Что собой представляет дистилляция спирта. Общая теория дистилляции: что такое дистилляция, технология перегонки, простейший дистиллятор Ректификация: описание и назначение

Перегонка – процесс, включающий частичное испарение разделяемой смеси с последующей конденсацией образующихся паров, осуществляемые однократно или многократно. В результате конденсации получают жидкости, состав которых отличается от состава исходной смеси.

Разделение перегонкой основано на различной летучести компонентов смеси при одной и той же температуре.

В простейшем случае смеси являются бинарными. Получаемый при их перегонке пар содержит относительно большое количество наиболее летучего (низкокипящего) компонента (НКК ), а неиспарившаяся жидкость обогащается труднолетучим (высококипящим) компонентом (ВКК ).

Жидкость, образующаяся в результате конденсации паров, называется дистиллятом (ректификатом). А неиспарившаяся жидкая часть исходной смеси называется остатком.

Различают два вида перегонки – простая перегонка (дистилляция) и ректификация.

Простая перегонка – процесс однократного частичного испарения жидкой смеси и конденсации образующихся паров. Простая перегонка используется только для разделения смесей, летучести компонентов которой существенно различаются. Метод используется для предварительного (грубого) разделения смесей и для очистки сложных смесей от нежелательных компонентов. Для более четкого разделения используют ректификацию.

Ректификация – процесс многократного частичного испарения жидкости и конденсации паров. Процесс протекает путем контакта потоков жидкости и пара, имеющих различную температуру и осуществляется в аппаратах колонного типа. В результате такого контакта пары, покидающие аппарат, представляют собой практически чистый НКК, а остаток представляет собой практически чистый ВКК.

Простая перегонка

А) Перегонку проводят путем постепенного испарения жидкости, находящейся в т.н. перегонном кубе. Образующиеся при этом пары отводятся и конденсируются. Процесс может осуществляться периодически или непрерывно. При периодическом процессе с течением времени уменьшается количество остатка в кубе и меняется состав дистиллята и остатка. В этой связи отбирают несколько фракций дистиллята, имеющие различный состав. Простая перегонка при этом называется фракционной или дробной.

Простую перегонку проводят при атмосферном давлении или под вакуумом. Вакуум позволяет снизить температуру кипения и используется для разделения термически нестойких смесей.

Б) Перегонка с водяным паром. Используется также для понижения температуры кипения смеси. Если компоненты смеси не растворимы в воде, то ее используют в качестве дополнительного компонента, вводимого в куб аппарата в виде острого пара. Метод используют для разделения смеси веществ с температурами кипения более 100 0 С.

Аппарат в этом случае обогревается глухим паром через рубашку, а в нижнюю часть подают острый перегретый пар; он играет роль теплоносителя с одной стороны и способствует снижению т.кип. – с другой. Образующиеся пары охлаждаются и конденсируются и направляются в сепаратор для разделения воды и дистиллятного продукта; дистиллят затем поступает в сборник продукта.

Дистилляция (от лат. distillatio - стекание каплями) - перегонка, разделение жидких смесей на отличающиеся по составу фракции. Процесс основан на различии температур кипения компонентов смеси.

Хорошо всем известный пример использования дистиллированной воды - заливка в аккумуляторы автомобиля. В быту же дистилляторы не нашли широкого применения.

И дело здесь совсем не в непригодности дистиллированной воды для питья. Вредность такой воды из-за отсутствия в ней «полезных» минеральных веществ - это, скорее, укоренившийся предрассудок. Дистиллированная вода действительно имеет невысокие вкусовые качества, часто ее вкус характеризуют как «затхлый». Однако с точки зрения влияния на здоровья нет никаких свидетельств того, что дистиллированная вода непригодна для питья.

Ограниченность же применения дистилляторов в быту объясняется следующими причинами:

Во-первых, бытовые дистилляторы имеют малую производительность (около одного литра в час).

Во-вторых, в бойлере дистиллятора постоянно образуются осадок, накипь и т.п., которые надо вычищать.

В-третьих, дистилляторы излучают тепло и в довольно значительных количествах.

В-четвертых, дистилляторы потребляют значительное количество электроэнергии, что для многих применений делает их использование менее рентабельным, чем обратный осмос (способ очистки воды, при котором вода, проходит через специальную полупроницаемую мембрану) или деминерализация на ионообменных смолах.

