Самодельный электрокардиограф (ЭКГ). Самодельный кардиограф (несколько вариантов) Самодельный электрокардиограф

Еще одним методом получения информации о работе сердца является электрокардиография, который представляет собой недорогой метод инструментальной диагностики сердца, позволяющий проверить его работу и определить нарушения в ней. Для этой цели компанией разработана микросхема AD8232 . AD8232 представляет собой интегрированный блок обработки сигнала для ЭКГ и других биопотенциальных задач. Микросхема предназначена для получения, усиления и фильтрации слабых биопотенциальных сигналов в условиях сильных помех.

Основные характеристики AD8232:

  • Низкое потребление тока: 170 мкА
  • Напряжение питание: однополярное от 2 до 3,5 В
  • Rail to Rail выходной сигнал
  • Количество электродов: 2 или 3
  • Количество отведений ЭКГ: 1
  • Встроенный фильтр ВЧ помех
  • 2-полюсный фильтр высоких частот
  • 3-полюсный фильтр низких частот
  • Коэффициент ослабления синфазного сигнала: 80 дБ
  • Детектор контакта электродов
  • Выходной сигнал: аналоговый

На основе данной микросхемы в продаже присутствуют модули , удобные для изучения и использования, в комплект входит не только плата с AD8232 и обвязкой, но и набор электродов в зависимости от комплектации .

Схема модуля:

Для получения кардиограммы электроды прикрепляются на грудь и конечности (в зависимости от выбранного отведения), с которых снимаются сигналы электрической активности сердца.

Электрическая система сердца управляет генерацией и распространением электрических сигналов по сердечной мышце, в результате чего сердце периодически сокращается и расслабляется, перекачивая кровь. В процессе цикла работы сердца происходит упорядоченный процесс деполяризации. Деполяризация – это резкое изменение электрического состояния клетки, когда отрицательный внутренний заряд клетки становится на короткое время положительным. В сердце деполяризация начинается в специализированных клетках водителя сердечного ритма в синусно-предсердном узле. Далее волна возбуждения распространяется через атриовентикулярный (предсердно-желудочковый) узел вниз к пучку Гиса, переходя в волокна Пуркинье и далее приводит к сокращению желудочков. В отличие от других нервных клеток, которые неспособны генерировать электрический сигнал в автоколебательном режиме, клетки синусно-предсердного узла способны создавать ритмичный электрический сигнал без внешнего воздействия. Точнее, внешние воздействия (например, физическая нагрузка) влияют только на частоту колебаний, но не нужны для запуска этого «генератора». При этом происходит периодическая деполяризация и реполяризация клеток водителя ритма. В электрокардиостимуляторе также имеется генератор стабильной частоты, выполняющий роль синусно-предсердного узла. Мембраны живых клеток действуют как конденсаторы. Из-за того, что процессы в клетках электрохимические, а не электрические, деполяризация и реполяризация в них происходят намного медленнее, чем в конденсаторе той же емкости.

Расположенные на теле пациента электроды обнаруживают небольшие изменения потенциалов на коже, которые возникают вследствие деполяризации сердечной мышцы при каждом ее сокращении.

Таким образом, на основе AD8232 можно строить портативные устройства для мониторинга за здоровьем сердечной системы (ЭКГ, кардиомониторы и др.). А кроме этого данная микросхема пригодна для использования получения данных о сокращениях других мышц, что потенциально дает возможность использовать ее в бионике и протезировании. В этом случае необходимо подключать электроды к мышцам, активность которых контролируется.

Выбирая микроконтроллеры STM32 для портативных устройств рационально использовать микроконтроллеры серии L с низким потреблением тока для увеличения времени работы от аккумулятора. В нашем случае для ознакомления используется STM32F1.

В основе схемы лежит микроконтроллер STM32F103C8T6, для индикации используется TFT LCD дисплей ILI9341 с интерфейсом SPI. Схема питается от 5 вольт (можно использовать Power Bank), до необходимого уровня напряжение питания понижается с помощью стабилизатора напряжения AMS1117 3v3 или любого другого стабилизатора напряжения с нужными параметрами. Кроме дисплея в качестве индикатора сердцебиения используется бузер со встроенным генератором. При появлении пика удара сердца на время этого пика включается бузер.

Программа микроконтроллера имеет два меню: основное меню, где на дисплее строится кардиограмма и отображается частота сердечных сокращений и меню настроек, где можно задать коэффициенты для отображения кардиограммы по высоте и по ширине, а также задать порог счета сердечных сокращений. Последний параметр задается относительно окна кардиограммы от 0 до 200 – это порог, в который входят только пики ударов сердца. Настройки сохраняются в flash памяти микроконтроллера. Для надежности используется последняя страница памяти, чтобы наверняка не пересекать память, в которую записана программа микроконтроллера. Для управления меню используется три кнопки S2-S4. Кнопка S2 переключает меню, а кнопки S3 и S4 регулируют настройки. Значения настроек здесь достаточно абстрактны и привязаны к коду. Первая настройка задает время задержки между измерениями АЦП и построением графика, то есть чем больше задержка, тем больше времени нужно на заполнение экрана и тем более сжат график. Вторая настройка задает коэффициент, который делит измеренное значение АЦП - при максимальном значении 4095 делим на 20 и получаем 204,75, то есть практически весь размах значений мы укладываем в 200 пикселей экрана, отведенного под график. Изменением этого коэффициента можно увеличивать или уменьшать график по оси Y. Последняя настройка задает порог с учетом второй настройки для определения пика. Выходя за это значение программа понимает когда произошел удар сердца. Между Этими пиками фиксируется время, по которому рассчитывается частота сердечных сокращений.

В программе присутствует визуализация отклонения ЧСС (частоты сердечных сокращений), если она слишком маленькая или слишком большая график ЭКГ на дисплее начинает отрисовываться красным цветом. Модуль MOD1 это рассматриваемый модуль на основе AD8232 . Частота сердечных сокращений вычисляется как среднее значение пяти последних измерений.

