Нераскрытие панелей солнечных батарей космических аппаратов. Как будут работать космические солнечные электростанции? Как работает технология

Это фотоэлектрические преобразователи - полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями». С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи у нас в Краснодаре - на заводе «Сатурн». Руководство завода пригласило автора этого блога посмотреть на производственный процесс и рассказать о нем у себя в дневнике.


1. Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» - один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли - гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

2. Итак, всё начинается здесь - на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки - около трех миллионов евро.

3. После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем, на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т.д. - всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

4. Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента - как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

5. В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

6. Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И, хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).


6a

6b

7. Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

8. Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей - так правильно).

9. Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

9a

10. Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее. Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей - еще одна часть работы завода «Сатурн».

На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

10a

11. Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка - это положительные и отрицательные электроды, разделённые сепараторной бумагой - в них и происходит преобразование и накопление энергии.

12. Установка для электронно-лучевой сварки в вакууме с помощью которой изготавливается корпус аккумулятора из тонкого металла.

13. Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления.
В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность - неотъемлемая часть процесса изготовления аккумуляторов.

14. Корпус никель-водородного аккумулятора - очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см 2 , при испытаниях разрыв произошел при давлении 148 кг·с/см 2 .

15. Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

16. Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

17. Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

17a

17b

18. Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

18a

19. В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами - одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом. Уезжал с «Сатурна» в отличном настроении - всегда приятно посмотреть у нас на место, где не занимаются пустой болтовней и не перекладывают бумажки, а делают настоящее, серьезное дело, успешно конкурируют с такими же производителями в других странах. Побольше бы в России такого.


Фотографии: © drugoi

P.S. Блог вице-президента по маркетингу компании «Очаково»

Это фотоэлектрические преобразователи - полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями».

С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи в Краснодаре - на заводе «Сатурн».

Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы.

Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» - один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли - гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

Итак, всё начинается здесь - на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки - около трех миллионов евро.

После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т.д. - всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента - как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).

Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей - так правильно).

Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее.

Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей - еще одна часть работы завода «Сатурн».

На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка - это положительные и отрицательные электроды, разделённые сепараторной бумагой - в них и происходит преобразование и накопление энергии.

Установка для электронно-лучевой сварки в вакууме, с помощью которой изготавливается корпус аккумулятора из тонкого металла.

Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления.

В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность - неотъемлемая часть процесса изготовления аккумуляторов.

Корпус никель-водородного аккумулятора - очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см2, при испытаниях разрыв произошел при давлении 148 кг·с/см2.

Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами - одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом.

Изобретение относится к ракетно-космической технике, а именно к элементам конструкции солнечных батарей космических аппаратов. Несущая панель солнечной батареи космического аппарата содержит раму и несущие верхнее и нижнее основания. Между упомянутыми основаниями и рамой герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки. Для сообщения внутренних объемов сот между собой каждый из вариантов изобретения предусматривает выполнение дренажных отверстий в боковых поверхностях каждой соты заполнителя и силовых перегородках. Для сообщения внутренних объемов сот с наружной средой первый вариант изобретения предусматривает выполнение дренажных отверстий по крайней мере в одном элементе рамы, второй вариант изобретения предусматривает выполнение дренажных отверстий в нижнем основании панели равномерно по площади его поверхности, а третий вариант изобретения предусматривает выполнение дренажных отверстий по крайней мере в одном элементе рамы и в нижнем основании панели равномерно по площади его поверхности. При этом суммарные площади дренажных отверстий в упомянутых элементах конструкции несущей панели определяются с учетом суммарного объема газовой среды в сотах, коэффициентов расхода дренажных отверстий и максимального по траектории полета ракеты-носителя перепада давлений газовой среды, действующего на основания панели. Изобретение позволяет повысить конструктивную прочность несущих панелей солнечных батарей космического аппарата без увеличения их массы, упростить технологию изготовления и монтажа панелей и повысить надежность их эксплуатации. 3 н.п. ф-лы, 4 ил.