ДИСТИЛЛЯЦИЯ (лат. destillatio стекание каплями; син. перегонка ) - процесс очистки жидкостей от растворенных в них нелетучих примесей или разделения смесей жидкостей на фракции, отличающиеся по составу, путем испарения и последующей конденсации образующихся паров; широко применяется в фармакологической и лабораторной практике.

Различают простую и фракционированную Дистилляцию. Простая Дистилляция заключается в одноразовом испарении жидкости с непрерывным отводом паров и их последующей конденсацией. Получающийся конденсат называют дистиллятом, а неупарившуюся часть жидкости - кубовым остатком. Получить чистый легко летучий компонент простой Д. обычно не удается. Простую Д. целесообразно применять лишь в тех случаях, когда разница в температурах кипения жидкостей, входящих в состав смеси, достаточно велика. Фракционированная Д. заключается в многократном повторении процесса испарения и конденсации. Дистилляты разного состава собирают в несколько приемников (рис. 1). Необходимо отметить, что дистиллят в приемнике I более богат низкокипящим компонентом, в приемнике II содержание этого компонента ниже и т. д. Каждый из этих дистиллятов (фракций) в свою очередь вновь подвергают перегонке.

Для увеличения эффективности разделения и уменьшения числа перегонок используют так наз. дефлегматоры (рис. 2). Сущность действия дефлегматора состоит в том, что пар конденсируется в нем частично и образующийся при этом дистиллят возвращается в камеру испарения. Оставшийся в дефлегматоре пар обогащается легко летучим компонентом, т. к. в первую очередь конденсируются труднолетучие компоненты.

В промышленности процесс фракционированной Д. автоматизирован и осуществляется в специальных аппаратах, называемых ректификационными колоннами (см. Ректификация). Некоторые смеси жидкостей не разделяются путем Д. на составные компоненты. Нераздельнокипящие смеси называют азеотропами (см. Азеотропные смеси). Жидкости, образующие такие смеси, можно разделить Д. на компонент, находящийся в избытке в азеотропе, и азеотроп.

Для очистки веществ, не смешивающихся с водой и имеющих высокие температуры кипения, при которых эти вещества могут разлагаться, применяют Д. с водным паром. Такую Д. осуществляют путем пропускания перегретого водяного пара через перегоняемую жидкость.

Д. с водяным паром находит широкое применение в токсикол, исследованиях (см. ниже), в фармакол. и парфюмерной промышленности для получения эфирных масел и ароматных вод.

Если перегоняемое вещество имеет слишком высокую температуру кипения, применяют Д. в вакууме, к-рая основана на понижении температуры кипения при уменьшении величины давления над перегоняемой жидкостью.

Для очистки и разделения веществ с большим мол. весом (массой), разлагающихся даже при вакуум-дистилляции, используют молекулярную Д. В этом случае перегонка производится при давлении 10 -3 -10 -4 мм рт. ст. и температуре более низкой, чем температура кипения перегоняемых веществ. Расстояние от поверхности испарения до поверхности конденсации должно быть меньше средней длины свободного пробега молекул в данных условиях. Температура поверхности конденсации должна быть на 100° ниже температуры поверхности испарения. При молекулярной Д. жидкость не кипит, а испаряется с поверхности. Поэтому для устранения перегрева глубинных слоев жидкости прибор должен иметь такую конструкцию, чтобы толщина слоя перегоняемой жидкости была возможно меньшей. Так, при перегонке рыбьего жира толщина жидкой пленки составляет 0,001-0,005 мм, что соответствует 400-2000 мономолекулярным слоям, а время его испарения составляет ок. 0,001 сек. Изменение состава пара по отношению к составу жидкости определяется различными скоростями испарения перегоняемых компонентов.

При молекулярной Д., в отличие от других видов Д., можно разделять смеси компонентов, имеющих одинаковые температуры кипения.

Молекулярная Д. находит широкое применение при очистке и разделении термически нестойких органических веществ, напр, для выделения витаминов из рыбьего жира и растительных масел.

Дистилляция при судебно-токсикологических исследованиях

Д. с водяным паром применяется в химико-токсикол. анализе для выделения из биол, объектов различных летучих веществ: синильной и некоторых карбоновых к-т, спиртов, эфиров, альдегидов, кетонов, галогенопроизводных, фенолов и фенолокислот, ароматических углеводородов, элементорганических соединений, производных нитробензола и анилина, летучих соединений фосфора, алкалоидов и других веществ.