Три электрода, входящих в комплект, подключаются к модулю через разъем и сами электроды крепятся на теле человека. В моем случае желтый электрод соответствует RL (правая нога), красный RA (правая рука), зеленый LA (левая рука). Так же соответственно электроды крепятся и на груди. Эти контакты электродов на модуле так же продублированы в виде контактов, к которым можно подключать свои провода с электродами. При использовании проводов из комплекта обязательно стоит прозвонить контакты, чтобы убедиться, что они соответствуют цветам, что не всегда встречается. Круглые электроды, которые входят в комплект являются одноразовыми. После их использование клейкость резко ухудшается, а гель в середине для получения надежного контакта с кожей высыхает. После первых экспериментов не стоит спешить их выбрасывать, для продолжения экспериментов достаточно смочить гель водой (я воду немного подсаливал), тогда он станет снова вязким, клейким и токопроводящим. Такие электроды самые дешевые и простые, при желании можно найти в продаже многоразовые электроды без клейких элементов, работающие как присоски. Но даже в этом случае нужно использовать специальный гель для надежного контакта электрода с кожей. Самым простым вариантом электрода может быть металлическая пластинка или шайба (монета), смоченная в соленой воде, подключенная к модулю AD8232. Такой вариант электрода максимально бюджетный и не сгодится для продолжительного использования - при высыхании воды контакт начнет ухудшаться, что приведет к ухудшению результатов измерения.

Модуль AD8232 имеет детектор подключения электродов – контакты L+ и L- выдают логическую единиц, если электроды не подключены и логический ноль, если подключены. На экране дисплея это отображается символами L+ и L-. Если их цвет зеленый, значит электроды подключены, если красный – отключены. Наличие шума на графике ЭКГ может быть связано с такими нюансами как контакт электродов и их верное расположение на теле, наличие дефектов в проводах электродов и их повреждение. В отличии от оптических датчиков, движения тела при измерении дают намного меньшие искажения графика на экране, но все же дают, так как при движении напряжения других мышц тела, расположенных близко к электроду, также дают некоторые импульсы.

Данная схема не исключает использования других датчиков с аналоговым выходом, например, затрагиваемых ранее . Достаточно выводы PA1 и PA2 микроконтроллера подключить к земле или питанию, чтобы символы на дисплее не моргали.

P.S. Данное устройство не может быть применено для самостоятельно диагностики, только квалифицированный врач может делать какие-либо заключения о здоровье. Данное устройство создавалось только в познавательных и ознакомительных целях.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК STM32

STM32F103C8

1 В блокнот
VR1 Линейный регулятор

AMS1117-3.3

1 В блокнот
MOD1 Модуль ЭКГ AD8232 1 В блокнот
HG1 TFT LCD ILI9341 1 В блокнот
Z1 Кварц 8 МГц 1 В блокнот
HL1 Светодиод 1 В блокнот
EP1 Бузер 1 Со встроенным генератором В блокнот
S1-S4 Тактовая кнопка 4 В блокнот
C1, C2 Конденсатор 22 пФ 2

Сердце - самый важный орган в организме человека. Его часто сравнивают с мотором, что и неудивительно, потому что основной является постоянное перекачивание крови в сосудах нашего тела. Сердце работает 24 часа в сутки! Но бывает так, что оно не справляется со своими функциями из-за болезни. Безусловно, необходимо следить за общим здоровьем, в том числе и за здоровьем сердца, но это в наше время получается не у всех и не всегда.

Немного истории о появлении ЭКГ

Ещё в середине 19-го века лекари начали задумываться о том, как же отследить работу, вовремя выявить отклонения и предупредить страшные последствия функционирования больного сердца. Уже в то время врачи выявили, что в сокращающейся сердечной мышце происходят и стали проводить первые наблюдения и исследования на животных. Учёные из Европы начали работать над созданием специального аппарата или уникальной методики для наблюдения за и наконец-то был создан первый в мире электрокардиограф. Все это время наука не стояла на месте, таким образом, и в современном мире используют этот уникальный и уже усовершенствованный аппарат, на котором производят так называемую электрокардиографию, ее ещё называют сокращённо ЭКГ. Об этой методике регистрации биотоков сердца и пойдёт речь в статье.

Процедура ЭКГ

На сегодняшний день это абсолютно безболезненная и доступная каждому процедура. ЭКГ можно сделать практически в любом медицинском учреждении. Проконсультируйтесь с вашим семейным врачом, и он вам подробно расскажет, для чего необходима данная процедура, как снимать ЭКГ и где её можно пройти в вашем городе.

Краткое описание

Рассмотрим этапы того, как снимать ЭКГ. Алгоритм действий такой:

  1. Подготовка пациента к будущей манипуляции. Укладывая его на кушетку, медработник просит расслабиться и не напрягаться. Убирают все лишние предметы, если такие имеются и могут помешать записи кардиографа. Освобождают от одежды необходимые участки кожи.
  2. Приступают к наложению электродов строго в определённой последовательности и очерёдности наложения электродов.
  3. Подключают аппарат к работе при соблюдении всех правил.
  4. После того как аппарат подключён и готов к работе, приступают к записи.
  5. Снимают бумагу с записанной электрокардиограммой сердца.
  6. Выдают результат ЭКГ пациенту или доктору на руки для последующей расшифровки.

Подготовка к снятию ЭКГ

До того как вы узнаете, как снимать ЭКГ, рассмотрим, какие действия нужно произвести, чтобы подготовить пациента.

Аппарат ЭКГ есть в каждом медицинском учреждении, он находится в отдельной комнате с кушеткой для удобства пациента и медперсонала. Помещение должно быть светлым и уютным, с температурой воздуха +22...+24 градуса по Цельсию. Так как правильно снять ЭКГ можно только при условии полного спокойствия пациента, такая обстановка очень важна для проведения данной манипуляции.

Укладывают обследуемого на медицинскую кушетку. В положении лёжа тело легко расслабляется, что важно для будущей записи кардиографа и для оценки работы самого сердца. Перед тем как накладывать электроды для ЭКГ, смоченным медицинским спиртом ватным тампоном необходимо обработать нужные области рук и ног пациента. Повторная обработка этих мест производится физиологическим раствором или специальным медицинским гелем, предназначенным для этих целей. Ппациенту необходимо сохранять спокойствие во время записи кардиографа, дышать ровно, умеренно, не волноваться.

