Магнитное охлаждение. Холодильник с магнитным охлаждением: принцип работы. Будет ли Россия самостоятельно развивать сверхперспективную технологию

Современные системы охлаждения в промышленности, автомобильной отрасли и домашнем хозяйстве используют для охлаждения такие химические вещества, как фторуглеводороды, хлор-содержащие углеводороды или аммиак, которые влияют на окружающую среду, и в частности разрушают озоновый слой. Используемая в настоящее время технология на основе сжатия пара была разработана около 100 лет тому назад. Несмотря на то, что со временем она была улучшена, ее эффективность значительно не возросла.

Доктор инженер Серджиу Лионте, исследователь и аспирант Национального института прикладных наук INSA в Страсбурге, Франция, говорит, что магнитное охлаждение – это инициатива, вызванная необходимостью оптимизировать затраты на энергию, а также желанием создать возобновляемый источник энергии, который был бы экологически чистым. По сравнению с нынешней системой охлаждения, технология имеет три преимущества. Во-первых, затраты на энергию будут снижены наполовину по сравнению с традиционными классическими системами, так что новая технология весьма эффективна. Во-вторых, воздействие на окружающую среду будет достаточно низким, так как она использует воду в качестве рабочей жидкости, устраняя необходимость вредных веществ, таких как фреоны и аммиак. Третьим основным преимуществом является отсутствие шума. Это тихий продукт, поскольку он не использует компрессор, как в традиционной технологии.

Прототип магнитного холодильника

Каков механизм работы этой системы охлаждения?

Исследователь Серджиу Лионте, который прибыл во Францию после получения стипендии и желая принять участие в разработке амбициозного проекта, объясняет, что система основана на магнитокалорическом эффекте. "Этот эффект является свойством некоторых магнитных материалов нагреваться при помещении в переменное магнитное поле. Лаборатория LGeCo Национального института прикладных наук INSA в Страсбурге, использует концепцию, основанную на четырех этапах, которая оптимизирует этот эффект в рамках циклического процесса и использует при охлаждении:

Так на первом этапе магнитокалорический материал, помещенный в сильное магнитное поле, нагревается. Впоследствии тепло отводится посредством охлаждающей жидкости. Рабочая жидкость поглощает тепло и охлаждает магнитокалорический материал. На третьем этапе материал удаляется из магнитного поля и охлаждается, но так как он уже частично охлажден жидкостью, его температура падает ниже начальной температуры. На последнем этапе эта разница температур направляется в среду, которую мы хотим охладить, в нашем случае - холодильник. Затем, температура материала снова возрастает до начальной температуры, процесс может быть возобновлен.

Принцип действия обеих систем охлаждения - магнитной и на основе сжатия пара

Магнитокалорический материал, используемый в этом процессе, Gadolinium – редкий природный элемент. Партнеры, работающие над проектом, в котором занят и румынский исследователь, используют Lantan, более высокий элемент, чем Gadolinium, для получения некоторых сплавов.

Магнитная система охлаждения в настоящее время разрабатывается в рамках проекта MagCool, разрабатываемого Национальным институтом прикладных наук INSA в Страсбурге, Франция, вместе с компанией Cooltech и другими партнерами, как Лабораторией AMES, США, Лабораторией Riso из Технического университета Дании и Имперским колледжем в Лондоне, Англия. Четыре ведущих мировых игрока ведут жестокую борьбу. Стоит вопрос: кто первым принесет на рынок холодильные установки, созданные на основе этой технологии?

Единственным недостатком является высокая стоимость магнитов и магнитокалорических материалов, но он исчезнет после индустриализации продукта, поскольку спрос будет высоким, цена за единицу товара упадет.

Данная информация получена от доктора инженера Серджиу Лионте, исследователя в рамках проекта MagCool, Страсбург, Франция, во время обсуждения, состоявшегося 25 августа 2013 года.

Если вам понравился этот материал, то предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП материалов о принципах экотуризма, туристических маршрутах, обзор и анализ предложений вы можете найти там, где вам максимально удобно

Атомы парамагнитных веществ обладают постоянным магнитным моментом. При отсутствии внешнего магнитного поля в результате теплового движения эти моменты ориентированы хаотично. Количественной мерой такого состояния является энтропия, которая в данном случае называется магнитной энтропией S М. Согласно принципу Больцмана

S М = k , (47)

где W м – термодинамическая вероятность, равная числу способов распределения n атомов парамагнетика по подуровням, на которые расщепляется каждый уровень атома в магнитном поле. При наложении и увеличении магнитного поля вплоть до насыщения все магнитные моменты атомов ориентированы вдоль поля. Магнитная энтропия парамагнетика в этом состоянии обращается в нуль. Если процесс намагничивания парамагнитного образца происходит при постоянной температуре, то уменьшение энтропии на DS вызывает выделение теплоты DQ =T DS. Эта теплота отводится от образца в окружающую среду. В качестве такой среды используют жидкий гелий.