С целью предотвращения потерь синильной к-ты в процессе такой перегонки первую фракцию дистиллята собирают в приемник, содержащий р-р сильной щелочи, а вторую и последующие фракции - в отдельные приемники. Путем Д. с водяным паром из внутренних органов трупов, биол, жидкостей, рвотных масс, пищевых продуктов и других вещественных доказательств изолируются как хорошо растворимые в воде, так и практически нерастворимые в воде вещества. Этот прием особенно выгодно использовать при изолировании веществ, кипящих при высокой температуре или разлагающихся в момент кипения. При Д. с водяным паром летучими становятся и те вещества, которые растворяются в воде в различных соотношениях.

В судебно-токсикол. исследованиях находит также применение и фракционированная Д.

Аквадистилляторы

Аквадистилляторы (АД; прежнее название - перегонные аппараты) представляют собой установки, предназначенные для производства апирогенной воды (см. Вода апирогенная). Принцип конструкции у различных АД общий: исходная вода нагревается, доводится до кипения, испаряется, а пар затем конденсируется и охлаждается.

В 19 в. для Д. использовали луженые перегонные кубы, которые непрерывно совершенствовались. В результате к середине 20 в. перегонные аппараты циклического действия и бидистилляторы были заменены оборудованием непрерывного действия, и их дальнейшее совершенствование проводится по пути создания АД, расходующих меньшее количество тепла и исходной воды, имеющих эффективное сепарирующее устройство, снабженных устройствами для создания асептических условий сбора, хранения и подачи на рабочие места полученной воды, элементами автоматизации процессов получения, хранения и стерилизации апирогенной воды. Современные АД являются комплексными установками, состоящими из водоподготовителей, сепараторов, конденсаторов, холодильников, аллонжей (переходные трубки к сборнику) и сборников.

Большинство выпускаемых АД содержит встроенный в испаритель конструктивный элемент для нагревания воды; такие АД называются автономными. АД, не имеющие встроенного в испаритель конструктивного элемента для нагревания воды, называются зависимыми.

АД могут содержать несколько последовательно действующих испарителей; такие АД называются многоступенчатыми (частные случаи многоступенчатых АД - двухступенчатые, трехступенчатые и т. д.). Наибольшее распространение в мед. практике получили одноступенчатые АД. В большинстве АД конденсация пара производится при атмосферном давлении. Такие АД называются атмосферными.

АД, конденсация пара в которых осуществляется в вакууме, носят название вакуумных. В компрессионных АД конденсация пара производится при избыточном давлении. В отдельных ступенях многоступенчатых АД конденсация пара может производиться при различном давлении. Если конденсация пара в одной ступени АД осуществляется при атмосферном давлении, а в другой - в вакууме, то такие АД называются атмосферно-вакуумными. В том случае, когда конденсация пара на разных ступенях производится последовательно при избыточном и атмосферном давлении, АД называются компрессионно-атмосферными.

В связи с тем, что состав исходной воды различен, АД снабжаются устройствами для проведения водоподготовки - водоподготовителями. На практике применяются магнитные водоподготовители, подготовка воды в которых производится под действием магнитного поля; электрохим. водоподготовители, подготовка воды в которых осуществляется с помощью электрического тока и различных хим. соединений, и хим. водоподготовители, обработка воды в которых производится хим. соединениями.

Нагрев и испарение воды в АД производится в испарителях. Пар, образующийся в испарителях, всегда содержит нек-рое количество жидкости в виде капель, что приводит к загрязнению апирогенной воды веществами, содержащимися в исходной воде. Основными причинами образования такого пара являются разрыв пузырьков на поверхности зеркала испарения, дробление жидкости и вспенивание исходной воды. При этом образуется небольшое количество относительно крупных и большое количество мелких капель, поднимающихся на большую высоту. Борьба с крупными каплями ведется с помощью правильного выбора высоты парового пространства и величины зеркала испарения в испарителе. Мелкие капли, уносимые паром, извлекаются из него в сепараторах АД.

На практике применяются центробежные, инерционные, гравитационные и комбинированные сепараторы. В центробежных сепараторах создается вращательное движение сепарируемого пара и под действием ускорений частицы влаги интенсивно выделяются из потока пара. Инерционные сепараторы имеют большую поверхность соприкосновения очищаемого пара со стенками или насадкой сепаратора, на которой и оседают капли воды. В гравитационных сепараторах капли воды выпадают из потока пара под действием силы тяжести. В комбинированных сепараторах используются два или более принципа сепарации, а сама сепарация обычно производится ступенчато.