Как правильно снять ЭКГ: наложение электродов

Необходимо знать, в какой последовательности нужно накладывать электроды. Для удобства персонала, проводящего данную манипуляцию, изобретатели аппарата ЭКГ определили 4 цвета для электродов: красный, жёлтый, зелёный и чёрный. Накладываются они именно в таком порядке и никак по-другому, иначе проведение ЭКГ не будет целесообразным. Перепутать их просто недопустимо. Поэтому медперсонал, который работает с аппаратом ЭКГ, проходит специальное обучение с последующей сдачей экзамена и получением допуска или сертификата, позволяющего ему работать именно с данным аппаратом. Медработник в кабинете ЭКГ, согласно своей рабочей инструкции, должен чётко знать места наложения электродов и правильно выполнять последовательность.

Итак, электроды для рук и ног имеют вид больших зажимов, но не стоит волноваться, зажим располагается на конечности абсолютно безболезненно, эти зажимы разных цветов и накладываются на определённые места тела следующим образом:

  • Красный - запястье правой руки.
  • Жёлтый - запястье левой руки.
  • Зелёный - левая нога.
  • Чёрный - правая нога.

Наложение грудных электродов

Грудные электроды в наше время бывают разных видов, всё зависит от фирмы производителя самого Они бывают одноразовыми и многоразовыми. Одноразовые более удобны в использовании, не оставляют неприятных следов раздражения на коже после снятия. Но если нет одноразовых, тогда применяют многоразовые, они по своей форме похожи на полусферы и имеют свойство присасываться. Это свойство необходимо для чёткой постановки именно в нужное место с последующей фиксацией на нужное время.

Медицинский работник, уже знающий, как снять ЭКГ, справа от пациента располагается у кушетки, для того чтобы правильно наложить электроды. Необходимо, как уже сказано, предварительно обработать кожу груди пациента спиртом, затем физиологическим раствором или медицинским гелем. Каждый грудной электрод промаркирован. Чтобы было понятнее, как снять ЭКГ, схема наложения электродов представлена ниже.

Приступаем к наложению электродов на грудь:

  1. Предварительно находим у пациента 4-е ребро и ставим под ребро первый электрод, на котором стоит цифра 1. Для того чтобы электрод успешно стал на необходимое место, нужно использовать его свойство присасывания.
  2. 2-й электрод ставим также под 4-й ребро, только с левой стороны.
  3. Затем приступаем к наложению не 3-го, а сразу 4-го электрода. Он накладывается под 5-е ребро.
  4. Электрод под номером 3 необходимо расположить между 2-м и 4-м ребром.
  5. 5-й электрод устанавливается на 5-е ребро.
  6. 6-й электрод накладываем на уровне с 5-м, но на пару сантиметров ближе к кушетке.

Перед включением аппарата для записи ЭКГ ещё раз проверяем правильность и надёжность наложенных электродов. Только после этого можно включить электрокардиограф. Перед этим необходимо выставить скорость движения бумаги и настроить другие показатели. Во время записи пациент должен находиться в состоянии полного покоя! По окончании работы аппарата можно снять бумагу с записью кардиографа и отпустить пациента.

Снимаем ЭКГ детям

Поскольку возрастных ограничений для проведения ЭКГ нет, снимать ЭКГ детям тоже можно. Делают эту процедуру так же, как и взрослым, начиная с любого возраста, включая (как правило, в таком раннем возрасте ЭКГ делают исключительно для устранения подозрений на порок сердца).

Единственное различие между тем, как снять ЭКГ взрослому и ребенку, заключается в том, что к ребёнку нужен особый подход, ему нужно всё объяснить и показать, успокоить при необходимости. Электроды на теле ребёнка фиксируются на тех же местах, что и у взрослых, и должны соответствовать возрасту ребёнка. Как накладывать электроды для ЭКГ на тело, вы уже ознакомлены. Чтобы не разволновать маленького пациента, важно следить за тем, чтобы ребёнок не двигался во время проведения процедуры, всячески поддерживать его и объяснять всё, что происходит.

Очень часто педиатры при назначении рекомендуют дополнительные пробы, с физической нагрузкой или с назначением того или иного препарата. Эти пробы проводятся для того, чтобы вовремя выявить отклонения в работе сердца ребёнка, правильно диагностировать то или иное заболевание сердца, вовремя назначить лечение или развеять страхи родителей и врачей.

Как снять ЭКГ. Схема

Для того чтобы прочитать правильно запись на бумажной ленте, которую в конце процедуры выдаёт нам аппарат ЭКГ, безусловно, необходимо иметь медицинское образование. Запись должен внимательно изучить врач - терапевт или кардиолог, для того чтобы своевременно и точно установить диагноз пациенту. Итак, о чём же может нам рассказать непонятная кривая линия, состоящая из зубцов, отдельных сегментов с интервалами? Попробуем разобраться в этом.

Запись проанализирует, насколько регулярны сокращения сердца, выявит частоту сердечных сокращений, очаг возбуждения, проводящую способность сердечной мышцы, определение сердца по отношению к осям, состояние так называемого в медицине сердечных зубцов.

Сразу после прочтения кардиограммы опытный доктор сможет поставить диагноз и назначить лечение либо даст необходимые рекомендации, что значительно ускорит процесс выздоровления или убережёт от серьёзных осложнений, и самое главное - вовремя произведённая ЭКГ сможет спасти жизнь человека.

Нужно учесть то, что кардиограмма взрослого отличается от кардиограммы ребёнка или беременной женщины.

Снимают ли ЭКГ беременным женщинам

В каких же случаях назначают пройти электрокардиограмму сердца беременной женщине? Если на очередном приёме у акушера-гинеколога пациентка пожалуется на боль за грудиной, одышку, большие колебания при контроле артериального давления, головные боли, обмороки, головокружения, то, скорее всего, опытный врач назначит эту процедуру, дабы вовремя отклонить плохие подозрения и избежать неприятных последствий для здоровья будущей мамочки и её малыша. Противопоказаний для прохождения ЭКГ во время беременности нет.

Некоторые рекомендации перед запланированной процедурой прохождения ЭКГ

Перед тем как снимать ЭКГ, пациент обязательно должен быть проинструктирован о том, какие условия нужно выполнить накануне и в день снятия.

  • Накануне рекомендуют избегать нервных перенапряжений, а длительность сна должна быть не менее 8 часов.
  • В день сдачи необходим небольшой завтрак из пищи, которая легко усваивается, обязательное условие - не переедать.
  • Исключить за 1 день продукты, которые влияют на работу сердца, например, крепкий кофе или чай, острые приправы, алкогольные напитки, а также курение.
  • Не наносить на кожу рук, ног, грудной клетки крем и лосьоны, действие жирных кислот которых могут ухудшить впоследствии проводимость медицинского геля на коже перед наложением электродов.
  • Необходимо абсолютное спокойствие, перед тем как сдать ЭКГ и во время самой процедуры.
  • Обязательно в день процедуры исключить физические нагрузки.
  • Перед самой процедурой необходимо спокойно посидеть около 15-20 минут, дыхание спокойное, равномерное.

