Сервопривод принцип работы. Описание устройства и принципа работы сервопривода. Принцип работы сервопривода в разных условиях

5 сентября 2011 в 17:28

Обратная связь от сервопривода или «забиваем гвозди»

  • Блог компании Амперка

Всем хабраконструкторам, привет!

Пришла мне как-то в голову дурацкая мысль: собрать девайс, который бы молотком забивал гвозди. Просто ради демонстрации работы сервопривода. Алгоритм простой: даём команду на поднятие молотка, ждём пока он поднимется, отпускаем молоток; и так пока гвоздь не будет забит. Но как узнать, что молоток поднялся и что гвоздь забит, не пользуясь дополнительными датчиками? Спросить у «глупого» сервопривода! Как именно это сделать - об этом и пойдёт речь в статье.

Что такое сервопривод? Наверное, все знают, но на всякий случай: это привод, который в отличие от мотора постоянного тока не просто крутится пока подаётся напряжение, а стремится повернуться к заданному углу и удержаться в этом положении. Угол устанавливается с помощью ШИМ (PWM) -сигнала. Сервопривод стремится к определённому положению, а следовательно должен знать своё собственное. Перед началом сборки я был уверен, что запросить текущий угол будет проще простого и это возможно «из коробки». Не тут то было. Но обо всём по порядку.

Итак, предполагаемый девайс: сервопривод с прикреплённым к нему молотком на небольшом постаменте для равновесия. Сервопривод подключается к Arduino через IO Shield, а микроконтроллер исполняет алгоритм:

  • Установить сервоприводу определённый угол для поднятия молотка
  • Бездействовать пока сервопривод не сообщит, что угол достигнут
  • Отключить питание сервопривода, чтобы молоток упал на гвоздь
  • Прочитать угол в упавшем положении
  • Если угол после падения несколько раз подряд не изменился - значит гвоздь перестал вколачиваться. Предположительно он забит - прекращаем исполнение
  • Если угол изменился, начинаем сначала
Берём исходные части:

Пилим и скручиваем:

Приступаем к написанию прошивки для Arduino… Довольно быстро становится понятно, что установить определённый угол для сервы - не проблема. В частности, это позволяет сделать стандартная библиотека Servo, которая из заданного в градусах угла формирует соответствующий PWM-сигнал. А вот с чтением - проблема: функции для этого нет.

Быстро погуглив проблему, нашёл кучу сообщений на форумах, где на этот вопрос авторитетно отвечали: «Это не возможно! Сервоприводы - это write-only устройства». Меня это привело в замешательство, я интуитивно чувствовал, что достать эти данные как-то просто можно.

Матчасть
После недолгих поисков в сети можно понять как устроена серва. Это обычный мотор постоянного тока, который соединён с выведенным шпинделем через несколько шестерней, формирующих пониженную передачу. Этот же шпиндель с внутренней стороны физически прикреплён к потенциометру (подстроечному резистору). При вращении мотора шпиндель поворачивается, поворачивается и бегунок потенциометра, выходное напряжение потенциометра меняется, мозги сервы его считывают и если напряжение достигло заданного уровня - цель достигнута, мотор отключается от питания.

То есть, у нас есть потенциометр, по сигналу с которого можно определить текущий угол. Осталось только разобрать сервопривод и подключиться в нужном месте. Разбираем:

Сразу скажу, что сервопривод с фотографии я безвозвратно сломал в процессе разборки. Не нужно было вообще выламывать плату с электроникой, достаточно просто снять заднюю крышку, которая держится на 4-х винтах. Но сразу это было не очевидно, и чтобы понять куда на плате припаян потенциометр, пришлось пожертвовать одним приводом.

Вот как припаян потенциометр на сервоприводах от DFRobot :

Нам нужен сигнал с бегунка, который меняется в зависимости от угла поворота от минимального до максимального напряжения. Берём мультиметр, вращаем шпиндель и смотрим: каким углам какой сигнал соответствует. Для моей сервы углу в 0° соответствует напряжение 0.43 В, а максимальному углу поворота в 180° соответствует напряжение 2.56 В.

