тогда на 100 кГц значение Кг не превышает 0,3 %. На других диапазонах практически подключение частотомера не сказывается. Чтобы еще больше снизить уровень помех от частотомера, на его входе установлен истоковый повторитель VT1 (КПЗОЗБ).

Принцип работы аналоговых частотомеров известен, а описание работы одновибратора можно найти в . Переключение поддиапазонов частотомера производится тем же переключателем SA1, который переключает частоту генератора. Если есть возможность подобрать конденсаторы С2, СЗ, С4 и С5, чтобы их емкости отличались ровно в 10 раз, то нет необходимости устанавливать подстроечные резисторы R6-R9.

Но можно использовать конденсаторы без подбора и подстроить показания в каждом поддиапазоне, пользуясь внешним частотомером (например, в ИНИ С6-11).

Еще одной неожиданностью стала заметная нелинейность шкалы используемых в приборе микроамперметров. Исходя из наличия и эстетических соображений в частотомере использован микроамперметр М4247 на 100 мкА, а в вольтметре - М4387 на 300 мкА. Оба типа приборов устанавливали в магнитофоны для контроля уровня записи сигнала, обычно они имеют одну шкалу, градуированную в децибелах. Понятно, что особая точность здесь не требовалась. Но с нанесенной настоящей шкалой показания измерительных приборов одного типа(!) существенно отличались либо в начале, либо в конце шкалы. Однако, располагая компьютером и принтером, новую шкалу можно сделать очень быстро. Сложность заключается в аккуратном вскрытии корпуса микроамперметра для установки шкалы, но это придется сделать, так как в вольтметре кроме обычной шкалы на 10 В нужно иметь шкалу на 3,16 В, а для всех занимающихся звукотехникой важно иметь возможность отсчета и в децибелах. Естественно, ничто не мешает использовать иные микроамперметры более высокого класса с готовыми шкалами.

Выходной каскад на ОУ DA5.2 (TL082 либо ТL072), увеличивающий амплитуду сигнала до 10 В, несколько увеличивает и нелинейные искажения. Этот каскад отличается от описанного в только тем, что дополнительно введен переключатель SA2 "хО,316" для изменения уровня выходного сигнала на 10 дБ (установка подстроечным резистором R30) и включенной параллельно ему кнопки SB1. При разомкнутых контактах переключателя этой кнопкой можно быстро получить скачкообразные изменения уровня на 10 дБ, что очень удобно при настройке авторегуляторов уровня и измерителей уровня. Использование предельного напряжения питания (+/-17,5 В) для усилителя позволило получить максимальную амплитуду выходного сигнала без ограничения не менее 10 В. В блоке питания для этой цели установлены стабилизаторы с регулируемым напряжением.

Несимметричное ограничение амплитуды можно выровнять подстройкой соответствующего напряжения питания. Максимальное напряжение 10 В на выходном разъеме Х1 устанавливают резистором R31. Затем размыкают переключатель SA2 и устанавливают подстроечным резистором R30 напряжение ровно на 10 дБ ниже, т. е. 3,16 В. Для этого выходной вольтметр имеет вторую шкалу. В делителе напряжения необходимо подобрать резисторы, чтобы обеспечить точное изменение амплитуды выходного сигнала ступенями по 20 дБ. Иногда достаточно просто поменять местами в делителе два резистора одного номинала. Достоинство такого аттенюатора - неизменное выходное сопротивление генератора при любом выходном напряжении (здесь 160 Ом).

Измерения показали, что при выходном напряжении 7,75 В на частоте 20 Гц генератор имеет Кг= 0,27 %; а при напряжении 77 мВ (-40 дБ) - К= 0,14%. В диапазоне II при Uвых = 7,75 В Кг<0,16%, в диапазоне III Kr = 0,08...0,09 %. В полосе частот 10...20 кГц при 11ВЫХ = 7,75 В Кг= 0,06 %, а на более высоких частотах возрастал до 0,32 % на частоте 100 кГц. Для обычной эксплуатации прибора это вряд ли имеет значение, хотя возможно подобрать для выходного усилителя другой ОУ. Увы, популярный в звукотех-нической аппаратуре ОУ NE5532 на высокой частоте превращает синусоиду амплитудой 10 В в "пилу".

Весь генератор потребляет от источника питания по цепи +17,5 В ток не более 14 мА, а по цепи -17,5 В - не более 18 мА, поэтому в качестве Т1 можно использовать любой маломощный трансформатор , обеспечивающий нужные напряжения (2x18 В).