Если у обследуемого наблюдается сильная одышка, то ему нужно проходить ЭКГ не лежа, а сидя, поскольку именно в таком положении тела аппарат сможет чётко записать сердечную аритмию.

Безусловно, есть состояния, при которых проводить ЭКГ категорически нельзя, а именно:

  • При остром инфаркте миокарда.
  • Нестабильной стенокардии.
  • Сердечной недостаточности.
  • Некоторых видах аритмии неясной этиологии.
  • Тяжёлых формах стеноза аорты.
  • Синдроме ТЭЛА (тромбоэмболии легочной артерии).
  • Расслоении аневризмы аорты.
  • Острых воспалительных заболеваниях мышцы сердца и околосердечных мышц.
  • Тяжёлых инфекционных заболеваниях.
  • Тяжёлых психических заболеваниях.

ЭКГ при зеркальном расположением внутренних органов

Ззеркальное расположение внутренних органов подразумевает их расположение в другом порядке, когда сердце находится не слева, а справа. То же касается и других органов. Это довольно редкое явление, тем не менее оно встречается. Когда пациенту с зеркальным расположением внутренних органов назначают пройти ЭКГ, он должен предупредить о своей особенности медсестру, которая будет производить данную процедуру. У молодых специалистов, работающих с людьми с зеркальным расположением внутренних органов, в таком случае возникает вопрос: как снять ЭКГ? Справа (алгоритм снятия в принципе тот же) электроды располагаются на теле в том же порядке, что у обычных пациентов ставились бы слева.

Берегите своё здоровье и здоровье своих близких!

.
или дешевой USB- sound платы для SKYPE - телефонии.

Позволяет записать кардиограмму в файл.bin
а так-же воспроизвести в реальном времени результаты сохраненных замеров.
К сожалению не нашел программ для расшифровки кардиограмм
и не знаю как правильно сохранить файл, поэтому это просто *.bin файл.
Может пригодиться для выявления редких отклонений в ЭКГ,
которые бывает трудно зафиксировать при редких
и коротких посещениях кабинета ЭКГ
или просто для наблюдения за сердцем если у вас есть знакомый кардиолог(.

Посмотреть список литературы по этой теме и добавить свою информацию
можно на форуме в теме Какие книги посоветуете?

Узнать что делать с полученой кардиограммой
и предложить свой вариант можно на форуме
в теме Кардиограмма получена. Что дальше?

Так как усилители не имеют гальваноразвязки, то все эксперименты в целях безопасности и для снижения помех необходимо проводить с ноутбуком не подключенным к сети 220В.

Программа ECG.llb Для версии LabVIEW5.0

Модуль усилителя - любой усилитель с закрытым (>4 мкФ) входом и Кус >=100

В моем случае используется модуль KARDIO от USB_осциллографа .

Схема и конструкция выглядят так:


DA1 можно не устанавливать, а провод RRL - подключить к земле.

R6+R7+R8 = 100-400 Ом (150)

Bxoды от левой и правой руки подключить к R11 и R12 через неполярные конденсаторы 8.0 -10.0 мкФ для устранения возможного гальванического смещения (до сотен мкВ)

  • Файл платы кардиоусилителя в формате JPG: CARDIO_JPG.zip в формате PCB2004: Kardio_PCB2004.zip

    Плата модуля микроконтроллера и прошивка - на страничке модуль осциллографа .

    Все объединено в один корпус для компактности. Если в этом нет необходимости можно просто использовать модуль осциллографа
    в паре с модулем кардиоусилителя . Или сделать свое устройство передающее данные в указаном в модуле осциллографа формате.

    Программа корректор. Korrektor.llb


    Позволяет выровнять кардиограмму:

    Выглядеть этот вариант может так:

    2. Кардиограф на базе звуковой USB платы
    ECG of the USB sound card

    Верся для USB sund card на базе микросхемы для SKYPE телефонов AP-T6911 или любой другой, позволяющей измерять напряжение постоянного тока:

    1 . Приобретаем за 2-10$ нечто подобное: например этот: http://www.dealextreme.com/details.dx/sku.22475
    2 . Отключаем микрофонный усилитель. остается только 10-битный АЦП с входным смещением около 2,5 вльт
    которое придется компенсировать если будете мерять и постоянное напряжение.
    Модернизируем USB - Sound плату (См рисунки)

    Выглядит это примерно так:

    При условии что там стоит микросхема SKYPE телефона AP-TP6911_02EV10

    Предупреждение: модели меняются постоянно.....

    К сожалению USB и SOUND варианты создают *.bin файлы с разной частотой оцифровки сигнала.
    Если в ECG_USB_SND.llb это можно исправить в программе то ЕХЕ вариант прошит жестко на 48000/32 выборок в сек.
    В случае работы со штатной звуковой платой вам придется найти переходные конденсаторы в канале микрофонного входа
    (обычно 1 на входе и 1 в усилителе микрофона) и увеличить их емкость до десятков микрофарад.

    3. Кардиограф на базе bluetooth гарнитуры с микросхемой BC31A223A (От телефонов Sony Ericsson):

    1. Подготовка гарнитуры.
    Заключается в отключении микрофона путем удаления конденсатора C10, вывода на разъем дифф входа
    микрофонного усилителя микросхемы (MIC_N и MIC_P) и напряжения VOUT (2,7V) для питания подключаемых к разему усилителей.
    Как это было сделано показано на рисунке ниже.
    Телефон гарнитуры решил пока не трогать для того чтобы использовать по его прямому назначению.

    2. Установка драйверов BLUETOOTH имеющих поддержку гарнитуры.
    В моем случае не подошли следующие драйвера:

    Вопрос достаточно проблемный поэтому кому-то возможно придется решать его по другому.

    После этого можно начинать эксперименты.

    На данный момент имеются следующие результаты:

    Максимальный входной сигнал имеет размах +/- 32мВ при 15 битах разрешения и частотой оцифровки 8кГц что позволяет снимать кардиограмму
    при подключении электродов через разделительный конденсатор к контактам MIC_N и MIC_P выведеным на внешний разъем.
    Пример картинок приведены на рисунке.