После установления равновесия гелий удаляется и образец оказывается теплоизолированным и подвергается медленному адиабатическому размагничиванию, при котором его магнитная энтропия вновь повышается на DS.

Рис. 17

Такой рост энтропии требует подвода тепла, источником которого являются только тепловые колебания решетки. В результате температура образца понижается (рис. 17). Таким способом удалось достичь температур ниже 0,001 К.

При приближении к абсолютному нулю температур теплоемкость уменьшается до нуля и, следовательно, понижение температуры может быть значительным. Дебай и Джиок предложили применять обратимое адиабатическое размагничивание для понижения температуры образца при приближении к абсолютному нулю. Этот метод стал основным для получения сверхнизких температур.

В качестве парамагнетика используют некоторые парамагнитные соли, например, квасцы, в которые вводят ионы переходных элементов группы железа. Парамагнитная соль помещается в сильное магнитное поле, предварительно охлажденная до гелиевых температур (~ 4,2 К), а затем магнитное поле снимается. Этот метод позволил достичь температур ~ 3×10 - 3 К.

Если же вместо электронных использовать “ядерные” парамагнетики, у которых парамагнетизм обусловлен ориентацией магнитных моментов атомных ядер, то можно получить температуры ~10 - 5 К.

Схема уровней атомов в кристаллах поможет нам разобраться в интересном методе охлаждения, который можно придумать, только хорошо зная квантовую механику.

При низких температурах прекращается почти всякое движение - поступательное, вращательное. Однако даже при температурах, меньших 1 К, спины атомов продолжают вести себя, как атомы идеального газа,- они обмениваются энергией (хотя и слабо), и их положение в пространстве (их проекции на направление магнитного поля) может изменяться почти свободно. В таких элементах, как редкоземельные, электроны заполняют внутренние оболочки атомов, и их спины почти не чувствуют других электронов. Следовательно, и магнитные моменты ведут себя, как свободные.

На этом свойстве электронов основан метод получения сверхнизких температур - магнитное охлаждение.

Если наложить на кристалл, в который входят атомы редкоземельных элементов, магнитное поле и позаботиться о том, чтобы кристалл не нагрелся (т. е. включать поле изотермически), то, как говорилось, спустя небольшое время все магнитные моменты (если они положительны, т. е. если g >0) установятся по полю, так сказать, стрелкой на юг. Здесь надо подчеркнуть, что после выключения поля кристалл со спиновой системой оказывается не в изотермических условиях, а в адиабатических, т. е. он теплоизолирован. Если теперь быстро выключить магнитное поле, то возникнет необычная картина. Поля нет, все спины направлены в одну сторону, а не разбросаны хаотически, как это должно было быть в тепловом равновесии. Правда, мы предположили, что, кроме движения спинов, в системе ничего не происходит (движением атомов, их колебаниями мы пренебрегли). Теперь надо уточнить картину. Атомы в кристаллической решетке на самом деле колеблются, так как решетка имеет некоторую температуру Т . Интенсивность колебаний и определяется этим значением T . Движение атомов передается и спинам, так как при движении зарядов возникает слабое переменное магнитное поле. Поэтому спины находятся не в полной изоляции, а в "термосе", имеющем температуру Т .

Когда с помощью внешнего магнитного поля все спины оказываются выстроенными в одном направлении, то возникает порядок, который не может сохраняться без поля. Спины должны изменять свое направление (в результате взаимодействия с колеблющимися атомами) и стремиться расположиться хаотически - так, чтобы любая из его проекций встречалась с одинаковой вероятностью. При таком процессе должен возникнуть обмен энергией между спинами и колебаниями атомов.

=В 0 )">
Рис. 30. Адиабатическое размагничивание. Энтропия как функция температуры без поля (B =0) и в поле (В=В 0 )

Однако на первый взгляд трудно понять, в какую сторону будет передаваться энергия - будут ли колебания атомов усиливаться или же ослабляться.

Чтобы ответить на этот вопрос, надо привлечь на помощь энтропию. Энтропия спинов должна возрастать; это значит, что должен возникнуть поток тепла от решетки (колебаний атомов), которая находится в тепловом равновесии, к спинам: спины возвратятся в хаотическое состояние, а колебания атомов несколько затухнут.