Изобретение относится к области аэрогазодинамики летательных аппаратов (ЛА) и может быть использовано в ракетостроении при проектировании и создании панелей солнечной батареи (СБ) космических аппаратов (КА), выполненных по трехслойной несущей схеме.

Известны и широко применяются в авиации при изготовлении элементов ЛА (фюзеляжа, оперения, крыла и т.д.) панели, выполненные по трехслойной несущей схеме, содержащие каркас (раму), несущее верхнее и нижнее основания, между которыми установлен заполнитель в виде сот .

Предназначенные для восприятия и передачи распределенных нагрузок, действующих на элементы ЛА, панели, выполненные по трехслойной схеме с сотовым заполнителем, обеспечивают большую жесткость и высокую несущую способность. При нагружении панели жесткий на сдвиг и легкий сотовый заполнитель воспринимает поперечный сдвиг и предохраняет тонкие несущие слои от потери устойчивости при продольном сжатии.

К недостаткам этого технического решения следует отнести увеличенный вес элементов каркаса и несущих оснований панелей из-за значительных перепадов давлений, действующих на элементы панели по траектории полета ЛА при изменении высоты полета ЛА.

Известны применяемые в ракетостроении панели СБ КА, предназначенные для установки на них чувствительных элементов (фотоэлектрических преобразователей) системы энергопитания КА. Панели также выполнены по трехслойной несущей схеме и содержат раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, а также силовые перегородки, герметично установленные перпендикулярно основаниям для увеличения жесткости панели . Для уменьшения веса конструкции панелей СБ раму, несущие основания и перегородки выполняют из облегченных материалов.

Несущие панели СБ КА, применяемые в ракетостроении, так же, как и панели, применяемые в авиации, обеспечивают большую жесткость и высокую несущую способность трехслойной конструкции панели СБ с сотовым заполнителем.

К недостаткам этого технического решения следует отнести пониженную конструктивную прочность несущих панелей СБ и возможность потери ее общей и местной устойчивости при отклонении в технологии изготовления и эксплуатации панели, обусловленные более существенными аэрогазодинамическими нагрузками, действующими на элементы панелей СБ КА, по сравнению с авиационными нагрузками. При этом наружное давление, действующее на панель СБ КА по траектории полета ракеты-носителя (РН), изменяется в более широких пределах: от атмосферного (на уровне Земли при старте РН) до практически нулевого при выводе в межпланетное пространство, а давление внутри герметичной панели по траектории полета РН остается атмосферным.

Задачей изобретения является повышение конструктивной прочности несущих панелей СБ КА без увеличения их массы при выводе КА ракетой-носителем в межпланетное пространство.

Задача решается таким образом (вариант 1), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в раме, по крайней мере в одном элементе рамы, выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках и раме определяют из соотношений:

S 2 [см 2 ] - суммарная площадь дренажных отверстий в раме;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме от максимального по траектории перепада давлений, действующего на основания панелей.

Задача решается также таким образом (вариант 2), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородок выполнены дренажные отверстия, сообщающие внутренние объемы сот между собой, а в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках и нижнем основании определяют из соотношений:

S 1 [см 2 ] - суммарная площадь дренажных отверстий в торцевой поверхности сот;

S 3 [см 2 ] - суммарная площадь дренажных отверстий в нижнем основании;

V [м 3 ] - суммарный объем газовой среды в сотах;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в сотах и перегородках;

μ.GIF; 3 - коэффициент расхода дренажных отверстий в нижнем основании;

Δ.GIF; Р [кгс/см 2 ] - максимальный по траектории полета РН перепад давлений газовой среды, действующий на основания панели;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в основаниях панелей от максимального по траектории перепада давлений, действующего на основания панели.