Внешний вид прибора показан на фото рис. 3. Генератор размещен в пластмассовом корпусе размерами 200x60x170 мм; подобных корпусов в продаже достаточно много. В приборе использованы переключатели ПГ2-15-4П9НВ и тумблеры П1Т-1-1В, а также кнопка КМ1-1. Все оксидные конденсаторы, кроме С8, - на напряжение 25 В. Выходной разъем Х1 - JACK6.3. Насколько оправдано применение такого разъема, показывает опыт эксплуатации. Первые впечатления подтверждают, что иногда этот прибор удобнее ГЗ-102, а на низких частотах стабилизация амплитуды более устойчива, при этом никакого подбора деталей не требуется. После сборки на некоторое время нужен доступ к ИНИ, например С6-11, для настройки. Подстроечными резисторами можно достаточно быстро выставить показания приборов и проверить параметры генератора. Если окажется, что во всех поддиапазонах искажения велики, следует подобрать другую лампу (можно рекомендовать СМН6.3-20 или аналогичные). Для налаживания можно использовать и другие приборы - вольтметры, частотомеры.

Для создания шкалы приборов нужно нанести линейную шкалу и записать показания напряжения во всем диапазоне перестройки. Затем с помощью ПК нужно изготовить новую шкалу с учетом измеренных погрешностей и распечатать ее с помощью принтера на фотобумаге. Говорить о точности здесь бессмысленно, поскольку она зависит от правильности показаний используемых при калибровке приборов. Сейчас службы ремонта и контроля в основном упразднены; теперь предлагается использовать сертифицированные приборы. Но сертификация, хотя и увеличивает цену приборов, никак не влияет на точность их показаний. Так, при экспериментах с генераторами было использовано три И НИ С6-11, и их показания несколько различались.

ЛИТЕРАТУРА

1. Генератор 34 с малыми нелинейными искажениями. - Радио, 1984, № 7, с. 61.

2. Невструев Е. Генератор сигналов 34. - Радио, 1989, № 5, с. 67-69.

3. Петин Г. Применение гиратора в резонансных усилителях и генераторах. - Радио, 1996, № 11, с. 33, 34.

4. Бирюков устройства на МОП-интегральных микросхемах. - М.: Радио и связь, 1990.

5. Шило цифровые микросхемы. - М.: Радио и связь, 1987.

6. Синусоидальный генератор. - Радио, 1995, № 1,с.45.

Генератор НЧ на транзисторах, с перестройкой одним резистором.

http://nowradio. *****/generator%20NCH%20na%20tranzistorax%20s%20perestroykoy%20odnim%20rezistorom. htm

Генератор НЧ от 18 Гц до 30 Кгц. Диапазон разбит на четыре поддиапазона. Для стабилизации выходного напряжения применена система АРУ. Уровень выходного напряжения на нагрузке 15 кОм – не менее 0,5 в. Для дальнейшего использования генератора нужно применить выходной каскад с низким выходным сопротивлением. Например, эмиттерный повторитель с низкоомной нагрузкой. Основной частью генератора является трёхкаскадный усилитель на транзисторах Т4, Т5 и Т1 с коэффициентом передачи около 1. Усилитель охвачен отрицательной обратной связью, в цепь которой включены два фазовращающих каскада, собранных на транзисторах Т2, Т3. Каждый из них вносит фазовый сдвиг, изменяющийся от нуля до 180о при изменении частоты от нуля до бесконечности. Модуль коэффициента передачи этих каскадов не зависит от частоты и вносимого фазового сдвига и близок к 1. Таким образом, на одной из частот, являющейся квазирезонансной частотой генератора, суммарный фазовый сдвиг, вносимый фазовращателем, оказывается равным 180о и обратная связь становиться положительной. Если при этом коэффициент передачи достаточен, то устройство начинает генерировать на данной частоте. Построение данного генератора позволяет получить достаточно высокий коэффициент перекрытия по частоте на поддиапазонах (более 10), однако увеличивать его долее 6-8 нецелесообразно из-за сжатия шкалы частот в конце поддиапазона. На высоких частотах фазовый сдвиг, вносимый транзисторами, несколько увеличивает перекрытие по частоте. Для стабилизации амплитуды выходного сигнала применена система АРУ с задержкой. Детектор АРУ выполнен на диодах Д1 и Д2, подключен к выходу генератора через эмиттерный повторитель на транзисторе Т6. Это позволило избежать нелинейных искажений детектором АРУ. При возрастании выходного сигнала его амплитуда оказывается больше напряжения открывания диодов Д1 и Д2. Последние открываются, и на конденсаторе С9 возрастает постоянное напряжение. В результате увеличивается коллекторный ток транзистора Т5 и, следовательно, уменьшается коллекторный ток транзистора Т4. В результате уменьшается эквивалентное сопротивление положительной обратной связи, соответственно и уменьшается и коэффициент усиления, а, следовательно, и выходного сигнала. Уменьшение вносимых системой АРУ нелинейных искажений достигается отрицательной обратной связью, которой охвачены каскады на транзисторах Т4 и Т5. Задержка АРУ происходит из-за применения кремниевых диодов Д1, Д2 и транзистора Т5, напряжение база-эмиттер которого закрывает диод Д1. При налаживании генератора следует подстроечным резистором R1, установить выходное напряжение в пределах 0,5-0,55 в, а резисторами R4 и R9 добиться минимальных нелинейных искажений.