Аккуратно припаиваем новый сигнальный провод.

Подключаем его к аналоговому входу A5 на Arduino. Закрываем крышку. Пишем программу:

#include // разрешене аналогого порта #define A_MAX 1024 // опорное напряжение на котором работает серва #define A_VREF 5 // предельные уровни сигнала с сервы #define A_VMIN 0.43 #define A_VMAX 2.56 Servo servo; int lastHitAngle = 0; int hitAngleMatches = 0; bool jobDone = false; /* * Возвращает текущий угол поворота сервы исходя * из сигнала с его потенциометра */ int realAngle() { return map(analogRead(A5), A_MAX * A_VMIN / A_VREF, A_MAX * A_VMAX / A_VREF, 0, 180); } void setup() { } void loop() { if (jobDone) return; // включаем серву и просим повернуться до положения 70° servo.attach(6); servo.write(70); // ждём поворота. 5° запаса на всякие погрешности while (realAngle() < 65) ; // бросаем молоток и ждём немного пока он успокоится servo.detach(); delay(1500); // запоминаем угол после падения и сопоставляем его с // предыдущим int hitAngle = realAngle(); if (hitAngle == lastHitAngle) ++hitAngleMatches; else { lastHitAngle = hitAngle; hitAngleMatches = 0; } // если угол не менялся 5 раз - мы закончили if (hitAngleMatches >= 5) jobDone = true; }

Включаем, пробуем, работает!

Что делать с полученным опытом - вариантов много: можно сделать контроллер вроде того, что используется на кораблях для установки тяги (полный вперёд / полный назад); можно использовать серву с обратной связью как элемент автономного рулевого управления какой-нибудь машины; можно много всего. Да прибудет со всеми нами фантазия!

Как работают сервоприводы и трехходовые клапаны

В этой статье я расскажу, как понять работу трехходовых клапанов и сервоприводов (электроприводов).

Что такое клапан?

Клапан - это механизм, который служит для того чтобы пропустить или не пропустить жидкость или газ из одного пространства в другое. Причем клапан может быть открыт или закрыт на определенный процент. То есть клапаны могут служить для регулировки прохода жидкостей или газа. Движение жидкости или газа осуществляется за счет разности давления между сторонами клапана.

В системе отопления существуют два самых распространенных вида клапанов:

Седельный (седловой) тип – имеет в себе втулку и непосредственно объемное тело, которое перекрывает проход.

Шаровый (или вращательный) тип – имеет тело, которое за счет вращения его приводит к открытию или закрытию прохода.

Шаровые клапана имеют самую высокую пропускную способность по отношению к седловому типу клапана. То есть в шаровых клапанах достигается меньшее гидравлическое сопротивление.

Клапаны бывают:

Двухходовые клапаны – имеют два соединения по разные стороны от клапана. Например, служат для пропуска жидкости или газа на одном контуре. То есть закрывают или открывают одну ветку системы водоснабжения или отопления.

Трехходовые клапаны – Имеют три соединения. Служат в основном для смешивания или разделения потоков жидкости или газа. Основная работа трехходового клапана необходима или для получения определенной температуры или для перенаправления потоков. В системах отопления контроль температуры нужен для того, чтобы регулировать климат в помещении. Перенаправление потоков служит обычно для перенаправления нагретого теплоносителя из системы отопления в бойлер косвенного нагрева. Существует также множество других задач…

Четырехходовые клапаны – Имеют четыре соединения. Выполняют такую же работу, как и трехходовые клапаны. Но могут быть и другие задачи.