    Связь оказалась достаточно некачественной. Довольно часто проходят помехи или разрывы потока, что проявляется в виде импульсной помехи.
    Так что мониторирование ЭКГ по Холтеру через Bluetooth-гарнитуру, похоже, невозможно.

    После обычной процедуры подключения гарнитуры кардиограмму можно записать удобным вам способом в *.wav файл
    для дальнейшей обработки или воспользоваться приведенной выше программой Кардиографа на базе звуковой USB платы

    Если существует такая прекрасная вещь как PSoC , то можно попробовать собрать кардиограф например на

  • Рассматривается простой кардиограф, умещающийся в кармане и обеспечивающий регистрацию электрокардиограммы (частоты пульса), температуры и положения тела человека. Эти параметры запоминаются на карте памяти micro SD, откуда в последствии могут быть переписаны на персональный компьютер (ПК) и при помощи специальной программы отображены в виде графиков (привязанных к времени и дате съемки) для детального изучения.

    Устройство разрабатывалось для изучения поведения человека во сне, но может быть также полезно спортсменам и медикам. Начинающих радиолюбителей заинтересует схема регистрации биотоков (когда источником сигнала становится человеческое тело) и пример применения широко распространенных карт памяти SD для сохранения разнородной информации.

    Принципиальная схема кардиографа приведена на рис. 1.

    Рис 1 - Принципиальная схема простого кардиографа

    На элементах DA1, DA2, DA3 собран усилитель кардиосигнала. Это обычный УНЧ с дифференциальным входом и высоким входным сопротивлением . К входам усилителя E+ и E- подключается пара электродов, закрепленных на теле в области сердца для съема исходного кардиосигнала. Элементы DA1.1 и DA1.2 работают как повторители, обеспечивающие высокое входное сопротивление. Инструментальный усилитель DA3 усиливает сигнал примерно в 6 раз (коэффициент задается резистором R4) перед подачей на АЦП микроконтроллера DD1.

    Помимо полезного сигнала биологического происхождения на электродах E+ и E- присутствуют синфазные помехи (прежде всего 50 Гц от осветительной сети), амплитуда которых в тысячи раз превышает полезный сигнал. Для их подавления используется «активная земля» : на теле закрепляется третий электрод E0, на который с выхода DA2.1 в противофазе подаётся синфазная составляющая входного сигнала. Её выделение выполняет сумматор на R1 и R2, а DA2.1 – усиление и инверсию. Благодаря такой своеобразной отрицательной обратной связи величина синфазных помех резко снижается, и далее они эффективно подавляются DA3. Для формирования опорного напряжения (средней точки) для ОУ DA2.1 и DA3 используются элементы R6, R7, С1, С2, DA2.2.

    Для измерения температуры и положения тела к микроконтроллеру DD1 по двухпроводному интерфейсу I 2 C подключены интегральные датчики температуры ВК1 и ускорения ВК2. Спецификация шины I 2 C реализуется программно. Резисторы R8 и R10 служат нагрузками линий интерфейса. Резисторы R9, R11, также как R5, R12, R14, R15 защищают выводы микроконтроллера и периферии от перегрузок при сбоях МК (в отлаженное устройство их можно не устанавливать).

    Питание акселерометра BK2 осуществляется через диод VD1, который снижает напряжение питания BK2 на 0.7 в, чтобы напряжение "свежезаряженного" Ni-MH аккумулятора GB1 (4.2 в) не превышало паспортного значения для BK2 MMA7455LT (3.6 в). Положение тела определяется по проекции силы тяжести на оси чувствительности BK2, что например позволяет четко различить следующие положения тела: стоя, лежа на спине, на животе, на левом или на правом боку. По изменению ускорения фиксируется двигательная активность.

    Функционирование устройства как единого целого осуществляется под управлением микроконтроллера DD1. Сразу после подачи питания устройство работает в режиме записи: DD1 выполняет периодический опрос датчиков BK1 и BK2, измерение частоты на входе CCP1 и оцифровку кардиосигнала. Объединенный информационный поток записывается в файл на карту памяти micro SD (разъем X1), а также выдаётся в ПК по интерфейсу RS-232 (разъем X2) для контроля и визуализации. Командой с компьютера можно остановить запись и перевести устройство в режим скачивания сохраненных файлов.

    Сохранение информации осуществляется на карте памяти micro SD , которая подключается через разъем X1. В процессе работы карта может потреблять до 100 мА (в импульсе), создавая мощные помехи по питанию, поэтому она запитана от источника GB1 напрямую, а остальная схема через RC - фильтр R16 C5.

    От использования стандартной файловой системы FAT на карте SD пришлось отказаться: она не устойчива к внезапному исчезновению питания, а памяти МК не достаточно для буферизации поступающих в реальном времени данных. Разработан альтернативный формат хранения информации. Запись на карту осуществляется последовательно, сектор за сектором. Четырехбайтный номер первого свободного сектора EmptyPos, в который должна осуществляться запись новых данных, хранится в EEPROM микроконтроллера. После записи очередного сектора номер EmptyPos инкрементируется.

    В каждом секторе SD-карты (размером 512 байт) наряду с полезными данными сохраняется сигнатура и 4-байтный номер первого сектора файла. Таким образом, хотя данные на карту пишутся строго последовательно, они структурированы в виде файлов, рис. 2. Логика получения списка всех файлов реализуется программой на персональном компьютере; при этом предпринимаются дополнительные меры по контролю и коррекции ошибок.


    Рис 2 - Механизм последовательной записи файлов на SD-карту

    Вместо привычных операций форматирования (при установке новой SD-карты) и удаления файлов (при исчерпании объема карты) пользователем выполняется операция установки EmptyPos на начальный сектор с номером 65536. Первые 65536 секторов карты не используются ради сохранения существующей на карте «настоящей» файловой системы.