Это означает, что кристалл охладился. Так следует из теории. На рис. 30 схематически изображено, как изменяются температура и энтропия в такой системе. Верхняя кривая описывает зависимость энтропии кристалла от температуры, когда величина поля равна нулю; нижняя кривая - ту же зависимость при включенном внешнем поле. Обе кривые сходятся к одной точке при T =0. Это есть следствие теоремы Нернста, о которой мы уже говорили. Если поле выключают быстро, так что энтропия кристалла не изменяется (это и называется адиабатическим размагничиванием), то температура падает, поскольку точки с одинаковым значением S лежат на разных кривых при разных Т . Опыты подтвердили предсказания. Можно ли было придумать такой способ охлаждения, если бы не знать тонкости теории?

Метод магнитного охлаждения был предложен в 1926 г. Джиоком в США и независимо (даже несколькими неделями раньше) Дебаем в Германии. Этим методом были достигнуты температуры примерно до 0,003 К. Более низких температур получить таким способом не удается, так как спины перестают двигаться свободно; их упорядоченность (все смотрят в одну сторону), возникающая из-за взаимодействия между ними (как между стрелками компасов, расположенных друг около друга), не разрушается слабым тепловым движением атомов.

Можно спуститься по температурной шкале еще ниже, если использовать очень большие магнитные поля - в несколько тесла. В таких полях можно ориентировать магнитные моменты ядер и повторять все описанные операции уже не с электронами, а с ядрами.

В 1956 г. Симон достиг таким способом температуру 0,000016 К. К сожалению, этот рекорд не вполне реален. Ядра очень слабо взаимодействуют с электронами (такое взаимодействие называют сверхтонким), и ядрам почти невозможно получить от решетки энтропию. Ядра на самом деле медленно нагреваются, а температура решетки не падает - решетка успевает восполнить потерянное тепло из окружающей среды (несмотря на всяческие ухищрения экспериментаторов). Путь в область милликельвинов (тысячных кельвина) казался закрытым. Как охладить до 0,001 К и ниже не иллюзорную систему спинов, а кусок вещества?

Оказалось, возможно и это!

Растворение соли понижает температуру раствора. Этот простой и хорошо известный эффект помог физикам. Оказалось, что если растворять газ гелий с атомной массой 3 (3 Не) в обычном жидком гелии, то температура раствора понижается. Так получают температуру до 0,001 К.

Но есть более хитрый способ; его придумал И. Я. Померанчук. Способ этот тоже связан с 3 Не.

Чтобы понять, в чем состоит этот метод, надо нарисовать кривые энтропии двух фаз 3 Не - твердого и жидкого-вблизи абсолютного нуля (рис. 31). Согласно квантовой механике, при абсолютном нуле все системы находятся в своем наинизшем состоянии и энтропия такого состояния равна нулю * - энергия же минимальная. При этом, что очень важно, энтропия обеих фаз (жидкости и твердого тела) при 0 одинакова, переход от одной фазы в другу происходит без изменения энтропии, без изменения энергии. Это свойство было постулировано Нернстом и является одной из формулировок третьего начала термодинамики.

* (Точнее, она обращается в постоянную, одинаковую для обеих фаз. Сравнение абсолютных значений энтропии разных веществ, не превращающихся одно в другое, не имеет смысла. )

>
Рис. 31. Энтропия 3 Не в жидкости и твердой фазе

Для метода Померанчука важно, что кривые расположены так, что при одной и той же температуре энтропия твердой фазы больше энтропии жидкой фазы. Если бы кривые расположились иначе, метода не существовало бы.

Суть метода можно понять на рис. 29. Если вести процесс охлаждения, адиабатически сжимая жидкость и переводя ее в твердую фазу, то, как это видно из рисунка, температура 3 Не будет понижаться. Так получена сейчас температура около 0,001 К. При 0,002 К жидкий 3 Не становится, подобно 4 Не, сверхтекучим, и в этой области сейчас открылся необычайно сложный и интересный мир физических явлений. Их описание, к сожалению, уже выходит за рамки нашей темы.

Внешне метод Померанчука похож магнитное охлаждение. В действительности эта аналогия даже более глубокая. Весь эффект связан с тем, что ядра 3 Не имеют спин (ядра обычного 3 Не спина не имеют). В жидком 3 Не спины при очень низких температурах упорядочиваются, выстраиваются параллельно друг другу, В твердом 3 He эти же спины "раскиданы" в беспорядке вплоть до температуры около 0,003 К. Переход из жидкого состояния в твердое похож поэтому на адиабатическое выключение магнитного поля (спины разбрасываются), а обратный переход - это намагничивание. Энтропия твердой фазы (при той же температуре) больше энтропии жидкости из-за спинов. Следует иметь в виду, что на самом деле картина расположения спинов в твердом 3 Не более сложная, но для объяснения эффекта достаточно описанной схемы.