Связь между сервоприводами и клапанами

В системе отопления существует несколько способов взаимосвязи между клапанами и элементами контроля клапанов (сервопривод и термомеханика):

1. Термостатический смеситель – обычно называют механизм, имеющий в себе сразу и клапан и устройство, которое меняет положение клапана в автоматическом режиме. Меняет в зависимости от температуры жидкости или газа. В этом устройстве есть механизм, который под действием температуры меняет силу упругости и из-за этого происходит движение клапана. В зависимости от сервопривода такой клапан не требует участия электричества. Температура регулируется вращением рукоятки. Обычно некоторые клапаны рассчитаны на небольшой диапазон температур. Максимум до 60 градусов. Могут быть исключения у других производителей.

2. Способы использовать отдельные элементы, не прибегая к сервоприводам. Например, термостатический вентиль с термоголовкой. Существуют термоголовки, которые имеют выносной датчик.

3. Клапаны и сервоприводы это отдельные элементы. Сервопривод прикрепляется к клапану и регулирует клапан.

Что такое сервопривод?

Сервопривод – это прибор, который осуществляет работу движения клапана. Клапан в свою очередь или пропускает или не пропускает жидкость или газ. Или пропускает его в определенном количестве в зависимости от давления, положения клапана и гидравлического сопротивления.

Какие бывают сервоприводы?

Существуют также термоприводы, которых тоже называют сервоприводами.

Но мы в этой статье разберем только электроприводы (сервоприводы)

Электроприводы бывают двух направлений:

Полный пакет (комплект) – это когда в устройство уже заложен полный набор функций. Например, в комплекте уже имеется контроллер температур, электрический термодатчик. Есть возможность сразу настроить его на нужную температуру. Настройка времени проверки для движения клапана. Подключается сразу к сети переменного тока 220 Вольт с частотой 50 Герц. Стандарт для России. Есть возможность настроить его в различных направлениях движения клапана шарового типа. Есть возможность настроить его на поворот 90 или 180 градусов. Можно выставить любое значение, даже 49 градусов или 125 градусов. И делается это внутри черной коробочки. Подробности ищите в инструкции.

Это я Вам рассказал один из вариантов. Конечно, существует дюжина других вариантов… Также сервоприводы различаются по скорости закрывания и открывания клапанов. Данный пример служит для плавной регулировки клапана, чтобы смешивать потоки разной температуры, чтобы получить контрольную температуру.

Такой вариант служит для перенаправления потоков теплоносителя.

Этот вариант используется для перенаправления потока теплоносителя из котла либо в направление радиаторного отопления либо на нагрев бойлера косвенного нагрева. Указанный сервопривод нуждается в сигнале 220 Вольт. Причем имеются три контакта. Один общий, а два других для перенаправления движения. Самый легкий вариант, когда нужно перенаправлять потоки в системе отопления по требованию от термореле бойлера косвенного нагрева.

Сервоприводы бывают по типу движению на седловой тип клапана или на шаровый (вращательный) тип клапана.

Если будите подбирать сервопривод к клапану, обязательно уточняйте вид движения сервопривода. Также не всегда седельный тип сервопривода совпадает ко всем типам седельных клапанов. С шаровыми вращательными вроде имеется универсальный стандарт, а вот с седельными клапанами все не так просто. Нету одного стандарта.

Электропривод как отдельное звено в автоматике.

Рассмотрим аналоговый сервопривод от Valtec арт. VT.M106.R.024

Такой сервопривод нуждается в постоянном питании 24 Вольт и управляющем сигнале от 0 до 10 Вольт.

То есть если напряжение 0 Вольт, то поворотный механизм находится в положении 0 градусов. Если 5 Вольт то 45 градусов. Если 10 Вольт то 90 Градусов.

Такому сервоприводу подается сигнал от специального контроллера, на котором есть функция подачи сигнала 0-10 Вольт. В зависимости от температуры и настройки контроллера по температуре, контроллер подает различное напряжение от 0 до 10 Вольт. Есть настройка вращения: Почасовой и против часовой. Конечно для того, чтобы найти более подробную информацию о сигналах и схеме подключения требуйте у производителя паспорта с подробной схемой управления сигналами.