    Устройство соединяется с компьютером по интерфейсу RS-232 через разъем X2. Резистор R13 ограничивает ток через вывод RX МК в условиях, когда напряжение входного сигнала выше напряжения питания МК. Сигналы на разъёме X2 имеют уровни TTL, поэтому непосредственно подключать компьютер к разъему X2 нельзя! Следует использовать готовый переходник USB-COM от сотового телефона (обычно такие переходники имеют уровни TTL) или изготовить такой переходник самостоятельно на базе микросхемы FT232R по типовой схеме . В крайнем случаем можно собрать преобразователь уровней в TTL на микросхеме MAX232 или по схеме на рис. 3. Через разъем X2 (контакты 5 и 8) может также осуществляться зарядка аккумулятора GB1.

    Скорость обмена устройства с компьютером фиксированная: 57600 бод. Только для ускорения переписывания файлов с SD - карты в ПК скорость может быть повышена до 460800, 806400 или 921600 бод (если компьютер их поддерживает). Выдача данных при этом осуществляется МК программно на вывод RC0 (а выход TX отключается).


    Рис. 3 - Простой преобразователь ТТЛ – RS-232

    Для работы с устройством разработана специальная программа для ПК (файл программы EKG_SD_2010.exe прилагается), которая позволяет визуализировать кардиограмму и показания датчиков во время записи, считывать с SD-карты список файлов и копировать нужные на компьютер, сохранять кардиосигнал в стандартном формате WAVE PCM, обрабатывать записи с целью выделения R-зубцов и расчета частоты пульса, визуализировать и сохранять в унифицированном формате полученные временные зависимости. Более подробно работа с программой описана в прилагаемом «руководстве оператора» EKG_SD_2010.doc.

    МК DD1 измеряется частоту сигнала на выводе 13, что можно использовать для подключения к устройству дополнительных датчиков. Частота сигнала не должна превышать 8 КГц (относительная погрешность измерения не хуже 10 -6 , период измерения ~ 0.25 сек).

    Детали и конструкция. В качестве DA1 и DA2 можно применять любые ОУ широкого применения, работоспособные в диапазоне питающих напряжений от 2.7 до 4.2 в. Инструментальный усилитель DA3 заменим обычным ОУ, включенным по схеме на рис. 4. Однако при этом желательно подобрать близкими сопротивления резисторов R18 и R19, R20 и R21 (а также R1 и R2).

    Для микроконтроллера DD1 должна быть предусмотрена панелька. В него следует занести программу из прилагаемого файла EKG_SD_Pic.hex ("фьюзы" хранятся внутри прошивки).


    Рис. 4 - Функциональная замена DA3 AD623

    Устройство может работать без SD - карты или датчиков BK1 и BK2 с соответствующим снижением функциональности. Это позволяет начинающим радиолюбителям упрощать устройство по своему усмотрению без необходимости изменения прошивки DD1 или программ для компьютера. Например, если надо только наблюдать биотоки в реальном времени, а запись на SD-карту не требуется, то карту (как и дополнительные датчики) можно не устанавливать.

    В качестве разъема X1 для подключения micro SD-карты используется переходник micro SD ® SD (они продаются вместе с micro SD картами). Контакты переходника аккуратно лудят, после чего подсоединяют к схеме короткими проводками МГТФ-0.05. На рис. 5 показана нумерация и обозначения контрактов для макро SD - карты (т.е. переходника). Желательно применять карты SD class 4 и выше (из-за малого объема памяти МК максимальная задержка записи одного сектора должна быть меньше 40 мс). Поддерживаются карты HC (ёмкостью ³ 4 Гб).


    Рис. 5 - Нумерация контактов обычной SD-карты (переходника)

    Разъем X2 – типа DB9F или более миниатюрный (подходящий к применяемому переходнику COM-USB).

    Датчик температуры BK1 фиксируется на теле пластырем, а к основной схеме подключается 4-мя свитыми в жгут проводами МГТФ-0.05 длиной до 50 см.

    Монтаж акселерометра BK2 MMA7455LT (размерами 3´5´1 мм) требует определенной ловкости. Проше всего приклеить датчик к плате контактами вверх и подпаять к схеме проволочками 0.1 мм. Конденсаторы С3, С4 должны стоять в непосредственной близости от ВК2. По задумке датчик должен сохранять достаточно постоянное положение относительно торса (или другой выбранной части тела). Чтобы достичь этого, BK2 можно расположить либо в корпусе кардиографа, либо сделать выносным, подключив к основной схеме проводами также как BK1.

    Электроды E+, E-, E0 – металлические кружки Æ 10 мм из титана, которые закрепляются в области сердца пластырем. Для экспериментов можно использовать мелкие монеты – но от длительного контакта с телом они начинают ржаветь! Подключаются электроды неэкранированными проводами МГТФ-0.05 (по возможности провода к E+ и E- следует скрутить, а вокруг обвить провод к E0).

    Электрод E0 крепится в любом месте (например, приблизительно между E+ и E-). В медицине используют специальные схемы расположения электродов на теле и соответствующие методики анализа кардиограмм . Однако для определения частоты пульса электроды E+ и E- можно располагать в области сердца достаточно произвольно, лишь бы наблюдались достаточно четкие импульсы положительной полярности (как на рис. 6). Кардиосигнал также можно снимать с рук, но импульсы при этом слабее (и их автоматическое выделение затруднительно).


    Рис. 6 - Пример исходного кардиосигнала

    Питается устройство от аккумулятора на 3.6 в. Потребляемый ток зависит от SD-карты и в среднем составляет 20-30 мА. Емкость GB1 более 400 мА/час выбирается исходя из требуемого времени записи (8 - 12 часов). Следует отметить, что напряжение свежего аккумулятора доходит до 4.2 в, превышая установленный предел для SD-карты (3.6 в). Однако практика показала, что они повышенное напряжение выдерживают.

    Налаживание . Цифровая часть схемы в налаживании не нуждается. После инициализации SD-карты через 1-2 сек от включения SA1 на выходе TX DD1 должен появиться сигнал передачи потока данных в ПК. Если теперь соединить ПК к устройством и выбрать в программе EKG_SD_2010.exe правильный COM-порт, на экране должны отображаться состояние записи, номер сектора EmptyPos, показания датчиков BK1, BK2 и график оцифрованного кардиосигнала. Далее следует нажать кнопку «СТОП» и выполнить «форматирование». Успех выполнения этих операции свидетельствует о корректной связи устройства с ПК. Нажатием кнопки «Инициализация» проверяется, правильно ли устройство опознаёт SD-карту.