Физика низких температур вступила сейчас в новую эпоху. Область милликельвинов сулит еще много сюрпризов.

В 2002 году в журнале Science News было сообщено о создании в США первого в мире бытового магнитного холодильника, действие которого основано на магнитокалорическом эффекте и работающего при комнатных температурах. Работающая модель такого холодильника была изготовлена совместно Astronautics Corporation of America и Ames Laboratory и впервые продемонстрирована на конференции Большой Восьмерки в Детройте в мае 2002 года. Рабочий прототип предлагаемого бытового магнитного холодильника действует в области комнатных температур и использует в качестве источника поля постоянный магнит. В демонстрировавшихся ранее магнитных холодильных устройствах использовались большие сверхпроводящие магниты, но в этом новом магнитном холодильнике впервые применен постоянный магнит, не требующий охлаждения.

В созданном прототипе магнитного холодильника используется вращающаяся колёсная конструкция. Она состоит из колеса, содержащего сегменты с порошком гадолиния, а также мощного постоянного магнита.

Конструкция спроектирована таким образом, что колесо прокручивается через рабочий зазор магнита, в котором сконцентрировано магнитное поле. При вхождении сегмента с гадолинием в магнитное поле в гадолинии возникает магнетокалорический эффект - он нагревается. Это тепло отводится теплообменником, охлаждаемым водой. Когда гадолиний выходит из зоны магнитного поля, возникает магнетокалорический эффект противоположного знака и материал дополнительно охлаждается, охлаждая теплообменник с циркулирующим в нем вторым потоком воды. Этот поток собственно и используется для охлаждения холодильной камеры магнитного холодильника. Такое устройство является компактным и работает фактически бесшумно и без вибраций, что выгодно отличает его от использующихся сегодня холодильников с парогазовым циклом.

Преимущества, недостатки и области применения

Все магнитные холодильники можно разделить на два класса по типу используемых магнитов: системы, использующие сверхпроводящие магниты и системы на постоянных магнитах. Первые из них обладают широким диапазоном рабочих температур и относительно высокой выходной мощностью. Они могут использоваться, например, в системах кондиционирования больших помещений и в оборудовании хранилищ пищевых продуктов. Охлаждающие системы на постоянных магнитах имеют относительно ограниченный температурный диапазон и, в принципе, могут применяться в устройствах со средней мощностью - таких как автомобильный холодильник и портативный рефрижератор для пикника. Но и те, и другие обладают целым рядом преимуществ над традиционными парогазовыми холодильными системами:

Низкая экологическая опасность: Рабочее тело – твердое и может быть легко изолировано от окружающей среды. Применяемые в качестве рабочих тел металлы лантаниды малотоксичны, и могут быть использованы повторно после утилизации устройства. Теплоотводящая среда должна обладать всего лишь низкой вязкостью и достаточной теплопроводностью, что хорошо соответствует свойствам воды, гелия или воздуха. Последние хорошо совместимы с окружающей средой.

Высокая эффективность. Магнитокалорическое нагревание и охлаждение – практически обратимые термодинамические процессы, в отличие от процесса сжатия пара в рабочем цикле парогазового холодильника. Теоретические расчеты и экспериментальные исследования показывают, что магнитные охлаждающие установки характеризуются более высокими к.п.д. и экономичностью. В частности, в области комнатных температур магнитные холодильники потенциально на 20-30 % эффективнее, чем работающие по парогазовому циклу. Технология магнитного охлаждения в перспективе может быть очень эффективной, что позволит значительно сократить стоимость таких установок.

Долгий срок эксплуатации. Технология предполагает использование малого числа движущихся деталей и низких рабочих частот в охлаждающих устройствах, что значительно сокращает их износ.

Гибкость технологии. Возможно использование различных конструкций магнитных холодильников в зависимости от назначения.

Полезные свойства заморозки. Магнитная технология позволяет производить охлаждение и заморозку различных веществ с незначительными изменениями для каждого случая. В отличие от этого, эффективный парогазовый цикл охлаждения требует многих отдельных ступеней или смеси различных рабочих тел-охладителей для проведения такой же процедуры.