Генератор НЧ с мостом Винна

http://*****/NCH%20generator%20s%20mostom%20Vinna%Kgc. htm

Применяя мостик Винна в цепи обратной связи, из обычного усилителя можно получить генератор гармонических колебаний. Запитываемый от 9-вольтовой батарейки (потребляемый ток 10 мА), генератор вырабатывает синусоидальный сигнал амплитудой 1 В в диапазоне частот от 10 Гц до 140 кГц. Генерирующая часть образована операционным усилителем OP1 с петлей положительной обратной связи, образованной RC-цепочкой Винна из резисторов R3, R4, потенциометров 100к и конденсаторов С1-С8. Поддиапазон выбирается сдвоенным переключателем, а плавная настройка внутри поддиапазона производится двухсекционным потенциометром 100к. Для поддержания стабильной амплитуды выходного сигнала в цепь отрицательной обратной связи включены ограничительные диоды VD1, VD2 и резистор R7. Второй операционный усилитель выполняет функцию буферного усилителя, изолирующего цепочку Винна от влияния внешней нагрузки. С помощью потенциометра VR2 регулируется уровень выходного сигнала. Положениям переключателя соответствуют следующие частотные поддиапазоны: "1" - 10Гц; "2" - 100Гц; "3" -1...14 кГц; "4" - 10кГц. Устройство легко монтируется на универсальной монтажной плате и помещается в компактном корпусе.

Радио-Парад №3 2004г стр. 24

Генератор вырабатывает переменное напряжение симметричной прямоугольной, треугольной и синусоидальной форм и предназначен для проверки и настройки различной низкочастотной аппаратуры. Простота схемы и функциональные возможности делают генератор доступным для повторения. Электрическая принципиальная схема приведена на рисунке.

Синусоидальный генератор НЧ

http://nowradio. *****/sinusoidalnuy%20generator%20NCH. htm

На схеме показан простой синусоидальный генератор, выполненный из доступных элементов. Его параметры вполне отвечают требованиям, предъявляемым к измерительным генераторам по стабильности генерируемых колебаний, нелинейности, плавности и ступенчатости регулирования уровня выходного напряжения, малого тока потребления энергии. Этот генератор может быть использован как источник низкочастотных колебаний при настройке и проверке элементов трактов радиоприемников, громкоговорителей, для проверки других измерительных приборов.

Основные технические характеристики.

Диапазон генерируемых колебаний, Гц

Коэфф. нелинейных искажений не более, %,

в поддиапазонах: 10...40 и 85000Гц 0.8

40...85000 Гц 0,3

Максимальный размах выходного напряжения, В 18

Изменение амплитуды выходного напряжения во всем диапазоне

частот не более, дБ 0,2

Потребляемая мощность не более. Вт 2

Низкочастотный синусоидальный генератор на микросхеме DA1 выполнен по мостовой схеме Робинсона-Вина. Выбор поддиапазона (10Гц, 0,1 ..1 кГц, 1 10 кГц, 1кГц) осуществляется переключателем SA1, а плавная установка частоты - сдвоенным переменным резистором R2. Для получения пропорциональности между углом поворота и изменением частоты необходимо, чтобы переменный резистор имел показательную характеристику изменения сопротивления (группа В). Требования к идентичности сопротивлений каждого из двух переменных резисторов не столь высоки, так как небольшие различия могут быть компенсированы подстроечным резистором R7. В цепи отрицательной обратной связи операционного усилителя включено динамическое звено, состоящее из резистора R4 и транзистора VT1. Работой этого звена достигнута стабилизация амплитуды генерируемых колебаний во всем диапазоне. Управляется звено изменением напряжения на затворе полевого транзистора, которое подано с выхода ОУ. Любое изменение на выходе микросхемы DA1 вызывает изменение сопротивления канала сток-исток, а это, в свою очередь, приводит к изменению коэффициента усиления каскада. Низкочастотное напряжение с выхода первого каскада через делитель напряжения на R10R11 подано на неинвертирующий вход усилителя на микросхеме DA2. Коэффициент передачи этого каскада составляет 10. Балансировка работы каскада по постоянному току выполнена подстроечным резистором R12. На выходе каскада подключен аттенюатор с затуханием дБ. Питание устройства от сети переменного тока через понижающий трансформатор с переменным напряжением на вторичной обмотке 21+21 В. При выполнении конструкции генератора, конденсаторы С1 - С8 следует выбрать с допуском отклонения номинала не более 1% расположив их непосредственно между ламелями галетного переключателя SA1. Монтаж устройства производят на печатной плате из фольгированного гетинакса. Настройку генератора выполняют в такой последовательности. К общей точке резисторов R10, R11 подключают осциллограф. Переключатель SA1 устанавливает в положение второго поддиапазона. Подстроечными резисторами R6 и R7 добиваются возбуждения генератора, и вращением переменного резистора R2 проверяют наличие генерации во всем диапазоне перемещения его движка. Затем устанавливают первый поддиапазон, а переменный резистор R2 в положение 2/3 от максимального значения сопротивления. Регулировкой подстроенных резисторов R6 и R7 выбирают такое их положение, где искажения синусоиды минимальны. Для получения указанного в технических характеристиках значения коэффициента нелинейных искажений настройку следует производить с использованием измерителя нелинейных искажений. К выходу микросхемы DA2 следует подключить вольтметр с пределом измерения 0,5...1 В, и подстроечным резистором R12 произвести балансировку работы усилителя на микросхеме DА2. Градуировку регулятора плавного изменения выходного сигнала (R11) производят при измерении напряжения непосредственно на выходном разъеме XS1 в положении аттенюатора 0 дБ. Устанавливая последовательно значения 1, 2. 3 В и так далее, отмечают риски на шкале регулятора.