    Пока электроды E+, E-, E0 никуда не подключены, исправный усилитель кардиосигнала должен «ловить» (а компьютер отображать) сигнал помехи 50 Гц от сети. При замыкании между собой E+, E-, E0, амплитуда помехи должна резко уменьшаться, причем на выводе 6 DA3 должна быть примерно половина питающего напряжения.

    Далее электроды E+, E-, E0 крепят к телу и пытаются засечь импульсы, коррелированные с ударами сердца. При проблемах следует обеспечить увлажнение кожи в месте контакта с электродом и варьировать их положение в поисках лучшего сигнала. Можно также увеличить усиление DA3, уменьшив сопротивление R4.

    1. Барановский А.Л. Аппаратура непрерывного контроля ЭКГ. М.: Радио и связь, 1993. – 248 с.
    2. Авербух В. Инструментальные усилители. Схемотехника, 2001. – № 1. – С. 26.
    3. Гордейчук А.П. Система "активной земли" в электрокардиографах. – Петербургский журнал электроники, 2005. – №2. – C. 37.
    4. http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
    5. Терехин Ю. Музыкальный звонок с картой MMC. Радио, 2009. ­– №9. – С. 24-27.
    6. http://www.ftdichip.com/Documents/DataSheets/DS_FT232R.pdf
    7. Сизенцева Г.П. - Методическое пособие по электрокардиографии (в помощь медицинской сестре). – М.: Издательство НЦССХ им. Бакулева РАМН, 1998. – 68 с.

    Скачать исходники, прошивки, ПО и др. файлы к проекту вы можете ниже

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    Рис. 1
    DD1 МК PIC 8-бит

    PIC16F873

    1 В блокнот
    DA1, DA2 ОУ КР1446УД1 2 В блокнот
    DA3 Инструментальный усилитель AD623 1 В блокнот
    BK1 Датчик температуры

    DS1621

    1 В блокнот
    BK2 Акселерометр MMA7455LT 1 В блокнот
    VD1 Диод

    КД522А

    1 В блокнот
    С1, С2 Конденсатор 0.22 мкФ 2 В блокнот
    С3 Конденсатор 2.2 мкФ 1 В блокнот
    С4, С6, С8 Конденсатор 0.1 мкФ 3 В блокнот
    С5, С7 Электролитический конденсатор 1000 мкФ 2 В блокнот
    R1, R2, R4 Резистор

    20 кОм

    3 В блокнот
    R3 Резистор

    720 кОм

    1 В блокнот
    R5, R9, R11, R13-R15 Резистор

    300 Ом

    6 В блокнот
    R6, R7 Резистор

    150 кОм

    2 В блокнот
    R8, R10 Резистор

    4.7 кОм

    2 В блокнот
    R12 Резистор

    150 Ом

    1 В блокнот
    R16 Резистор

    10 Ом

    1

    15-04-2008

    Самодельный простой электрокардиограф (ЭКГ)

    LTC1044

    Refik Hadzialic

    В данной статье рассматривается простое устройство мониторинга сердца, ЭКГ электрокардиограф. Прежде чем я продолжу объяснения, мне необходимо вас предупредить ! 500 мА на 220 В полностью разрушат вашу нервную систему (лучше воспользоваться аккумулятором), поэтому проверьте все дважды, так как ответственность за нежелательные результаты будет лежать именно на вас.

    Деполяризованное поле в сердце представляет собой вектор, который меняет направление и величину в течение сердечного цикла. Размещение электродов на пациенте позволяет получить вид данного вектора как функцию времени. Наиболее часто используемая схема размещения электродов показана на рис. 1. На рисунке разность потенциалов измеряется между левой и правой рукой, правой рукой и левой ногой, левой рукой и правой ногой. Три данных измерения от датчиков привязаны к указателям I, II, III соответственно. Измерение при таком размещении датчиков было разработано Айнтховеном, который установил, что при наличии измерений I и II, можно вычислить вид сигнала при измерении III. Это основной вариант размещения датчиков ЭКГ: при наличии различных характеристик сердца можно получить его деполяризацию. В клинике в диапазон схем размещения датчиков включены датчики на конечностях и нагрудные.

    Следовательно, диаграмма ЭКГ демонстрирует врачу электрические сигналы, связанные с работой предсердия и желудочков. Благодаря ЭКГ врач может определить время сжатия предсердия и желудочков и оценить его амплитуду, а также желудочковую реполяризацию и деполяризацию. Такая информация позволяет выявить состояние сердечного клапана. У пациента после инфаркта ЭКГ покажет изменения диаграммы по форме и времени, в зависимости от скорости похождения сигнала через мускульную ткань. Такие изменения ишемического мускула связаны с инфарктом.


    Рис. 2, Диаграмма связи

    Сигнал от тела усиливается (сигналы от тела очень слабые и находятся в диапазоне от 0.5 мВ до 5.0 мВ), фильтруется (удаляется шум), преобразуется (имеется в виду преобразование аналогового сигнала в цифровой посредством ADC) и затем передается компьютеру по интерфейсу RS232 (беспроводным способом или как-то иначе, но данный интерфейс был выбран из-за простоты изготовления). Первые два шага показаны на рисунке 3.


    Рис. 3, ЭКГ схема

    Усилители, которые используются в биомедицине для работы с сигналами, имеющими очень небольшие колебания напряжения вместе с напряжением смещения, называются инструментальными операционными усилителями. Инструментальные усилители имеют высокую CMRR (высокая степень подавления синфазных помех), что означает способность к дифференциальному усилению сигнала на входах + и - . Самыми известными производителями инструментальных усилителей являются Texas Instruments и Analog Devices. Я использовал усилители производства второй компании, Analog Devices. , инструментальный усилитель, и OP97, высокоточный операционный усилитель. Так как данным усилителям необходимо подавать на вход отрицательное напряжение, то оно было получено с помощью линейного устройства LTC1044, коммутируемого конденсаторного преобразователя напряжения, рис. 4. Подаваемое напряжение составляло 5 В. Схема показана на рисунке 5 и взята из описания, где есть более подробные объяснения.

    Чтобы увидеть ЭКГ сердца, я воспользовался программой LABView.