Повторюсь… Что указанные в этой статье, описаны не все сигналы. Существует множество других сигналов…

Что же такое контроллер?

Контроллер – это устройство предназначено для управления сигналами для различной логической задачи. Контроллер это мозг автоматической системы. Он определяет в зависимости от программы, какие сигналы нужно подавать в тот или оной момент.

Существует различное множество контроллеров, которые выполняют различные задачи.

Для системы отопления обычно выполняются такие задачи:

Самая распространенная задача – это получить настроечную температуру теплоносителя.

В зависимости от температуры получать какой-либо сигнал (Например, отключить котел или насос). Контроллер может содержать контактное реле. То есть сухой контакт. Этим контактным реле можно задавать сигналы для получения любого напряжения. Например, 220 Вольт включать или отключать насос или подавать сигнал на сервопривод для перенаправления потоков.

Также можно использовать контроллер для отключения котла в случаях критических температур. Сигнал от контроллера отправляется на питание мощных контакторов, а те в свою очередь питают мощные электрические котлы.

Самый дешевый контроллер серии ТРМ

Продает ОВЕН у них много чего интересного можно подчерпнуть. owen.ru

Логика работы очень обширная… В будущем планирую еще написать и разработать полезный материал по системам автоматики систем отопления и водоснабжения. Записывайте свои E-mail чтобы получать уведомления о новых статьях.

Комментарии (+) [ Читать / Добавить ]

Серия видеоуроков по частному дому
Часть 1. Где бурить скважину?
Часть 2. Обустройство скважины на воду
Часть 3. Прокладка трубопровода от скважины до дома
Часть 4. Автоматическое водоснабжение
Водоснабжение
Водоснабжение частного дома. Принцип работы. Схема подключения
Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения
Расчет самовсасывающего насоса
Расчет диаметров от центрального водоснабжения
Насосная станция водоснабжения
Как выбрать насос для скважины?
Настройка реле давления
Реле давления электрическая схема
Принцип работы гидроаккумулятора
Уклон канализации на 1 метр СНИП
Схемы отопления
Гидравлический расчет двухтрубной системы отопления
Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана
Гидравлический расчет однотрубной системы отопления
Гидравлический расчет лучевой разводки системы отопления
Схема с тепловым насосом и твердотопливным котлом – логика работы
Трехходовой клапан от valtec + термоголовка с выносным датчиком
Почему плохо греет радиатор отопления в многоквартирном доме
Как подключить бойлер к котлу? Варианты и схемы подключения
Рециркуляция ГВС. Принцип работы и расчет
Вы не правильно делаете расчет гидрострелки и коллекторов
Ручной гидравлический расчет отопления
Расчет теплого водяного пола и смесительных узлов
Трехходовой клапан с сервоприводом для ГВС
Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
Конструктор водоснабжения и отопления
Уравнение Бернулли
Расчет водоснабжения многоквартирных домов
Автоматика
Как работают сервоприводы и трехходовые клапаны
Трехходовой клапан для перенаправления движения теплоносителя
Отопление
Расчет тепловой мощности радиаторов отопления
Секция радиатора
Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления
Новые насосы работают по-другому…
Регуляторы тепла
Комнатный термостат - принцип работы
Смесительный узел
Что такое смесительный узел?
Виды смесительных узлов для отопления
Характеристики и параметры систем
Местные гидравлические сопротивления. Что такое КМС?
Пропускная способность Kvs. Что это такое?
Кипение воды под давлением – что будет?
Что такое гистерезис в температурах и давлениях?
Что такое инфильтрация?

Сервомоторы (серводвигатели ) представляют собой специализированные электродвигатели, оснащенные так называемой отрицательной обратной связью, с помощью которой осуществляется точное управление всеми параметрами движения. Ее суть состоит в том, что в процессе работы этих устройств происходит постоянное сравнение выходных параметров функционирования с изначально заданными входными. Происходит это на основе управляющих сигналов, генерируемых в режиме реального времени сервоконтроллерами, имеющими в своей конструкции энкодеры, то есть датчики обратной связи.