Быстрый прогресс в развитии сверхпроводимости и улучшении магнитных свойств постоянных магнитов. В настоящее время целый ряд известных коммерческих компаний успешно занимаются улучшением свойств магнитов NdFeB и работают над их конструкциями. Наряду с известным прогрессом в области сверхпроводимости это позволяет надеяться на улучшение качества магнитных холодильников и одновременное их удешевление.

Недостатки магнитного охлаждения

  • Необходимость экранировки магнитного источника.
  • Относительно высокая в настоящее время цена источников магнитного поля.
  • Ограниченный интервал изменения температуры в одном цикле охлаждения в системах на постоянных магнитах. .

Кроме того, магнитные холодильники включают в себя небольшое количество движущихся деталей и работают при низких частотах, что позволяет свести к минимуму износ холодильника и увеличить время его эксплуатации.

Задача создания компактного, экологически безопасного, энергетически эффективного и высоконадежного холодильника, работающего в диапазоне комнатных температур, чрезвычайно актуальна в настоящее время. Это обусловлено целым рядом серьезных претензий к ныне действующим охлаждающим системам. Известно, в частности, что при эксплуатации используемых в настоящее время возможны утечки рабочих газов (хладагентов), вызывающих такие серьезные экологические проблемы как разрушение озонового слоя и глобальное потепление. Среди разнообразных альтернативных технологий, которые могли бы использоваться в холодильных устройствах, все большее внимание исследователей во всем мире привлекает технология магнитного охлаждения. Интенсивные работы, посвященные магнитному охлаждению, ведутся во многих лабораториях и университетах Европы, США, Канады, Китая и России. Магнитный холодильник экологически безопасен и позволяет значительно снизить потребление электроэнергии. Последнее обстоятельство чрезвычайно важно с учетом поистине огромного количества холодильных установок, используемых человеком в самых различных областях его деятельности.

Технология магнитного охлаждения основана на способности любого магнитного материала изменять свою температуру и энтропию под воздействием магнитного поля, как это происходит при сжатии или расширении газа или пара в традиционных холодильниках. Такое изменение температуры или энтропии магнитного материала при изменении напряженности магнитного поля, в котором он находится, называется магнитокалорическим эффектом (МКЭ). Изменение температуры магнитного материала происходит в результате перераспределения внутренней энергии магнитного вещества между системой магнитных моментов его атомов и кристаллической решеткой. Максимальной величины МКЭ достигает в магнитоупорядоченных материалах, таких как ферромагнетики, антиферромагнетики и т.п., при температурах магнитных фазовых переходов (температурах магнитного упорядочения - Кюри, Нееля и т.д.). Главное преимущество аппаратов для магнитного охлаждения связано с высокой плотностью материала – твердого тела - по сравнению с плотностью пара или газа. Изменение энтропии на единицу объёма в твёрдых магнитных материалах в 7 раз выше, чем в газе. Это позволяет делать значительно более компактные холодильники, используя в качестве рабочего тела магнитный материал. Само магнитное рабочее тело служит аналогом хладагентов, используемых в традиционных парогазовых холодильных установках, а процесс размагничивания-намагничивания – аналогом циклов сжатия – расширения.

Эффективность работы холодильника главным образом определяется количеством необратимой работы, производимой в течение цикла – для эффективных устройств оно должно быть как можно ниже. В газовом рефрижераторе существуют устройства, производящие значительное количество необратимой работы - это регенератор, компрессор и теплообменники. Значительная часть необратимой работы производится в теплообменниках - она прямо пропорциональна адиабатическому изменению температуры рабочего тела, которое значительно больше в газе, чем в магнитном материале. По этой причине наиболее эффективный отвод тепла происходит в магнитном холодильном цикле, особенно в регенеративном. Специальная конструкция теплообменника и использование регенератора с большой площадью поверхности позволяют добиться малой доли необратимой работы при магнитном охлаждении. В соответствии с теоретическими оценками эффективность магнитного регенеративного холодильного цикла в температурном диапазоне от 4.5 до 300 К может составлять от 38 до 60 % эффективности цикла Карно (около 52 % в интервале температур от 20 до 150 К, и около 85% в интервале от 150 до 300 К). При этом на всех этапах цикла условия теплопередачи будут наиболее совершенными из известных. Кроме того, магнитные холодильники включают в себя небольшое количество движущихся деталей и работают при низких частотах, что позволяет свести к минимуму износ холодильника и увеличить время его эксплуатации.