Задача решается также таким образом (вариант 3), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в раме, по крайней мере в одном элементе рамы, и в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках, раме и нижнем основании определяют из соотношений:

S 1 [см 2 ] - суммарная площадь дренажных отверстий в торцевой поверхности сот;

S 2 , S 3 [см 2 ] - суммарная площадь дренажных отверстий в раме и нижнем основании, соответственно;

V [м 3 ] - суммарный объем газовой среды в сотах;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в сотах и перегородках;

μ.GIF; 2 , μ.GIF; 3 - коэффициент расхода дренажных отверстий в раме и нижнем основании панели, соответственно;

Δ.GIF; P [кгс/см 2 ] - максимальный по траектории полета РН перепад давлений газовой среды, действующий на основания панели;

Техническими результатами изобретения являются:

Уменьшение перепадов давлений, действующих на основания и чувствительные элементы панели СБ при минимально допустимых перепадах давлений, действующих на стенки сот заполнителя;

Определение эффективной площади дренажных отверстий в сотах, раме, несущих основаниях и перегородках панели;

Определение влияния параметров траектории (числа М, высоты полета Н) на эффективную площадь дренажных отверстий.

Сущность изобретения иллюстрируется схемами панели СБ КА и графиком изменения избыточных давлений, действующих на ее элементы.

На фиг.1, 2 и 3 приведены схемы панели СБ КА, выполненной соответственно в вариантах 1, 2 и 3, и выделены ее фрагменты, где:

2 - верхнее основание;

3 - нижнее основание;

4 - заполнитель;

5 - перегородки;

6 - дренажные отверстия;

7 - чувствительные элементы.

Здесь же стрелками показано направление перетекания газовой среды в сотах заполнителя панели и ее истечение в наружную среду.

На фиг.4 приведена зависимость максимального по траектории полета РН перепада давлений Δ.GIF; Р(Δ.GIF; Р=Рвн-Рнар) газовой среды, действующего на основания панелей, от относительной эффективной площади проходных сечений дренажных отверстий μ.GIF; ·S/V, где:

Рвн - давление газовой среды внутри панели (в сотах заполнителя);

Рнар - давление газовой среды снаружи панели.

Несущая панель СБ КА (фиг.1, 2, 3) содержит раму 1, несущие верхнее основание 2 и нижнее основание 3, а также силовые перегородки 5, установленные перпендикулярно этим основаниям. Между основаниями герметично установлен заполнитель 4 в виде сот. На верхнем основании 2 установлены чувствительные элементы 7 системы энергопитания КА.

В боковых поверхностях каждой соты заполнителя 4 и силовых перегородках 5, в отличие от прототипа, в каждом варианте выполнены дренажные отверстия 6, сообщающие внутренние объемы сот между собой и с наружной средой (см. вид А и разрез по ВВ).

В варианте 1 (фиг.1) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в раме 1, по крайней мере, в одном ее элементе.

В варианте 2 (фиг.2) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в несущем нижнем основании 3, равномерно расположенных по площади его основания.

В варианте 3 (фиг.3) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в раме 1, по крайней мере, в одном ее элементе, а также в несущем нижнем основании 3, равномерно расположенных по площади его основания.

Благодаря равномерному расположению дренажных отверстий по площади оснований панели обеспечивается равномерное или близкое к равномерному распределение давления в сотах заполнителя и, следовательно, перепадов давлений, действующих на основания панели. Тем самым исключают концентрации напряжений в местах стыка элементов панели от неравномерных перепадов давлений, что приводит к упрощению технологии изготовления панелей и повышению надежности ее эксплуатации при наличии скрытых дефектов при ее изготовлении, например, при непроклейке отдельных элементов сот заполнителя с несущими основаниями.

Выбор варианта дренирования панелей определяется допустимыми эксплуатационными нагрузками, действующими на основания панелей по траектории полета РН с учетом конструктивных и технологических особенностей изготовления панелей.

Суммарную эффективную площадь дренажных отверстий в раме 1, в сотах заполнителя 4, перегородках 5 и нижнем основании 3 для заданной траектории полета РН определяют по соотношениям (1), (2) и (3), для вариантов 1, 2 и 3 соответственно, с учетом входящих в эти соотношения коэффициентов а, b, зависящих от параметров траектории РН.