Радиолюбитель №5 2001г стр. 22

Функциональный генератор 15Гц – 15КГц

http://nowradio. *****/funkcionalnuy%20generator%2015Gc-15Kgc. htm

При налаживании низкочастотной звуковоспроизводящей аппаратуры может понадобиться сигнал не только синусоидальной, но и прямоугольной, треугольной формы.

На рисунке приведена схема функционального генератора, вырабатывающего колебания синусоидальной, прямоугольной, треугольной формы в пределах от 15 Гц до 15 кГц. Весь диапазон перекрывается без переключений одним переменным резистором R2. На операционных усилителях А1.1 и А1.2 сделан мультивибратор. Прямоугольные импульсы снимаются с выхода А1.1. Треугольные снимаются с выхода А1.2 (через буфер на А1.4), а для получения сигнала формы, близкой к синусоидальной (параболической формы) используется формирователь на диодах VD3-VD6 , с которого полученный сигнал поступает на дополнительный усилитель на А1.4. Источник питания - на маломощном силовом трансформаторе Т1, с вторичной обмоткой на 5-7V переменного тока. Однополупериодный выпрямитель на VD7 и VD8 создает двуполярное напряжение, которое стабилизируется стабилитронами VD1 и VD2. Симметричность сигнала, близкого к синусоидальной форме, при налаживании нужно выставить подбором сопротивлений R8 или R9. Диоды VD3-VD6 желательно брать из одной партии.

Радиоконструктор №9 2008г стр. 17

Взято http://. ru/forum/-info-80795.html

Важно. Этот ФГ из журнала Радио №6 1992 стр. 44.

См. Так же «ГКЧ Лукина 300Кгц» и его преобразователь треугольник – синусоида.

20. Преобразователь треугольного напряжения в синусоидальное. http://*****/u2.htm

17. Преобразователь треугольного напряжения в синусоидальное с последовательной аппроксимацией.

http://*****/u2.htm

48. Нелинейный преобразователь пилообразного напряжения в синусоидальное.

49. Формирователь синусоидального напряжения.

52. Преобразователь пилообразного напряжения в синусоидальное.

Генератор низкой частоты - один из необходимых приборов в лаборатории радиолюбителя. Широкий пе­речень устройств, при налаживании которых необходим этот прибор, определяет высокий уровень требований, предъявляемых к его параметрам. .В последнее время» наряду с классическими схемами генераторов, исполь­зующими в качестве частотозадающего элемента пере­страиваемые резонансные jRC-звенья, все большее рас­пространение получают так называемые функциональ­ные генераторы (ФГ). К их преимуществам относятся: высокая стабильность амплитуды выходного напряже­ния; возможность генерирования инфранизких частот; практически равное нулю время установления выходного напряжения и частоты; отсутствие в конструкции дефи­цитных деталей (например, сдвоенных прецизионных пе­ременных резисторов и термисторов). Кроме того, функ­циональные генераторы позволяют получить напряжение не только синусоидальной, но также прямоугольной и треугольной форм. Однако известные схемы таких гене­раторов обладают и рядом недостатков, к основ­ным из которых относятся относительно высокий уровень нелинейных искажений синусоидального

сигнала и огра­ниченный частотный диапазон в области ультразвуковых частот.

Рис. 1. Принципиальная схема генератора

Описываемый функциональный генератор, в котором по возможности уменьшены указанные недостатки, имеет следующие основные параметры:

Форма выходного напряжения. ……. Синусоидальная, треугольная, прямоугольная

Диапазон генерируемых частот, Гц …… 0,

Число поддиапазонов………… б

Коэффициент гармоник, %:

до 50 кГц…………… о,5

до 300 кГц…………… 1,0

Неравномерность амплитудно-частотной характе­ристики: %;

до 50 кГц …………… 1

до 300 кГц…………… 3

Длительность фронтов напряжения прямоуголь­ной формы, не …………… 250

Максимальная двойная амплитуда напряжения-

всех форм, В …-…………. 10

Максимальный ток нагрузки, мА……. 30

Коэффициенты деления выходного делителя на­пряжения, раз … .. . …….. 1, 10, 100, 1000

Плавная регулировка амплитуды выходного на­пряжения. ………….. Не менее 1:20

В схеме функционального генератора помимо основ­ного выхода имеется дополнительный дифференциаль­ный , амплитуда и форма напряжения на котором уста­навливаются синхронно с основным, а сдвиг по фазе равен 180°. Запаздывание фронта сигнала на дифферен­циальном выходе по отношению к основному - не более 40 не. Предусмотрен также выход прямоугольных им­пульсов с уровнем, соответствующим уровням ТТЛ-ло­гики, и регулируемой скважностью в пределах от 11 до 10.