Очищенный в сепараторе пар поступает в конструктивные элементы АД, предназначенные для конденсации и охлаждения апирогенной воды. На практике применяются конденсаторы и холодильники различных типов: с поверхностью теплообмена, образованной стенками аппарата; погружные пластинчатые с гладкими и ребристыми стенками.

Сбор и хранение апирогенной воды производится в специальных сборниках. Обычно используют сборники двух типов: с конструктивным элементом для нагрева и охлаждения апирогенной воды и без него.

Установлен параметрический ряд АД, используемых мед. учреждениями. АД должны иметь производительность 1 - 1,5; 4; 10; 20 л/час и т. д.

Определен параметрический ряд сборников - б, 16, 40, 100 и 250 л.

Библиография: Багатуров С. А. Основы теории и расчета перегонки и ректификации, М., 1974, библиогр.; Воскресенский П. И. Техника лабораторных работ, М., 1973; Жаров В. Т. и Серафимов Л. А. Физико-химические основы дистилляции и ректификации, Л., 1975, библиогр.; Касаткин А. Г. Основные процессы и аппараты химической технологии, М., 1971, библиогр.; Цибиков В.Б., Шведов Ю.А. и Белова О. И. Способы подготовки воды и их применение для получения дистиллированной воды, Мед. техника, № 5, с. 36, 1971; Швайкова М. Д. Токсикологическая химия, с. 65, М., 1975; Шведов Ю. А. и Богоудинов Р. Д. Деминерализатор, Мед. техника, № 1, с. 35, 1969; Шведов Ю.А., Мееркоп Г.Е. и Соколова А. Ф. Сборники для хранения дистиллированной или обессоленной воды, Фармация, № 4, с. 60, 1972.

В. А. Попков; А. Ф. Рубцов (суд.), Ю А. Шведов (техн.).

Основные виды концентрирования, очистки и разделения веществ.

В настоящее время существует значительное количество методов разделения, концентрирования и очистки веществ и создаются все новые в связи с актуальностью задач получения и анализа суперчистых материалов с заданными свойствами, например, для наноэлектроники, полупроводниковой и вычислительной техники, биологических препаратов нового поколения. Наиболее распространенными из них являются:

Ø методы испарения (перегонка, упаривание и отгонка);

Ø озоления;

Ø экстрагирования;

Ø осаждения и соосаждения;

Ø управляемой кристаллизации;

Ø сорбционные и ионообменные методы;

Ø электрохимические методы.

Применение каждого из методов очистки определяется как выбранной методикой анализа, так и физико-химическими свойствами системы (агрегатное состояние компонентов, химическая и термическая устойчивость веществ, содержание определяемого компонента в исходной пробе и т. д.). Как правило в основе процесса очистки лежит либо химическая реакция (реакции осаждения, ионного обмена, окисления), либо физический процесс (диффузия, адсорбция и десорбция, испарение и конденсация) (рисунок 2.1).

Рисунок 2.1 – общие принципы и способы разделения компонентов на фазы (концентрирования и разделения веществ).

Учитывая многообразие способов концентрирования веществ, поясним значение некоторых терминов.

Разделение –это операция, в результате которой компоненты, входящие в исходную смесь, отделяются друг от друга.

Концентрирование – это процесс, в результате которого содержание определяемого или очищаемого компонента в веществе повышается, по сравнению с его исходным содержанием. Концентрирование может быть абсолютным и относительным .

Абсолютное концентрирование – это перевод микрокомпонента (примеси) из исходного образца большого объема или массы, в новый образец с меньшим объемом (массой). Такое концентрирование происходит при процессах экстрагирования, осаждения, перегонки и т. д.



Относительное концентрирование (обогащение) заключается в увеличении содержания интересующего компонента в исходном образце по отношению к другим компонентам или растворителю. Например, при упаривании раствора или озолении пробы.

Испарение – процесс перехода вещества из жидкой или твердой фазы в газообразную, который осуществляется тем или иным путем. Методы испарения можно реализовать в виде перегонки и отгонки (упаривания, выпаривания и возгонки).

Перегонка – это разделение жидких смесей, основанное на переводе летучего компонента в газовую фазу путем испарения его и последующей конденсацией.

Конденсат – продукт, образующийся при охлаждении газовой или паровой фазы.

Отгонка – удаление летучих компонентов из твердых веществ (порошков, кристаллов) или растворов при нагревании.