    Рис. 7. Результаты ЭКГ в программе LABView (нажмите на изображение для увеличения)

    Рис. 8, Результаты ЭКГ в программе LABView (нажмите на изображение для увеличения)

    Рис. 9, Я с электродами

    Рис. 10, Плата ЭКГ, которую я сделал сам, вид спереди


    PMIC; преобразователь DC/DC; Uвх:1,5÷9В; Uвых:18В; DIP8; boost

    Поставщик Производитель Наименование Цена
    Триема LTC1044CS8 SOIC8 62 руб.
    ЭИК Linear Technology LTC1044CN8#PBF от 113 руб.
    T-electron Linear Technology LTC1044CS8#PBF 188 руб.
    Контест Linear Technology LTC1044AIS8 по запросу
    • Здравствуйте! А не могли бы Вы скинуть схему на LabView на адрес [email protected]?
    • Sergey57 Вас ввели в заблуждение. Для получения такой услуги требуется КАРДИОРЕГИСТРАТОР. Он записывае кардиограмму, а затем её можно передать по акустическому телефонному каналу. В Москве практически все бригады скорой помощи имеют такие приборы.
    • А вот здесь кардиограф на Arduino: http://www.prointellekt.ru/EKG1.php По-моему сборка упрощается на порядок. Собственно нужно лишь собрать аналоговую часть (которая до безобразия проста) и настроить Arduino. На том же сайте плавный переход на энцефалограф и так же просто.
    • Здравствуйте, сейчас собираю ваш электрокардиограф, немного запутался в принципиальной схеме, не могли бы вы прислать полную принципиальную схему? могу выслать электронную почту. Спасибо за потраченное время.
    • Вы о каком именно приборе спрашиваете? Электрокардиографов очень много конструкций - ведь в плане железа это довольно простое устройство. Только нужно помнить, что без адекватной программы (а это 95% современного кардиографа) даже очень качественное и дорогое железо не очень-то полезно.
    • Здравствуйте! Если вы о моей схеме, то на сайте планируется разместить более подробный её вариант. К сожалению за неимением свободного времени это будет сделано не немедленно, но планирую до конца этого месяца. Тем не менее могу попробовать оперативно ответить на ваши вопросы здесь или на моём сайте - как вам удобнее.
    • http://www..html?di=47010 Хотел бы узнать точную принципиальную схему вот этого электрокардиографа который вы сделали, чтобы развести её в программе. Я понимаю схему которая представлена на данной странице "Рис. 5, схема ЭКГ" , но что надо к ней добавить, чтобы можно было корректно её развести на плате и соответственно чтобы она заработала. С программой вопросов нету. Интересует принципиальная электрическая схема. Спасибо.
    • Здравствуйте, необходимо спаять электрокардиограф, посоветуйте, пожалуста, схему, желательно простую, так как ранее этим не занимался
    • в журнале Elektor №7-8 за 2013г приводится схема многоканальной кардиографической приставки, которая по Bluetooth передает кардиограмму на Android устройство (планшет). Приставка питается от автономного источника, что немаловажно, учитывая величину полезного сигнала и уровень помех. Кому интересно, могу скинуть на почту оригинал статьи на английском.
    • Тоже собирал простейший прибор для регистрации ЭКГ (но не тот, что в первом сообщении).:) Вроде ничего сложного. Подключал к компьютеру через линейный вход звуковой карты. С установленной программой СпектраПлюс возможно не только просматривать сигналы, но и записывать в течении продолжительного времени. Подробное описание здесь - http://cxem.net/medic/medic31.php Если в схеме убрать проходные конденсаторы, применить фильтры только для вырезания 50 Гц на заграждающих мостах Вина-Робинсона и «открыть входа» звуковой карте (как здесь - http://cxem.net/sound/raznoe/via_termor.php), то показания получаются более качественные и широкополосные.:)
    • YY=,Прошивки нет, печатной платы нет. И как можно сделать этот прибор? Глаз видит, да зуб не ймёт.
    • r9o-11, Техника безопасности превыше всего. А в этой конструкции нет изоляции человека от электросети. Не будьте самоубийцами.
    • erhfbytw1111, а я тоже согласен с правилами ТБ.:) Поэтому, если почитать описание конструкции – то там, после рис.12, написано, что пользоваться заземлением обязательно.:)
    • Если сеть электропитания в доме - по советским стандартам, то это надежный способ поиграть со смертью, а если по европейским, то всего-лишь вероятный. Хрен, конечно, может оказаться слаще редьки, но проверять это такой ценой не стоит. :D
    • Интересная статья, но скажите, в условиях современных, усовершенствованных моделей электрокардиографов, как вот например эти https://bimedis.ru/search/search-ite...incategory=266 , будет ли она актуальной?
    • Это плохая статья и вредная. Разве что для крайне поверхностного ознакомления с предметом. Лет 12 назад делал собственный кардиограф и начинал как раз с этой схемы. Сразу скажу, схема - чисто теоретическая, тем не менее я ее повторил и провел сотни часов, экспериментируя с ней и совершенствуя ее. Она работает очень неважно, и то только в том случае, если пациент неподвижен, например, лежит на кушетке. Т.е., для фитнеса, например, схема принципиально непригодна. Брать сигнал с запястий рук бесполезно, как предлагают в статье бесполезно - схема его почти не чувствует. Сигнал приемлемой величины получается, если снимать его с груди. При этом нужно испольовать гель для ЭКГ. Короче, схема - полный трэш, как говорят сейчас. Приводится в даташите на инструментальный ОУ не более чем в ознакомительных целях. И статья эта - такой же трэш... А вы дали ссылку на профессиональные модели. Они стоят как Боинг, зато действительно работают. А эта штука стоит копейки, и, конечно же, к использованию непригодна...
    • Плохому танцору яйца мешают. См. пост № 10 с первой страницы этой же темы.
    • Посмотрите такой... Лично собрал и испытал, для дома самое то! http://vdd-pro.ru/ru/
    • Ну так повторите эту схему и осциллографом проконтроируйте, что будет на выходе. Узнаете много нового. Схема приведена в даташите на AD620 исключительно в ознакомительных целях. Может использоваться как основа для экспериментов, не более того. Интересно, почему настоящие кардиографы стоят не одну тысячу уе, а AD620 - порядка бакса. А эта схемка на нем - бакса два-три. Как думаете, с чего бы это? Да, хамить не есть гут, я, кажется, вам не хамлю...
    • Вьюнош, кончайте по-дурному теоретизировать! Эта схема ПРАКТИЧЕСКИ работала у меня более 8 лет в составе реографического комплекса. Я тоже не хамлю. Я просто обозначаю действительность такой, какой она реально есть.