Хронология проблемы. Основные принципы магнитного охлаждения

МКЭ был открыт сравнительно давно (в 1881 году) Е. Варбургом (E. Warburg). Варбург наблюдал, как под действием магнитного поля железный образец нагревался или охлаждался. Ученый сделал вывод о том, что изменение температуры образца есть следствие изменения внутренней энергии вещества, обладающего магнитной структурой, под действием поля. Однако до практического использования этого явления было еще далеко. Ланжевен (Langevin, 1905) был первым, кто продемонстрировал, что изменение намагниченности парамагнетика приводит к обратимому изменению температуры образца.

Собственно магнитное охлаждение было предложено спустя почти 50 лет после открытия МКЭ независимо двумя американскими учеными Петером Дебаем (Peter Debye, 1926) и Уильямом Джиоком (William Giauque, 1927) как способ достижения температур ниже точки кипения жидкого гелия. Джиок и МакДугалл были первыми, кто продемонстрировал простейший эксперимент по магнитному охлаждению в 1933 году. (Чуть позже это сделали также де Гааз (de Haas, 1933) и Курти (Kurti, 1934). В ходе этого эксперимента удалось достичь температуры 0.25 К, а в качестве теплоотводящей субстанции использовался накачиваемый жидкий гелий при температуре 1.5 К. Таблетка с магнитной солью находилась в состоянии теплового равновесия с теплоотводящим веществом, пока в соленоиде существовало сильное магнитное поле. Когда же соленоид разряжался, магнитная таблетка термически изолировалась и её температура понижалась. Такая техника, называемая охлаждением адиабатическим размагничиванием, является стандартной лабораторной техникой, применяемой для получения сверхнизких температур. Однако, мощность такого рефрижератора и его рабочий интервал температур слишком малы для промышленных применений.

Более сложные методы, включающие в себя тепловую регенерацию и циклические изменения магнитного поля, были предложены в 60-х годах прошлого столетия. Дж. Браун из НАСА в 1976 году продемонстрировал регенеративный магнитный холодильник, действующий уже вблизи комнатной температуры с рабочим интервалом температур в 50 К. Мощность холодильника и его эффективность и в этом случае были низкими, поскольку температурный градиент необходимо было поддерживать путем перемешивания теплоотводящей жидкости, а время, необходимое для зарядки и разрядки магнита было слишком большим. Небольшие маломощные холодильные устройства были построены в 80-х-90-х годах сразу в нескольких исследовательских центрах: Los Alamos National Lab, the Navy Lab at Annapolis, Oak Ridge National Lab, Astronautics (все США), Toshiba (Япония) .

В настоящее время работы над небольшими магнитными холодильниками для космических применений, работающими по принципу адиабатического размагничивания, финансируются несколькими исследовательскими центрами НАСА. Исследования возможностей магнитных холодильников для коммерческих применений ведутся Astronautics Corporation of America (США, Висконсин) и Университетом Виктория (Канада). Изучением материалов для рабочих тел магнитных холодильников с прикладной точки зрения в настоящее время интенсивно занимаются Лаборатория Эймса (Ames, штат Айова), Университет Three Rivers в Квебеке (Канада), NIST (Gathersburg, MD) и компания “Перспективные магнитные технологии и консультации” (AMT&C).

В 1997 году Astronautics Corporation of America продемонстрировала относительно мощный (600 Ватт) магнитный холодильник, работающий вблизи комнатной температуры. Эффективность этого холодильника была уже сравнима с эффективностью обычных фреоновых холодильников. Использующий активный магнитный регенератор (в этом устройстве совмещены функции теплового регенератора и рабочего тела), этот холодильник работал в течение более чем 1500 часов, обеспечивая рабочий интервал температур в 10 К вблизи комнатной температуры, мощность 600 Ватт, эффективность около 35 % по отношению к циклу Карно при изменении магнитного поля величиной 5 Тесла. В описываемом устройстве применялся сверхпроводящий соленоид, а в качестве рабочего тела использовался редкоземельный металл гадолиний (Gd). Чистый гадолиний использовался в этом качестве не только Astronautics, но и НАСА, Navy и др. лабораториями, что обусловлено его магнитными свойствами, а именно - подходящей температурой Кюри (около 20° С) и довольно значительным магнетокалорическим эффектом.

Величина МКЭ, а следовательно и эффективность процесса охлаждения в магнитном холодильнике определяется свойствами магнитных рабочих тел. В 1997 году Лаборатория Эймса сообщила об открытии в соединениях Gd5(SiхGe1-х)4 гигантского магнетокалорического эффекта. Температура магнитного упорядочения этих материалов может варьироваться в широких пределах от 20 К до комнатной температуры благодаря изменению соотношения содержания кремния (Si) и германия (Ge). Наиболее перспективными для использования в качестве рабочих тел в настоящее время считаются металл гадолиний, ряд интерметаллических соединений на основе редкоземельных элементов, система соединений силицидов-германидов Gd5(Ge-Si)4, а также La(Fe-Si)13. Применение этих материалов позволяет расширить рабочий интервал температур холодильника и существенно улучшить его экономические показатели.