Упаривание – метод отгонки, в процессе которого происходит удаление части растворителя и летучих примесей в следствии длительного нагрева пробы. При упаривании часть основы (обычно растворителя) остается в образце.

Выпаривание (до суха) сопровождается полным удалением растворителя и летучих компонентов из исходного образца.

Возгонка или сублимация – это процесс, при котором твердое вещество переводят в газовую фазу минуя стадию плавления. Продукт конденсации, образующийся в процессе возгонки называют сублиматом .

Озоление – метод, при котором исходный образец путем нагрева переводят в минеральный остаток, называется золой . Его используют обычно при анализе различных веществ на содержание микроэлементов или общего количества органических веществ (анализ почв). Различают сухое озоление , когда пробу вещества калят в тигле при нагреве не выше 500ºС, и влажное (мокрое) . При влажном озолении исходную навеску вещества помещают в тигель и обрабатывают либо кислотами, либо ще6лочами, а образующиеся летучие продукты удаляются в процессе ее прокаливания. Озоление можно рассматривать как частный случай минерализации пробы.

Метод перегонки (дистилляция)

Перегонка (дистилляция) относится к группе методов, базирующихся на термическом испарении веществ, и применяется для очистки воды и разделения органических жидкостей с относительно близкими температурами кипения . Она основана на различии в летучести веществ . Сущность процесса перегонки заключается в том, что в испарителе смесь веществ (обычно раствор) нагревают выше температуры кипения наиболее летучего компонента. Образовавшаяся таким образом газовая (паровая) фаза имеет более высокую концентрацию летучего компонента, по сравнению с исходным раствором. Эту фазу затем охлаждают (конденсируют) в холодильнике, получая на его выходе конденсат (жидкость либо твердое вещество), обогащенный наиболее летучим соединением. При необходимости процесс повторяют до тех пор, пока не будет достигнута необходимая степень разделения или концентрирования компонентов.

Процесс перегонки можно охарактеризовать количественно, рассчитав коэффициент распределения D . Пусть имеется 2-х компонентная идеальная система А + В (отсутствует межмолекулярное взаимодействие, а компоненты химически инертны по отношению друг к другу). При нагревании такой системы до температуры испарения, например компонента А , получим газовую фазу, которая находится в равновесии с оставшимся раствором. При этом газовая фаза обогатится более летучим компонентом А , а в оставшемся растворе возрастет соответственно концентрация компонента В. Молярные доли компонентов А и В в обеих фазах связаны соотношением:

где у А и у В – молярные доли в газовой фазе; a = 1/D – коэффициент разделения (относительная летучесть); х А и х В – молярные доли компонентов в жидкой фазе. Учитывая, что x + y = 1 – сумма молярных долей компонентов в исходном растворе, и x A + x В = x; y A + y В = y, то коэффициент распределения D можно вычислить из соотношения:

D = . (2.2)

Формула (3.2) может быть преобразована с помощью уравнения Клаузиуса-Клапейрона в выражение для приближенного вычисления летучести компонентов:

lga = 8,9 . (2.3)

где Т кип (А) и Т кип (В) – температуры кипения разделяемых компонентов А и В соответственно. Из формулы 2.3 следует, что чем выше разница в температурах кипения разделяемых компонентов, тем выше степень их разделения в одностадийном процессе.

В пищевой, фармацевтической и химической промышленности дистилляция - это один из способов водоподготовки, который применяется наряду с ионным обменом. Для аналитических целей пригодна вода либо однократной очистки (дистиллят), либо двукратной – бидистиллят . Одностадийная дистилляция обычно используется для разделении веществ со значительной разницей в температурахкипения . При этом анализируемым компонентом может обогащаться как жидкая фаза, остающаяся после дистилляции, так и газовая фаза, а значит и образующийся конденсат Этот метод непригоден для азеотропных смесей (системы, в которых состав газовой и жидкой фазы одинаковы и находятся в состоянии равновесия). В этом случае полного разделения компонентов достичь невозможно.

Метод ступенчатой дистилляции (ректификации) осуществляют в специальных колоннах и используют при разделении на фракции многокомпонентных гомогенных смесей жидкостей с достаточно близкими температурами кипения . Он широко распространен в перерабатывающей промышленности, в частности, при получении продуктов перегонки нефти, таких как: петролейные эфиры, бензины, керосины и масла.