Таким образом, в конструкцию всех современных сервомоторов входит собственно электродвигатель и управляющий блок. В совокупности они представляют собой сервоприводы, с помощью которых конструкторам технических устройств удается решать целый ряд важных задач. Наиболее часто серводвигатели (сервоприводы) применяются в тех случаях, когда требуется в автоматическом режиме осуществлять точное позиционирование одних рабочих элементов конструкции разнообразного оборудования (например, станков с числовым программным управлением, прессо-штамповочного оборудования, роботизированных сборочных конвейеров и т. п.) относительно других.

Все выпускаемые ведущими мировыми производителями серводвигатели можно разделить на две большие группы: со щетками и без щеток. В сервоприводах могут использоваться как синхронные, так и асинхронные электродвигатели, а также синхронные линейные двигатели. Кроме того, в сервоприводах могут использоваться как корпусные, так и бескорпусные электродвигатели, причем во втором варианте исполнения роль корпуса играет пакет пластин статора, что позволяет максимально эффективно использовать весь их профиль, и при этом существенно уменьшить размеры и вес устройств в целом.

Большинство современных серводвигателей, работающих по принципу обратной связи, управляется сигналами, сформированными энкодером из нескольких системных. Одной из основных особенностей сервосистем является то, что они способны усиливать выходные сигналы, которые изначально, как правило, имеют гораздо меньшую мощность, чем входные (это необходимо для того, чтобы их можно было сравнить). Таким образом, при работе сервосистем их контуры в прямом направлении передают энергию, а в обратном – информацию, требуемую для точного управления.

Основными техническими характеристиками сервомоторов являются их динамика, равномерность движения и энергоэффективность. В последние годы все более широкое применение находят синхронные серводвигатели, которые выгодно отличаются от асинхронных более высокой динамикой, возможностью длительной работы на низких скоростях без принудительного охлаждения и более высокой устойчивостью к перегрузкам. В то же самое время асинхронные двигатели, используемые в сервоприводах, имеют перед синхронными двигателями такое преимущество, как полное отсутствие пульсации при вращении.

Если еще совсем недавно синхронные электродвигатели применялись только в электроприводах большой мощности (во многих книгах экономически целесообразной мощностью называется мощность в 100 кВт и выше), при отсутствии необходимости регулировать частоту вращения и при длительном режиме работы, то в настоящее время эти, казавшиеся незыблемыми аксиомы, рушатся как карточный домик.

Сейчас современные синхронные двигатели в составе сервоприводов могут с успехом использоваться абсолютно во всех областях. И вполне может так сложится, что, как когдато частотно-регулируемый асинхронный электропривод в современных станках за очень короткое время практически полностью вытеснил двигатели постоянного тока из их традиционных областей применения, так и синхронный сервопривод может уже в самом ближайшем будущем стать эффективной заменой уже вполне привычном нам асинхронным электродвигателям, работающим в комплекте с частотными преобразователями. К этому есть все предпосылки. Единственное, что пока сдерживает триумфальное шествие синхронных сервоприводов - это их цена.

Давайте разберемся, чем так привлекательны современные сервоприводы использующие синхронные электродвигатели.

Что такое сервопривод

Сервопривод - это система привода, которая в широком диапазоне регулирования скорости обеспечивает динамичные, высокоточные процессы и обеспечивает хорошую их повторяемость. Это система, предназначенная для отработки момента, скорости и позиции с заданной точностью и динамикой. Классический сервопривод состоит из двигателя, датчика позиции и системы управления, имеющей три контура регулирования (по позиции, скорости и тока).

Где применяется сервопривод

Слово "серво" произошло от латинского слова "servus", что переводится как слуга, раб, помощник. В машиностроительных отраслях они были преимущественно вспомогательными приводами (приводы подач в станках, приводы роботов и т.п.). Однако сегодня ситуация изменилась, теперь и главные приводы реализуются с использованием сервотехники.