Заметим, однако, что пионерские работы по поиску эффективных сплавов для рабочих тел магнитных холодильников были выполнены на несколько лет раньше на физическом факультете Московского университета. Наиболее полные результаты этих исследований изложены в докторской диссертации ведущего научного сотрудника физическом факультете МГУ А. М. Тишина 1994 года. В ходе этой работы были проанализированы многочисленные возможные комбинации редкоземельных и магнитных металлов и других материалов с точки зрения поиска оптимальных сплавов для реализации магнитного охлаждения в различных диапазонах температур. Было обнаружено, в частности, что среди материалов с высокими магнетокалорическими свойствами соединение Fe49Rh51 (сплав железа с родием) обладает наибольшим удельным (т.е. приходящимся на единицу магнитного поля) магнетокалорическим эффектом. Величина удельного МКЭ для этого соединения в несколько раз больше, чем в соединениях силицидов-германидов. Этот сплав не может быть использован на практике из-за его большой стоимости, а также существенных гистерезисных эффектов в нём, однако, он может служить своеобразным эталоном, с которым следует сравнивать магнетокалорические свойства исследуемых материалов.

Наконец, в январе этого года журнал Science News (v.161, n.1, p.4, 2002) сообщил о создании в США первого в мире бытового (т.е. применимого не только в научных, но и в бытовых целях) холодильника. Работающая модель такого холодильника была изготовлена совместно Astronautics Corporation of America и Ames Laboratory и впервые продемонстрирована на конференции Большой Восьмерки в Детройте в мае 2002 года. Рабочий прототип предлагаемого бытового магнитного холодильника действует в области комнатных температур и использует в качестве источника поля постоянный магнит. Говоря об этом революционном достижении, профессор Карл Шнайднер из Лаборатории Эймса отметил: "Мы являемся свидетелями исторического события в развитии техники. В демонстрировавшихся ранее магнитных холодильных устройствах использовались большие сверхпроводящие магниты, но в этом новом магнитном холодильнике впервые применен постоянный магнит, не требующий охлаждения".

Устройство получило высокую оценку экспертов и министра энергетики США. Оценки показывают, что применение магнитных холодильников позволит уменьшить общее потребление энергии в США на 5 %. Планируется, что магнитное охлаждение сможет использоваться в самых различных областях человеческой деятельности - в частности, в ожижителях водорода, охлаждающих устройствах для высокоскоростных компьютеров и приборов на основе СКВИДов, кондиционерах для жилых и производственных помещений, охлаждающих системах для транспортных средств, в бытовых и промышленных холодильниках и т.п. Необходимо отметить, что работы по магнитным холодильным устройствам финансируются министерством энергетики США уже в течение 20 лет.

Конструкция холодильника.

В созданном прототипе магнитного холодильника используется вращающаяся колёсная конструкция. Она состоит из колеса, содержащего сегменты с порошком гадолиния, а также мощного постоянного магнита.

Конструкция спроектирована таким образом, что колесо прокручивается через рабочий зазор магнита, в котором сконцентрировано магнитное поле. При вхождении сегмента с гадолинием в магнитное поле в гадолинии возникает магнетокалорический эффект - он нагревается. Это тепло отводится теплообменником, охлаждаемым водой. Когда гадолиний выходит из зоны магнитного поля, возникает магнетокалорический эффект противоположного знака и материал дополнительно охлаждается, охлаждая теплообменник с циркулирующим в нем вторым потоком воды. Этот поток собственно и используется для охлаждения холодильной камеры магнитного холодильника. Такое устройство является компактным и работает фактически бесшумно и без вибраций, что выгодно отличает его от использующихся сегодня холодильников с парогазовым циклом.

"Постоянный магнит и рабочее тело в виде гадолиния не требуют подвода энергии, - говорит профессор Карл Шнайднер из Ames Laboratory. Энергия необходима для вращения колеса и обеспечения работы водяных насосов".