Формулы (1), (2) и (3) содержат математическое описание зависимости относительной суммарной эффективной площади дренажных отверстий μ.GIF; ·S/V от максимального по траектории полета РН перепада давлений Δ.GIF; Р и получены по результатам анализа течения газовой среды в системе газодинамических взаимосвязанных емкостей, образованных дренированными сотами заполнителя 4 с силовыми перегородками 5, верхним основанием 2 и нижним основанием 3 с последующим ее истечением в наружную среду.

В ракетостроении раму 1 выполняют из углепластика, несущие основания 2 и 3, а также силовые перегородки 5 - из титана. Заполнитель 4 в виде сот выполняют из алюминиевого сплава и герметично крепят к верхнему основанию 2 и нижнему основанию 3 панели с помощью, например, авиационного клея ВКВ-9. Также к верхнему основанию 2 крепят чувствительные элементы 7 СБ.

Несущая панель СБ КА работает следующим образом.

Поскольку в боковых поверхностях каждой соты заполнителя 4 и элементах панели (фиг.1, 2 и 3), в отличие от прототипа, выполнены дренажные отверстия 6, при полете КА в составе головного блока РН, а также в автономном полете КА, после сброса обтекателей головного блока, происходит перетекание газовой среды между сотами заполнителя 4, силовыми перегородками 5 и истечение ее через дренажные отверстия в раме 1 и нижнем основании 6 в наружную среду (см. разрез по ВВ). Перетекание газовой среды происходит с несущественным запаздыванием выравнивания давления в сотах заполнителя 4.

При этом истечение газовой среды из сот заполнителя 4 в наружную среду происходит с дозвуковой скоростью с незапиранием ее в сотах заполнителя 4, так как суммарные эффективные площади μ.GIF; 2 ·S 2 дренажных отверстий 6 в раме 1 и μ.GIF; 3 ·S 3 - в нижнем основании 3 выполнены больше или равными суммарной эффективной площади μ.GIF; 1 ·S 1 в сотах заполнителя 4 с силовыми перегородками 5 (μ.GIF; 2 ·S 2 ≥.GIF; μ.GIF; 1 ·S 1 , μ.GIF; 3 ·S 3 ≥.GIF; μ.GIF; 1 ·S 1).

При полете КА в составе головного блока РН реализуют максимальный перепад давлений Δ.GIF; Р (фиг.4), действующий на основания панелей 2 и 3, в соответствии с формулами (1), (2) и (3). При этом газовая среда из сот заполнителя 4 перетекает в замкнутый объем под головным обтекателем, максимально допустимый перепад давлений в котором, по сравнению с наружным по траектории полета РН, определяют по известному техническому решению с использованием системы дренирования отсека .

В автономном полете КА внутри панели корпуса устанавливается внутреннее давление Р ВН, близкое к атмосферному (статическому окружающей атмосферы). Перепады Δ.GIF; Р давлений при этом между сотами заполнителя 4, а также внутренним давлением Рвн в сотах заполнителя 4 и наружной средой Рнар, действующие на верхнее основание 2 и нижнее основание 3 панели, близки к нулю.

Таким образом, уменьшают перепады давлений, действующие на элементы панелей и установленные на ней чувствительные элементы системы энергопитания КА. Тем самым повышают конструктивную прочность СБ КА без увеличения массы КА, что приводит к выполнению поставленной задачи.

Кроме того, вследствие уменьшения перепадов давлений, действующих на элементы панелей, упрощается технология изготовления и монтажа панели СБ КА и повышается надежность ее эксплуатации.

Расчеты, проведенные для панели корпуса, разработанной для КА "Ямал" , выводимого РН "Протон", показали, что перепады давлений Δ.GIF; Р, действующие на основания панели, по сравнению с прототипом, уменьшаются на порядок и практически приближаются к нулю.

В настоящее время техническое решение прошло экспериментальную проверку и внедряется на разрабатываемых предприятием КА.

Техническое решение может быть использовано для различных типов КА: околоземных, межпланетных, автоматических, пилотируемых и других КА.

Техническое решение может быть применено и в авиации, например, при использовании панели СБ в составе элемента крыла самолета. В этом случае эффективную площадь дренажных отверстий в элементах панели определяют с учетом максимальных перепадов давлений, действующих на элементы крыла по траектории полета самолета.