В настоящее время, сервоприводы применяются там, где недостаточно точности регулирования обычных общепромышленных преобразователей частоты. Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Сервоприводами оснащаются прецизионные системы поддержания скорости и позиционирования промышленных роботов и высокоточных станков. Сервоприводы также устанавливаются на координатно-сверлильных станках, на различных технологических транспортных системах, на различных вспомогательных механизмах и др. В приводах подач современных станков с ЧПУ обеспечивающих перемещения рабочих органов станка, на сегодняшний день применяются в основном шаговые двигатели либо сервоприводы.

Достоинства сервопривода:

1. Плавность и точность перемещений доступны даже на низких скоростях, разрешающая способность может выбираться пользователем в зависимости от решаемой задачи
2. Бесшумность работы
3. Надежность и безотказность, а следовательно, возможность использовать его в ответственных, не терпящих отказа устройствах.
4. Легкость монтажа конструкции.

Недостатки сервопривода:

1. Высокая стоимость
2. Сложность настройки, которая иногда делает применение сервопривода необоснованным.

То есть, сервоприводы на базе синхронного электродвигателя (серводвигателя), в настоящее время, наиболее целесообразно применять там, где требуется привод с высокой точностью и большой максимальной скоростью. Двигатель такого привода имеет встроенный датчик положения вала сигнал с которого подаётся на серво усилитель, а это существенно повышает точность и динамику сервопривода. Для создания одно или много координатных систем позиционирования используется специальный контроллер позиционирования.

Синхронные серводвигатели - это трехфазные синхронные электродвигатели с возбуждением от постоянных магнитов и датчиком положения ротора. Отличительная особенность синхронных серводвигателей - высокая выходная мощность при любой скорости в сочетании с небольшими размерами. Их основным достоинством является очень низкий момент инерции ротора относительно крутящего момента. Это позволяет реализовать очень высокое быстродействие. Достижимо время разгона на номинальную частоту вращения за десятки миллисекунд и реверс с полной скорости в пределах одного оборота вала двигателя.

Устройство и принцип работы синхронных электродвигателей с датчиком положения ротора очень хорошо рассмотрены в статье д.т.н. В. Понкратова "Вентильный электропривод: от стиральной машины до металлорежущего станка и электровоза" ("Электронные компоненты", #2 2007).

Серводвигатели могут различаться формой, размерами и конструкцией - от больших низкоскоростных прямопри-водных роторных двигателей с большим крутящим моментом до компактных устройств с малоинерционым ротором, обеспечивающим оптимальный разгон и торможение, безкорпусных двигателей, линейных двигателей, создающих большую тяговую силу при огромных ускорениях и скоростях.

Современные качественные серводвигатели выпускаются большим количеством производителей за рубежем. Фактически, каждая фирма выпускающая частотные преобразователе имеет в своем каталоге и ряд моделей севроприводов и севрводвигателей для них. Наииболее популярные модели синхронных серводвигателей выпускают немецкая LENZE (один из европейских лидеров в технологии привода и комплектных систем управления), Siemens, OMRON, Mitsubishi Electric, DELTA ELECTRONIСS и т. д.. На выпуске оригинальных моделей сервоприводов специализируются такие компании, как, Fagor Automation, Sew-Eurodrive, Rockwell Automation, Emerson Control Techniques, Baldor Electric и многие другие.

Управление серводвигателем осуществляется при помощи специального блока, который получает сигналы от датчика обратной связи, встроенного в сервомотор. Блок управления обычно имеет множество опций для работы от ПК, встроенные интерфейсы позволяют использовать его в промышленности. Многочисленные настройки и нюансы работы обычно загружаются в привод через ПК. Далее возможна автономная работа и управление без компьютера.