При очистке продуктов с низкой термической устойчивостью, присущей для некоторых органических и биологически активных веществ, осуществляют молекулярную дистилляцию - низкотемпературная дистилляция в высоком вакууме , которую проводят при остаточном давлении 1,3 – 1,8 кПа и ниже. В этом случае процесс разделения и концентрирования может протекать либо без нагрева, либо при температурах, значительно ниже комнатной. Молекулярная дистилляция используется при производстве фармацевтических препаратов и биоактивных пищевых добавок.

Методы отгонки.

Отгонку делят на простую или выпаривание и возгонку (сублимацию ). При выпаривании вещества удаляются в форме готовых летучих соединений. Осуществить выпаривание можно различными способами: нагреванием снизу (водяные и песчаные бани); сверху (инфракрасные лампы), используя сушку под вакуумом (лиофильная сушка ) - для исключения потерь связанной влаги или термически неустойчивых компонентов. Выпаривание позволяет к примеру, значительно повысить концентрацию солей в растворе (получение рапы).

Частный случай выпаривания – упаривание до суха . Этот прием применяют, когда необходимо или значительно повысить концентрацию нелетучего компонента, или растворитель и летучие примеси мешает проведению анализа. При упаривании вещество сначала длительно осторожно нагревают (выпаривают) до образования практически сухого остатка. Иногда применяют дополнительно прокаливание сухого остатка при более высокой температуре, чтобы удалить следовые количества растворителя. Качество выпаривания можно контролировать по изменению массы сухого остатка.

Отгонка будет более эффективна, если на вещество воздействовать еще и химически с помощью реагентов – сухая и мокрая минерализация . Минерализацию образцов широко используют в элементном органическом анализе. Пробу, органическую или биологическую, помещают в трубчатую печь или автоклав, через которую продувают воздух или кислород. В процессе окисления (сжигания) ее образуются летучие соединения такие, как CO, CO 2 , N 2 , SO 2 , SO 3 , которые легко могут быть определены с помощью специальных приборов – газоанализаторов или, после селективного поглощения (адсорбции ) газов, по стандартной методике. При сухой минерализации погрешность анализа выше, чем при мокрой . Это обусловлено потерями легколетучих компонентов и отчасти нелетучих, захватываемых каплями образовавшегося аэрозоля. Снижения потерь вещества при сухой минерализации можно добиться при использовании автоклавов (устройства для нагрева при повышенном давлении).

Мокрая минерализация заключается в воздействии на пробу минеральных кислот или щелочей в комплексе с окислителями (H 2 O 2 , KClO 3 , KMnO 4), растворение устойчивых соединений проводят в автоклавах при нагреве и повышенном давлении, а определение – в специальных камерах, соединенных с анализатором. Эффективно также применение ряда твердых, жидких и газообразных минерализаторов, способных селективно переводить некоторые труднорастворимые вещества в газовую фазу (галогены и галогеноводороды, CCl 4 , AlCl 3 , BBr 3).

Сублимация это вариант отгонки, который заключается в разделении веществ путем перевода одного или нескольких компонентов при нагревании в газовую фазу минуя жидкую . Для этой цели применяют устройства - сублиматоры , состоящие из испарителя и зоны сублимации с более низкой температурой (вплоть до отрицательных). В зоне сублимации при конденсации газов вновь образуется твердое вещество (сублимат). Этот метод можно использовать в том случае, когда разделяемые компоненты, например, плохо растворимы или трудно плавятся. Ограниченное применение сублимации обусловлено малым количеством пригодных для этой цели матриц. Примером сублимационной очистки в аналитических целях служит отделение кристаллического иода от нелетучих примесей.

На качество очистки при сублимации влияют размер частиц и однородность распределения компонентов в них. Поэтому более качественной будет отгонка в тщательно измельченных пробах, а также в тех, где отгоняется основное вещество (макрокомпонент) , а не примеси (микрокомпоненты ).

Для низко температурного полного обезвоживания неустойчивых веществ применяют низкотемпературную отгонку под вакуумом – сублимационная сушка , которую можно рассматривать как вариант лиофильной сушки, выполняемой в болеежестком режиме.

Метод экстрагирования.

Метод экстракционного разделения (экстракция ) широко применяется не только в химическом анализе, но и на производстве, так как позволяет сконцентрировать анализируемое вещество в небольшом объеме раствора. Процесс экстракции основан на избирательном извлечении одного или нескольких компонентов из смеси жидких или твердых фаз с помощью органического растворителя (экстрагента) не смешивающегося с водой. В основе процесса экстракции - различие растворимости компонентов смеси в водной и органическойфазах . В органических веществах (спиртах, эфирах, бензинах и т.д.) хорошо растворяются многие неорганические соли (нитраты, хлориды, роданиды) и комплексные соединения.