Литература

1. Авиация. Энциклопедия. М.: ЦАГИ, 1994 г., стр. 529.

2. На рубеже двух веков (1996-2001 г.). Под ред. акад. Ю.П.Семенова. М.: РКК "Энергия" имени С.П.Королева, 2001 г., стр. 834.

3. Патент RU 2145563 C1.


Формула изобретения


1. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в по крайней мере одном элементе рамы выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках и раме определяется из соотношений

S 2 - суммарная площадь дренажных отверстий в раме, см 2 ;

μ.GIF; 2 - коэффициент расхода дренажных отверстий в раме;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме от максимального по траектории перепада давлений, действующего на основания панели.

2. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены дренажные отверстия, сообщающие внутренние объемы сот между собой, а в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках и нижнем основании панели определяется из соотношений

μ.GIF; 1 ·S 1 /V=a·Δ.GIF; P -b ,

где S 1 - суммарная площадь дренажных отверстий в боковых поверхностях сот и силовых перегородках, см 2 ;

S 3 - суммарная площадь дренажных отверстий в нижнем основании панели, см 2 ;

V - суммарный объем газовой среды в сотах, м 3 ;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в боковых поверхностях сот и силовых перегородках;

μ.GIF; 3 - коэффициент расхода дренажных отверстий в нижнем основании панели;

Δ.GIF; Р - максимальный по траектории полета ракеты-носителя перепад давлений газовой среды, действующий на основания панели, кгс/см 2 ;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в нижнем основании панели от максимального по траектории перепада давлений, действующего на основания панели.

3. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в по крайней мере одном элементе рамы и в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках, раме и нижнем основании панели определяется из соотношений

μ.GIF; 1 ·S 1 /V=a·Δ.GIF; P -b ,

μ.GIF; 2 ·S 2 /V≥.GIF; μ.GIF; 1 ·S 1 /V,

μ.GIF; 3 ·S 3 /V≥.GIF; μ.GIF; 1 ·S 1 /V,

где S 1 - суммарная площадь дренажных отверстий в боковых поверхностях сот и силовых перегородках, см 2 ;

S 2 , S 3 - суммарные площади дренажных отверстий в раме и нижнем основании панели соответственно, см 2 ;

V - суммарный объем газовой среды в сотах, м 3 ;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в боковых поверхностях сот и силовых перегородках;

μ.GIF; 2 , μ.GIF; 3 - коэффициенты расхода дренажных отверстий в раме и нижнем основании панели соответственно;

Δ.GIF; Р - максимальный по траектории полета ракеты-носителя перепад давлений газовой среды, действующий на основания панели, кгс/см 2 ;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме и нижнем основании панели от максимального по траектории перепада давлений, действующего на основания панели.


В последующие годы многие страны заинтересовались космической солнечной энергетикой, включая Японию, Китай и несколько европейских стран.

«Многие люди заинтересовались этим, но тогда было куда меньше технических возможностей и аппаратных средств», - говорит Яффе.

В 2009 году секретарь военно-морского флота США Рэй Мабус поставил ряд задач по снижению зависимости ВМС от иностранной нефти и увеличению использования альтернативных источников энергии. В том же году Яффе получил финансирование от научно-исследовательской лаборатории ВМС США, чтобы улучшить технологию, которая преобразовывала бы солнечную энергию, собранную в космосе, в другую форму энергии, которую можно было бы передать на Землю.

Как работает технология?

Хотя технология нуждается в усовершенствовании, основная идея довольно проста. Солнце посылает фотоны, энергетические пакеты света, во всех направлениях. Обычная солнечная панель преобразует эти фотоны в электроны постоянного электрического тока. Потом постоянный ток преобразуется в переменный и передается через электрическую сеть.

В космосе большой проблемой является то, как завести эту энергию в сеть.

С солнечными батареями в космосе ученым нужно найти самый эффективный способ передачи постоянного тока от солнечных отражателей на Землю. Ответ: электромагнитные волны вроде тех, что используются для передачи радиочастот или разогрева еды в микроволновой печи.