Основой ФГ служит замкнутая релаксационная си­стема, состоящая из интегратора и компаратора и пред­назначенная для получения колебаний прямоугольной и треугольной форм. Постоянная времени интегратора, выполненного на основе операционного усилителя (ОУ) А1 (рис. 1), и, следовательно, частота генерируемых колебаний зависят от емкости одного из конденсаторов С2…С7, включаемого в цепь отрицательной обратной связи с помощью переключателей S1…S4. Напряжение с выхода интегратора подается на вход двухполярного компаратора на ОУ А2 и по достижении порога его срабатывания полярность напряжения на выходе А2, а следовательно, и на входе интегратора меняется на противоположную, и цикл повторяется. Плавная регули­ровка частоты осуществляется резистором R7.

Для преобразования треугольного напряжения в си­нусоидальное использована хорошо зарекомендовавшая себя схема функционального преобразователя на поле­вом транзисторе, подробно описанная в . Для облег­чения налаживания ФГ и повышения качественных по­казателей напряжение на преобразователь поступает с (выхода отдельного масштабного усилителя A3. Регули­ровка его коэффициента усиления и смещения нуля ре­зисторами R22 и R23 позволяют оптимизировать форму треугольного напряжения, подаваемого на функциональ­ный преобразователь на транзисторе V8, и значительно улучшить форму синусоидального сигнала. Необходи­мость введения разделительного конденсатора С8 опре­деляется тем, что начиная уже с частот в несколько килогерц на выходе интегратора А1 возникает смещение среднего уровня сигнала, обусловленное асимметрией порогов срабатывания компаратора, появляющейся на высоких частотах. Без конденсатора С8 напряжение треугольной формы на выходе ФГ становится несиммет­ричным относительно нуля, а форма синусоидального сигнала резко искажается.

Напряжение треугольной формы с выхода ГАЗ по­дается, кроме функционального преобразователя, на вход триггера Шмитта, выполненного на транзисторе V10 и микросхеме DL Скважность прямоугольных импульсов на выходе 8 D1 можно изменять, регулируя порог сраба­тывания триггера резистором R24.

Напряжение синусоидальной, треугольной или - прямо­угольной форм через переключатели формы выходного сигнала 55, S6.2 подается на оконечный масштабный усилитель А4 и далее на усилитель мощности на тран­зисторах V15, V16. Питание к ОУ А4 подведено через RС-фильтры R43C11 и R47C13, предотвращающие воз­можное возбуждение усилителя. В цепь отрицательной обратной связи усилителя включен переменный резистор R40,. которым плавно регулируют амплитуду выходного напряжения. Такой способ регулирования, в отличие от включения потенциометра на входе ОУ, делает шкалу регулятора амплитуды единой для всех форм выходного напряжения и улучшает отношение сигнал - шум при низких уровнях выходного напряжения.

На выходе усилителя включен ступенчатый делитель, .позволяющий получить ослабление выходного сигнала в 10, 100 или 1000 раз. Четыре ступени деления полу­чены с помощью всего двух клавишных переключате­лей - при одновременном нажатии S7 и S8 коэффициент деления равен 1000. Преимуществом такого способа является и то, что при отжатых клавишах (коэффициент деления равен 1) резисторы делителя отключены от вы­хода усилителя, что несколько повышает его нагрузоч­ную способность в этом режиме.

На дифференциальный выход напряжение поступает с аналогичного по схеме инвертирующего усилителя на ОУ А5 и транзисторах V17, V18. Его вход подключен к выходу первого усилителя, а коэффициент усиления по напряжению равен 1. Делитель напряжения диффе­ренциального выхода переключается синхронно с дели­телем основного. Легко заметить, что разность напряже­ний между основным и дифференциальным выходами равна удвоенной амплитуде напряжения на каждом из них. Помимо возможности получения удвоенной ампли­туды сигнала, наличие дифференциального выхода не­обходимо при налаживании ряда устройств с дифферен­циальным входом, например самопишущих приборов или измерительных дифференциальных усилителей.

О той роли, которую играет реле K1, следует сказать особо. Дело в том, что фронты прямоугольных импульсов с выхода компаратора, если их непосредственно подвести к переключателю S6.2, легко проникают через его про-кодную емкость на вход оконечного усилителя и вызы­вают значительные искажения формы треугольного и синусоидального сигналов. Контакты реле K1, коммути­руя цепи, имеющие заметную емкость относительного входа А4, соединяют их при генерации напряжений - ука­занной формы с общим проводом, чем этот вид искаже­ний полностью устраняется.