Конкретный пример: сервоприводы семейства ‘Position Servo’ компании Lenze построены по принципу «все в одном». От простого управления моментом до возможностей встроенного контроллера PLC. Возможны различные режимы управления: моментом, скоростью вращения, ведущим-ведомым с электронным редуктором. Перегрузочная способность – 300% от номинального тока в течение 2 секунд. Высокоскоростной обмен данными осуществляется по интерфейсам Ethernet или CANopen, датчики обратной связи – энкодер или резольвер. Сервоприводы Position Servo весьма компактны – привод на ток 12 А имеет габаритные размеры всего лишь 115 мм х 190 мм х 190 мм. По цене – сервопривод с синхронным вентильным двигателем на 3460 Вт, 3000 об.\мин. (макс. 5000 об.\мин.), степени защиты IP65 стоит 2300 рублей.

Несмотря на то, что автоматизированные системы управления вошли в наш быт, далеко не всем известно про сервопривод. Что это такое? Он представляет собой систему, реализующую высокоточные динамичные процессы. Устройство состоит из двигателя, датчика и блока управления, обеспечивающих отработку требуемых скорости, позиции и момента.

К сервоприводам относятся различные усилители и регуляторы, но термин больше применяется в автоматических системах при обозначении электропривода с отрицательной обратной связью по положению. Основой является корректировка работы электродвигателя при подаче управляющего сигнала.

Как устроен сервопривод

Что это такое, легче понять, если рассмотреть конструкцию и работу устройства. Электромеханический узел сервопривода размещается в одном корпусе. Его характеристиками являются конструкция, рабочее напряжение, частота и крутящий момент. По показаниям датчика от контроллера или микросхемы поступает сигнал на корректировку работы серводвигателя.

Простейшее устройство представляет собой электродвигатель постоянного тока, схему управления и потенциометр. Конструкция предусматривает наличие редуктора, чтобы получить заданную скорость перемещения выходного вала.

Схема управления

Подключение сервопривода можно производить с помощью простой схемы с таймером NE555 в режиме генератора импульсов.

Положение вала двигателя определяется шириной импульса, которая устанавливается переменным резистором R 1 . Сигналы должны подаваться генератором непрерывно, например каждые 20 мсек. При поступлении команды (перемещение движка резистора) выходной вал редуктора поворачивается и устанавливается в определенное положение. При внешнем воздействии он будет сопротивляться, пытаясь оставаться на месте.

Механическое регулирование системы отопления

Сервопривод - что это такое? Это хорошо понятно по его работе в системе теплого пола как приспособления, регулирующего поток теплоносителя. Если это делать вручную, придется непрерывно крутить вентили на коллекторах, поскольку расход горячей воды, подаваемой в обогревающие контуры, является переменной величиной.

Для автоматического регулирования систем теплого пола применяются разные устройства. Простейшим является термоголовка, устанавливаемая на регулирующий клапан. Она состоит из ручки механической настройки, пружинного механизма и сильфона, соединенного с толкателем. При повышении температуры внутри сильфона нагревается толуол, который при этом расширяется и давит на шток клапана, закрывая его. Поток теплоносителя перекрывается, и он начинает остывать в отопительном контуре. При охлаждении до заданного уровня сильфон снова открывает клапан, и новая порция горячей воды поступает в систему.

Механические регуляторы устанавливаются на каждый контур теплого пола и настраиваются вручную, после чего температура автоматически поддерживается постоянной.

Электрический сервопривод для отопления

Более совершенным устройством является электрический сервопривод для отопления или теплого пола. Он включает систему взаимосвязанных механизмов, обеспечивающих поддерживание температуры воздуха в помещении.

Сервопривод для отопления работает вместе с термостатом, который монтируется на стену. Кран с электроприводом устанавливается на подающей трубе, перед коллектором водяного теплого пола. Затем производится подключение, подача питания 220 В и установка на терморегуляторе заданного режима. Система снабжается двумя датчиками: один - в полу, а другой - в комнате. Они передают команды на термостат, который управляет сервоприводом, соединенным с краном. Точность регулирования будет выше, если установить еще прибор на улице, поскольку климатические условия постоянно меняются и влияют на температуру в помещениях.