Более эффективно извлечение происходит при применении смеси экстрагентов. Явление возрастания степени извлечения при воздействии смеси экстрагентов называют синергизмом. Степень извлечения можно также повысить, добавляя в экстрагент экстракционный реагент, например, дитизон или оксихинолин, формирующие комплексы со многими катионами металлов. В результате проведения экстракции получается экстракт , который может быть как в виде раствора, так и сухого вещества (сухие экстракты ). Сухие экстракты обычно образуются из жидких путем их высушивания каким-либо способом.

К основным понятиям этого метода относят:

Ø реэкстракция – процесс извлечения выделяемого компонента из экстракта в водную или иную фазу;

Ø реэкстрагент – раствор реагента (чаще водный), используемый для извлечении вещества из экстракта;

Ø соэкстрагент – органический или иной растворитель, применяемый в смеси с основным экстрагентом с целью повышения селективности процесса или степени экстракции;

Ø синергизм – существенное повышение степени извлечения (экстракции) при использовании смеси экстрагентов, по сравнению с действием каждого из них по-отдельности;

Ø экстрагент – органический или иной растворитель, извлекающий компонент из водного раствора;

Ø экстракционный реагент – составная часть экстрагента, реагент, образующий с извлекаемым веществом хорошо растворимое в экстрагенте соединение, чаще всего - органический комплекс;

Ø экстракт – органическая фаза, содержащая выделяемый компонент;

Ø экстрактор – аппарат для проведения экстракции.

Конструкции экстракторов достаточно разнообразны (рис. 2.2) и подбираются в зависимости от условий проведения процесса и применяемых реагентов.

Рисунок 2.2 – схемы экстракторов различного назначения

(в – водная фаза; о – органический растворитель):

а – делительные воронки (случай, когда плотность экстрагента выше, чем водной фазы); б – прибор непрерывной экстракции (при плотность экстрагента ниже, чем воды).

Различают: периодическую экстракцию (выполняется отдельными порциями экстрагента), непрерывную (при постоянном перемещении фаз друг относительно друга, при этом водная фаза обычно неподвижна) и противоточную , где органическая фаза постоянно перемещается через серию экстракционных трубок, содержащих свежие порции водного раствора. В качестве простейшего экстрактора можно использовать делительную воронку с двумя кранами (рис. 2.2 – а), которая применяется для выполнения периодической экстракции . После заполнения воронки водно-органической смесью раствора, ее энергично встряхивают и дают отстояться, через нижний кран осторожно удаляют водный раствор (если плотность органического реагента меньше, чем водного), стараясь, чтобы экстракт остался в воронке. Разделение фракций протекает с высокой скоростью в течении 1 – 3 минут. Если плотность органической фазы выше, чем водной, то в нижней части воронки будет скапливаться экстракт, который затем также осторожно удаляется.

Различают дистилляцию с конденсацией пара в жидкость (при которой получаемый конденсат имеет усреднённый состав вследствие перемешивания) и дистилляцию с конденсацией пара в твёрдую фазу (при которой в конденсате возникает распределение концентрации компонентов). Продуктом дистилляции является конденсат или остаток (или и то, и другое) – в зависимости от дистиллируемого вещества и целей процесса. Основными деталями дистилляционного устройства являются обогреваемый контейнер (куб) для дистиллируемой жидкости, охлаждаемый конденсатор (холодильник) и соединяющий их обогреваемый паропровод.

История

Применение

Дистилляция применяется в промышленности и в лабораторной практике для разделения и рафинирования сложных веществ: для разделения смесей органических веществ (например, разделение нефти на бензин, керосин, соляр и др.; получение ароматических веществ в парфюмерии; получение алкогольного спирта) и для получения высокочистых неорганических веществ (например, металлов: бериллий, цинк, магний, кадмий и др.).

Теория

В теории дистилляции в первую очередь рассматриваются двухкомпонентные вещества. Действие дистилляции основано на том, что концентрация некоторого компонента в жидкости отличается от его концентрации в паре, образующемся из этой жидкости. Отношение = является характеристикой процесса и называется коэффициентом разделения при дистилляции. Коэффициент разделения зависит от природы разделяемых компонентов и режима дистилляции.