Питается генератор от любого двуполярного стабили­зированного источника питания напряжением ±15 В, с малыми пульсациями выходного напряжения и допу­стимым током нагрузки не менее 0,15 А. Может быть, например, использован блок питания генератора, опи­санного в . При выборе и налаживании источника питания следует обратить особое внимание на устране­ние самовозбуждения стабилизатора напряжения, весьма вероятного при питании генераторных схем.

Микросхемы К574УД1А можно заменить на К574УД1Б. Если же ограничить рабочую частоту генера-.тора до 30 кГц, возможна замена их на К140УД8Б, без изменения принципиальной схемы. Вместо 153УД1 мож­но использовать К153УД1 или К553УД1 (с любой бук­вой), но при этом для получения максимальной частоты генерации 300 кГц может потребоваться их подбор. На частотах до 100 кГц указанные типы операционных уси­лителей работают без подбора. При применении в каче­стве А2 других типов ОУ получить частоту генерации выше 50…70 кГц при удовлетворительной линейности АЧХ не удается.

В качестве D1 можно использовать любые инверторы серий К133, К155. Транзисторы КТ315 и КТ361 могут быть заменены на любые кремниевые транзисторы ма­лой мощности с соответствующей проводимостью и ана­логичными параметрами. Если в усилителях мощности применить транзисторы серии КТ814, КТ815 (с любой буквой), то нагрузочная способность генератора может быть значительно повышена. При такой замене номина­лы резисторов R53…R56 и R57…R64 следует уменьшить примерно в 5 раз. Диоды Д223 можно заменить любыми кремниевыми высокочастотными, диоды Д311 - Д18, ГД507, а вместо транзистора КП303Е - КП303Г или КП303Ф. Конденсаторы С2, CS - К53-7 или иные непо­лярные. Остальные конденсаторы - керамические типов КМ, КЛС, КТК и т. п. Можно использовать и бумажные конденсаторы. Если предполагается эксплуатация ФГ в значительном диапазоне температур, необходимо вы­брать типы конденсаторов С2…С7 с малым ТКЕ. Предва­рительный подбор номиналов С2…С6 с точностью до 1 % значительно упрощает налаживание.

Генератор – это автоколебательная система, формирующая импульсы электрического тока, в которой транзистор играет роль коммутирующего элемента. Изначально, с момента изобретения, транзистор позиционировался как усилительный элемент. Презентация первого транзистора произошла в 1947 году. Презентация полевого транзистора произошла несколько позже – в 1953 г. В генераторах импульсов он играет роль переключателя и только в генераторах переменного тока он реализует свои усилительные свойства, одновременно участвуя в создании положительной обратной связи для поддержки колебательного процесса.

Наглядная иллюстрация деления частотного диапазона

Классификация

Транзисторные генераторы имеют несколько классификаций:

  • по диапазону частот выходного сигнала;
  • по типу выходного сигнала;
  • по принципу действия.

Диапазон частот – величина субъективная, но для стандартизации принято такое деление частотного диапазона:

  • от 30 Гц до 300 кГц – низкая частота (НЧ);
  • от 300 кГц до 3 МГц – средняя частота (СЧ);
  • от 3 МГц до 300 МГц – высокая частота (ВЧ);
  • выше 300 МГц – сверхвысокая частота (СВЧ).

Таково деление частотного диапазона в области радиоволн. Существует звуковой диапазон частот (ЗЧ) – от 16 Гц до 22 кГц. Таким образом, желая подчеркнуть диапазон частот генератора, его называют, например ВЧ или НЧ генератором. Частоты звукового диапазона в свою очередь также подразделяются на ВЧ, СЧ и НЧ.

По типу выходного сигнала генераторы могут быть:

  • синусоидальные – для генерации синусоидальных сигналов;
  • функциональные – для автоколебания сигналов специальной формы. Частный случай – генератор прямоугольных импульсов ;
  • генераторы шума – генераторы широкого спектра частот, у которых в заданном диапазоне частот спектр сигнала равномерный от нижнего до верхнего участка частотной характеристики.

По принципу действия генераторов:

  • RC-генераторы;
  • LC-генераторы;
  • Блокинг-генераторы – формирователь коротких импульсов.

Ввиду принципиальных ограничений обычно RC-генераторы используются в НЧ и звуковом диапазоне, а LC-генераторы в ВЧ диапазоне частот.

Схемотехника генераторов

RC и LC генераторы синусоидальные

Наиболее просто реализуется генератор на транзисторе в схеме емкостной трехточки – генератор Колпитца (рис. ниже).

Схема генератора на транзисторе (генератор Колпитца)

В схеме Колпитца элементы (C1), (C2), (L) являются частотозадающими. Остальные элементы представляют собой стандартную обвязку транзистора для обеспечения необходимого режима работы по постоянному току. Такой же простой схемотехникой обладает генератор, собранный по схеме индуктивной трехточки – генератор Хартли (рис. ниже).