Впервые эта технология была апробирована еще в сентябре 2001 года. В настоящее время идет работа над дальнейшим расширением ее возможностей: совершенствуется технологический процесс коммерческого производства чистого гадолиния и необходимых его соединений, который позволит добиться большей величины МКЭ при меньших затратах. Одновременно сотрудники Лаборатории Эймса сконструировали постоянный магнит, способный создавать сильное магнитное поле. Новый магнит создаёт поле в два раза большее, чем магнит в предшествующей конструкции магнитного холодильника (2001 г.), что является весьма важным, т.к. величина магнитного поля определяет такие параметры холодильника, как эффективность и выходная мощность. На процесс получения соединения для рабочего тела Gd5(Si2Ge2) и конструкцию постоянного магнита поданы заявки на патент.

Преимущества, недостатки и области применения.

Все магнитные холодильники можно разделить на два класса по типу используемых магнитов: системы, использующие сверхпроводящие магниты и системы на постоянных магнитах. Первые из них обладают широким диапазоном рабочих температур и относительно высокой выходной мощностью. Они могут использоваться, например, в системах кондиционирования больших помещений и в оборудовании хранилищ пищевых продуктов. Охлаждающие системы на постоянных магнитах имеют относительно ограниченный температурный диапазон (не более, чем на 30 ° C за один цикл) и, в принципе, могут применяться в устройствах со средней мощностью (до 100 Ватт) - таких как автомобильный холодильник и портативный рефрижератор для пикника. Но и те, и другие обладают целым рядом преимуществ над традиционными парогазовыми холодильными системами:

Низкая экологическая опасность: Рабочее тело – твердое и может быть легко изолировано от окружающей среды. Применяемые в качестве рабочих тел металлы лантаниды малотоксичны, и могут быть использованы повторно после утилизации устройства. Теплоотводящая среда должна обладать всего лишь низкой вязкостью и достаточной теплопроводностью, что хорошо соответствует свойствам воды, гелия или воздуха. Последние хорошо совместимы с окружающей средой.

Высокая эффективность. Магнитокалорическое нагревание и охлаждение – практически обратимые термодинамические процессы, в отличие от процесса сжатия пара в рабочем цикле парогазового холодильника. Теоретические расчеты и экспериментальные исследования показывают, что магнитные охлаждающие установки характеризуются более высокими к.п.д. и экономичностью. В частности, в области комнатных температур магнитные холодильники потенциально на 20-30 % эффективнее, чем работающие по парогазовому циклу. Технология магнитного охлаждения в перспективе может быть очень эффективной, что позволит значительно сократить стоимость таких установок.

Долгий срок эксплуатации. Технология предполагает использование малого числа движущихся деталей и низких рабочих частот в охлаждающих устройствах, что значительно сокращает их износ.

Гибкость технологии. Возможно использование различных конструкций магнитных холодильников в зависимости от назначения.

Полезные свойства заморозки. Магнитная технология позволяет производить охлаждение и заморозку различных веществ (вода, воздух, химикаты) с незначительными изменениями для каждого случая. В отличие от этого, эффективный парогазовый цикл охлаждения требует многих отдельных ступеней или смеси различных рабочих тел-охладителей для проведения такой же процедуры.

Быстрый прогресс в развитии сверхпроводимости и улучшении магнитных свойств постоянных магнитов. В настоящее время целый ряд известных коммерческих компаний успешно занимаются улучшением свойств магнитов NdFeB (наиболее эффективные постоянные магниты) и работают над их конструкциями. Наряду с известным прогрессом в области сверхпроводимости это позволяет надеяться на улучшение качества магнитных холодильников и одновременное их удешевление.

Недостатки магнитного охлаждения.

Необходимость экранировки магнитного источника.

Относительно высокая в настоящее время цена источников магнитного поля.

Ограниченный интервал изменения температуры в одном цикле охлаждения в системах на постоянных магнитах. (не более 30 ° С).

Будет ли Россия самостоятельно развивать сверхперспективную технологию?

В нашей стране до настоящего времени проблема магнитного охлаждения существует только на уровне научных лабораторий, хотя именно российские ученые в начале 90-х годов выполнили первые работы по теории и практике применения МКЭ для создания магнитных холодильных машин. В соавторстве с сотрудниками компании “Перспективные магнитные технологии и консультации” и физического факультета МГУ уже многие годы работают создатели рабочего прототипа магнитного холодильника, о котором шла речь выше. К сожалению, в России такие разработки ведутся на недостаточном уровне из-за отсутствия необходимых средств. Не вызывает сомнения, что при соответствующей финансовой поддержке государственных или коммерческих структур разработка технологии и производство магнитных холодильников в России безусловно возможны. По нашему мнению необходимо в самое ближайшее время привлечь к работам в данном направлении все заинтересованные стороны.