«Люди могут не связывать радиоволны с передачей энергии, потому что думают о них в связи с коммуникациями, радио, телевизорами или телефонами. Они не думают о них как о переносчиках энергии», - говорит Яффе. Но мы знаем, что микроволны (одна из разновидностей электромагнитных волн) переносят энергию - их энергия нагревает нашу еду.

Яффе называет технологию, над которой работает, модулем «сэндвич». На рисунке ниже показаны похожие на зеркала солнечные отражатели, концентрирующие фотоны солнца на массиве модулей типа сэндвич. Верхняя часть сэндвича получает солнечную энергию. Антенны на нижней боковой балке посылают радиоволны на Землю.


Изображение выше выполнено без соблюдения масштабов. Модули-сэндвичи должны быть три метра длиной, но их понадобится порядка 80 000. Массив таких модулей будет длиной в девять футбольных полей, примерно с километр. Это в девять раз больше, чем .

Вернувшись на Землю, содержащие энергию радиочастоты от космических солнечных панелей будут приниматься специальной антенной - ректенной - которая может быть три километра в диаметре.

«Она будет похожа на поле, усеянное проводами. Эти элементы ректенны будут принимать входящие радиоволны и преобразовывать их в электричество», - говорит Яффе.

Мощный пучок радиоволн можно отправить в любое место на Земле, так как направление пучка можно изменить с помощью метода под названием «ретродирективное управление лучом». Достаточно отправить «пилотный сигнал» из центра принимающей станции. Спутник видит сигнал и перенастраивает передатчик для передачи радиоволн на земную станцию.

Огромным преимуществом такой системы как для военных, так и гражданских лиц будет возможность передачи энергии на удаленные базы и места, куда будет логистически сложно и невероятно дорого доставлять дизельное топливо.

Гигантский луч энергии из космоса


Гигантский пучок радиоволн, идущих вниз от космоса на Землю, может напугать большинство людей, которые видели, как инопланетный корабль использует такие лучи, чтобы взрывать города. Но на самом деле вы даже не увидите радиолуч невооруженным глазом - радиосигналы текут вокруг нас повсюду и во всех направлениях.

Хотя эти радиосигналы содержат больше энергии, чем сигнал телевизора или радио, плотность сигнала все равно будет довольно низкой и не будет угрожать людям, самолетам или птицам, пролетающим через него. Конечно, технология еще не была проверена вне лаборатории, поэтому реальных доказательств ее безопасности пока нет.

Основной проблемой такой системы остается ее стоимость. И эта проблема касается всех участвующих сторон, будь то правительство, частные или коммерческие финансовые фонды.

Трудно сказать, сколько будет стоить полномасштабная реализация космической системы солнечной станции, но явно не меньше сотен миллионов долларов. Есть определенный предел того, насколько большой объект мы можем запустить в космос, да и ракеты тоже стоят недешево. Международную космическую станцию, например, строили в космосе по частям, поскольку не было достаточно большой или мощной ракеты, чтобы запустить полную систему в космос.

Задача Яффе - произвести прототип одной секции модуля «сэндвич», но не закончить проект. Он также тестирует модули в условиях, подобных космическим, чтобы гарантировать, что они смогут противостоять и продолжать работать в невероятной теплоте солнца в космосе.

Яффе пытается найти спонсоров, чтобы обеспечить финансирование продолжению своего проекта. Но подчеркивает, что долгосрочные энергетические проекты довольно сложно продавать, особенно когда он не может показать людям технологию в действии. Яффе считает, что реальным мотиватором будет международная конкуренция, как в 1950-х годах, когда Россия разработала первый спутник и обогнала США в космической гонке. Теперь же, похоже, Япония планирует выйти в этом проекте первой.

Даже без финансирования на государственном уровне небольшие предприятия вроде Solaren полагают, что космические солнечные станции станут реальностью в ближайшем будущем. Гари Спирнка, генеральный директор Solaren, строил долгую карьеру как в правительственном, так и частном секторе космической инженерии. Он годами наблюдал за тем, как правительство планирует и замораживает проекты таких станций, поэтому больше заинтересован в частном секторе.