Схема трехточечного генератора с индуктивной связью (генератор Хартли)

В этой схеме частота генератора определяется параллельным контуром, в который входят элементы (C), (La), (Lb). Конденсатор (С) необходим для образования положительной обратной связи по переменному току.

Практическая реализация такого генератора более затруднительна, поскольку требует наличия индуктивности с отводом.

И тот и другой генераторы автоколебания находят преимущественно применение в СЧ и ВЧ диапазонах в качестве генераторов несущих частот, в частотозадающих цепях гетеродинов и так далее. Регенераторы радиоприемников также основаны на генераторах колебаний. Указанное применение требует высокой стабильности частоты, поэтому практически всегда схема дополняется кварцевым резонатором колебаний.

Задающий генератор тока на основе кварцевого резонатора имеет автоколебания с очень высокой точностью установки значения частоты ВЧ генератора. Миллиардные доли процента далеко не предел. Регенераторы радиостанций используют только кварцевую стабилизацию частоты.

Работа генераторов в области низкочастотного тока и звуковой частоты связана с трудностями реализации высоких значений индуктивности. Если быть точнее, то в габаритах необходимой катушки индуктивности.

Схема генератора Пирса является модификацией схемы Колпитца, реализованной без применения индуктивности (рис. ниже).

Схема генератора Пирса без применения индуктивности

В схеме Пирса индуктивность заменена кварцевым резонатором, что позволило избавиться от трудоемкой и громоздкой катушки индуктивности и, в то же время, ограничило верхний диапазон колебаний.

Конденсатор (С3) не пропускает постоянную составляющую базового смещения транзистора на кварцевый резонатор. Такой генератор может формировать колебания до 25 МГц, в том числе и звуковой частоты.

Работа всех вышеперечисленных генераторов основана на резонансных свойствах колебательной системы, составленной из емкости и индуктивности. Соответственно, частота колебаний определяется номиналами этих элементов.

RC генераторы тока используют принцип фазового сдвига в резистивно-емкостной цепи. Наиболее часто применяется схема с фазосдвигающей цепочкой (рис. ниже).

Схема RC генератора с фазосдвигающей цепочкой

Элементы (R1), (R2), (C1), (C2), (C3) выполняют сдвиг фазы для получения положительной обратной связи, необходимой для возникновения автоколебаний. Генерация возникает на частотах, для которых фазовый сдвиг оптимален (180 гр). Фазосдвигающая цепь вносит сильное ослабление сигнала, поэтому такая схема имеет повышенные требования к коэффициенту усиления транзистора. Менее требовательна к параметрам транзистора схема с мостом Вина (рис. ниже).

Схема RC генератора с мостом Вина

Двойной Т-образный мост Вина состоит из элементов (C1), (C2), (R3) и (R1), (R2), (C3) и представляет собой узкополосный заграждающий фильтр, настроенный на частоту генерации. Для всех остальных частот транзистор охвачен глубокой отрицательной связью.

Функциональные генераторы тока

Функциональные генераторы предназначены для формирования последовательности импульсов определенной формы (форму описывает некая функция – отсюда и название). Наиболее часто встречаются генераторы прямоугольных (если отношение длительности импульса к периоду колебаний составляет ½, то такая последовательность называется «меандр»), треугольных и пилообразных импульсов. Самый простой генератор прямоугольных импульсов – мультивибратор, подается как первая схема начинающих радиолюбителей для сборки своими руками (рис. ниже).

Схема мультивибратора – генератора прямоугольных импульсов

Особенностью мультивибратора является то, что в нем можно использовать практически любые транзисторы. Длительность импульсов и пауз между ними определяется номиналами конденсаторов и резисторов в базовых цепях транзисторов (Rb1), Cb1) и (Rb2), (Cb2).

Частота автоколебания тока может изменяться от единиц герц до десятков килогерц. ВЧ автоколебания на мультивибраторе реализовать невозможно.

Генераторы треугольных (пилообразных) импульсов, как правило, строятся на основе генераторов прямоугольных импульсов (задающий генератор) путем добавления корректирующей цепочки (рис. ниже).

Схема генератора треугольных импульсов

Форма импульсов, близкая к треугольной, определяется напряжением заряда-разряда на обкладках конденсатора С.

Блокинг-генератор

Предназначение блокинг-генераторов состоит в формировании мощных импульсов тока, имеющих крутые фронты и малую скважность. Длительность пауз между импульсами намного больше длительности самих импульсов. Блокинг-генераторы находят применение в формирователях импульсов, сравнивающих устройствах, но основная область применения – задающий генератор строчной развертки в устройствах отображения информации на основе электронно-лучевых трубок. Также блокинг-генераторы с успехом применяются в устройствах преобразования электроэнергии.

Генераторы на полевых транзисторах

Особенностью полевых транзисторов является очень высокое входное сопротивление, порядок которого соизмерим с сопротивлением электронных ламп. Перечисленные выше схемотехнические решения универсальны, просто они адаптированы под использование различных типов активных элементов. Генераторы Колпитца, Хартли и другие, выполненные на полевом транзисторе, отличаются только номиналами элементов.