Сервопривод управляет двух- или трехходовым клапаном. Первый изменяет температуру теплоносителя в системе отопления. Трехходовой клапан с сервоприводом поддерживает температуру постоянной, но изменяет расход горячей воды, подаваемой в контуры. Од содержит 2 входа для горячей жидкости (подающий трубопровод) и холодной (обратка). Выход всего один, через него подается смесь с заданной температурой. Клапан обеспечивает смешивание потоков, регулируя таким путем подачу тепла в коллекторы. Если один из входов открывается, то другой начинает прикрываться. При этом расход на выходе остается постоянным.

Сервопривод крышки багажника

Современные автомобили большей частью выпускаются с автоматическим открыванием и закрыванием багажника. Для этого требуется установка сервопривода. Производители применяют 2 способа, чтобы обеспечить авто подобной опцией. Надежным вариантом является пневмопривод, но он стоит дороже. Электропривод управляется несколькими способами на выбор:

  • с пульта;
  • кнопка на дверной панели водителя;
  • ручка на крышке багажника.

Ручное открывание не всегда удобное, особенно зимой, когда замок может замерзнуть. Сервопривод багажника совмещается с замком, что дополнительно защищает авто от несанкционированного проникновения.

Устройства применяются на иномарках, но при желании их можно установить на отечественных моделях. Предпочтительно использовать привод с электродвигателем.

Есть еще устройства с магнитными пластинами, но они сложней и применяются реже.

Самыми дешевыми являются электроприборы, предназначенные только для открывания. Можно подобрать привод багажника, состоящий из электродвигателя с инерционным механизмом, отключающийся при возникновении препятствия перемещению. Дорогие модели состоят из устройства подъема и опускания крышки, доводчика запорного механизма, контроллера и датчиков.

Установка и настройка сервопривода крышки багажника производятся на заводе, но простые устройства могут быть установлены своими руками.

Характеристики сервоприводов

Устройства выпускаются аналогового и цифрового типов. Приводы внешне ничем не отличаются, но различие между ними существенное. Последние обладают более точной отработкой команд, поскольку управление производится микропроцессорами. Для сервоприводов пишутся и вводятся программы. Аналоговые устройства работают от сигналов микросхем. Их преимуществами являются простое устройство и меньшая цена.

Основными параметрами для выбора являются следующие:

  1. Питание. Подача напряжения производится по трем проводам. По белому передают импульс, через красный - рабочее напряжение, черный или коричневый является нейтральным.
  2. Размеры: большие, стандартные и микроустройства.
  3. Скорость. От нее зависит, за какой промежуток времени вал повернется на угол 60 0 . Недорогие устройства обладают скоростью 0,22 сек. Если требуется высокое быстродействие, она составит 0,06 сек.
  4. Величина момента. Параметр является приоритетным, поскольку при малом вращающем моменте управление затрудняется.

Как управлять цифровым сервоприводом?

Приводы подключаются к программируемым контроллерам, среди которых хорошо известен Arduino. Подключение к его плате производится тремя проводами. По двум подается питающее напряжение, а по третьему - управляющий сигнал.

Инструкция сервопривода с цифровым управлением предусматривает наличие в контроллере простой программы, позволяющей считывать с потенциометра показания и переводить их в число. Затем оно преобразуется в команду передачи на поворот вала сервопривода в заданное положение. Программа записывается на диске, а затем передается на контроллер.

Заключение

Мы подробно рассмотрели сервопривод. Что это такое, станет понятным, когда потребуется автоматизация различных процессов, где требуется поворачивать и удерживать в заданном положении вал электродвигателя. Устройства выпускаются аналоговые и цифровые. Последние нашли более широкое применение благодаря высокому уровню разрешения, большой мощности и точности позиционирования.