Частотозадающие цепи имеют те же соотношения. Для генерирования ВЧ колебаний несколько предпочтительнее простой генератор, выполненный на полевом транзисторе по схеме индуктивной трехточки. Дело в том, что полевой транзистор, имея высокое входное сопротивление, практически не оказывает шунтирующее действие на индуктивность, а, следовательно, работать высокочастотный генератор будет стабильнее.

Генераторы шума

Особенностью генераторов шума является равномерность частотной характеристики в определенном диапазоне, то есть амплитуда колебаний всех частот, входящих в заданный диапазон, является одинаковой. Генераторы шума находят применение в измерительной аппаратуре для оценки частотных характеристик проверяемого тракта. Генераторы шума звукового диапазона часто дополняются корректором частотной характеристики с целью адаптации под субъективную громкость для человеческого слуха. Такой шум называется «серым».

Видео

До сих пор существует несколько областей, в которых применение транзисторов затруднено. Это мощные генераторы СВЧ диапазона в радиолокации, и там, где требуется получение особо мощных импульсов высокой частоты. Пока еще не разработаны мощные транзисторы СВЧ диапазона. Во всех других областях подавляющее большинство генераторов выполняется исключительно на транзисторах. Причин этому несколько. Во-первых, габариты. Во-вторых, потребляемая мощность. В-третьих, надежность. Вдобавок ко всему, транзисторы из-за особенностей своей структуры очень просто поддаются миниатюризации.

Такое устройство будет очень полезно при испытаниях звуковых цепей усилителей ресиверов, телевизоров и другой промышленной и самодельной аппаратуры. Схема генератора приводится по книге В. Г. Борисова «Юный радиолюбитель» (с 145-146 в 8-м издании), с незначительными изменениями.

Схема генератора ЗЧ

Генератор собран на микросхеме К155ЛА3 (можно использовать К555ЛА3), которая представляет собой 4 элемента 2И-НЕ. Непосредственно генератор образуют последовательно соединенные логические элементы DD1.1, DD1.2, DD1.3, включенные инверторами. Конденсатор C1, емкостью 0,47 мкФ, создает положительную обратную связь между выходом DD1.2 и входом DD1.1. В принципе, сигнал можно снимать с выхода DD1.3, элемент DD1.4 просто их инвертирует. Частоту импульсов можно менять резистором переменным R1. Резистор R2 служит регулятором уровня выходного сигнала. Сопротивление резистора R1 680 Ом, R2 10 кОм, переменные резисторы могут быть любого типа. При указанных в схеме параметрах радиодеталей, частоту импульсов можно менять в пределах 500 - 5000 Гц . Диод VD1 служит для защиты от подачи питания неправильной полярности, в качестве него подойдет любой маломощный диод, например Д220. Схема смонтирована на небольшой макетной плате. Но благодаря малому количеству деталей можно выполнить схему навесным монтажом.

Генератор в сборе

Штатное напряжение питания микросхем К155 и К555 составляет 5 В, но генератор работоспособен при питании схемы от «квадратной» батареи напряжением 4,5 В (батарея типа 3336 по старой номенклатуре), падение напряжения на диоде VD1 не влияет на работоспособность устройства. Устройство можно использовать для звуковой частоты.

В данной статье описывается простой генератор звуковых частот, проще говоря - пищалка. Схема простая и состоит всего из 5 элементов, если не считать батарейку и кнопку.

Описание схемы:
R1 задает смещение на базу VT1. А с помощью C1 осуществляется обратная связь. Динамик является нагрузкой VT2.

Сборка:
Итак, нам понадобится:
1) Комплементарная пара из 2х транзисторов, то есть один NPN и один PNP. Подойдут практически любые маломощные, например КТ315 и КТ361 . Я использовал то, что было под рукой - BC33740 и BC32740.
2) Конденсатор 10-100нФ, я использовал 47нФ (маркировка 473).
3) Подстроечный резистор около 100-200 кОм
4) Любой маломощный динамик. Можно использовать наушники.
5) Батарейка. Можно практически любую. Пальчиковую, или крону, разница будет только в частоте генерации и мощности.
6) Небольшой кусок фольгированного стеклотекстолита, если планируется делать все на плате.
7) Кнопка или тумблер. Мной была использована кнопка из китайской лазерной указки.

Итак. Все детали собраны. Приступаем к изготовлению платы. Я сделал простенькую плату поверхностного монтажа механическим путем (то есть при помощи резака).

Итак, все готово к сборке.

Сначала монтируем основные компоненты.

Потом впаиваем провода питания, батарейку с кнопкой и динамик.

На видео показана работа схемы от 1.5В батарейки. Подстроечный резистор меняет частоту генерации

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2 Биполярный транзистор

КТ361Б

1 В блокнот
C1 Конденсатор 10-100нФ 1 В блокнот
R1 Резистор 1-200 кОм 1