Режимы дистилляции характеризуются температурой испарения и степенью отклонения от фазового равновесия жидкость-пар. Обычно в дистилляционном процессе n=+, где n - число частиц вещества, переходящих в единицу времени из жидкости в пар, - число частиц, возвращающихся в это же время из пара в жидкость, - число частиц, переходящих в это время в конденсат. Отношение /n является показателем отклонения процесса от равновесного. Предельными являются режимы, в которых =0 (равновесное состояние системы жидкость-пар) и =n (режим молекулярной дистилляции).

При =0, когда число частиц, покидающих в единицу времени жидкость, равно числу частиц, возвращающихся в это же время в жидкость, равновесный коэффициент разделения двухкомпонентного вещества может быть выражен через давления и чистых компонентов при температуре процесса: , где и - так называемые коэффициенты активности, учитывающие взаимодействие компонентов в жидкости. Эти коэффициенты имеют температурную и концентрационную зависимости (см. активность (химия)). С понижением температуры значение коэффициента разделения обычно удаляется от единицы, т. е. эффективность разделения при этом увеличивается.

При =n все испаряющиеся частицы переходят в конденсат (режим молекулярной дистилляции). В этом режиме коэффициент разделения , где и - молекулярные массы первого и второго компонентов соответственно. Режим молекулярной дистилляции может применяться в различных дистилляционных способах, включая ректификацию. Обычно молекулярная дистилляция осуществляется в вакууме при низком давлении пара и при близком расположении поверхности конденсации к поверхности испарения (что исключает столкновение частиц пара друг с другом и с частицами атмосферы). В режиме, близком к молекулярной дистилляции, проводится дистилляция металлов. В связи с тем, что коэффициент разделения при молекулярной дистилляции зависит не только от парциальных давлений компонентов, но и от их молекулярных (или атомных) масс, молекулярная дистилляция может применяться для разделения смесей, для которых , - азеотропных смесей, включая смеси изотопов.

Для различных режимов дистилляции выведены уравнения, связывающие содержание второго компонента в конденсате и в остатке с долей перегонки или с долей остатка при заданных условиях процесса и известной начальной концентрации жидкости (, и - масса конденсата и остатка, а также начальная масса дистиллируемого вещества соответственно). Расчёты проводятся в предположении идеального перемешивания дистиллируемой жидкости, а также жидкого конденсата. Также выведены уравнения распределения компонентов в твёрдом конденсате, получаемого дистилляцией с направленным затвердеванием конденсата или зонной дистилляцией. Параметром этих уравнений является коэффициент разделения α для заданных условий дистилляции.

При дистилляции вещества с большой концентрацией компонентов с конденсацией пара в жидкость при несильной зависимости коэффициентов активности компонентов от их концентраций взаимосвязь величин , и , когда используются концентрации в процентах, имеет вид:

Для дистилляции с конденсацией пара в жидкость при малом содержании примеси

Дистилляционные уравнения могут использоваться для описания процессов распределения примесей в других фазовых переходах из фазы с интенсивным перемешиванием (таких как переходы жидкий кристалл-кристалл, жидкий кристалл-жидкость, газ-плазма, а также в переходах, связанных с квантово-механическими состояниями – сверхтекучая жидкость, конденсат Бозе-Эйнштейна) – при подстановке в них соответствующих коэффициентов распределения.

Дистилляция с конденсацией пара в жидкость (простая перегонка, фракционная дистилляция, ректификация)

Простая перегонка - частичное испарение жидкой смеси путём непрерывного отвода и конденсации образовавшихся паров в холодильнике. Полученный конденсат называется дистиллятом, а неиспарившаяся жидкость - кубовым остатком.

Фракционная дистилляция (или дробная перегонка) - разделение многокомпонентных жидких смесей на отличающиеся по составу части - фракции путём сбора конденсата частями с различной летучестью, начиная с первой, обогащенной низкокипящим компонентом. Остаток жидкости обогащён высококипящим компонентом. Для улучшения разделения фракций применяют дефлегматор.

Ректификация - способ дистилляции, при котором часть жидкого конденсата (флегма) постоянно возвращается в куб, двигаясь навстречу пару в контакте с ним. В результате этого примеси, содержащиеся в паре, частично переходят во флегму и возвращаются в куб, при этом чистота пара (и конденсата) повышается (См. ректификация , ректификационная колонна).

Дистилляция с конденсацией пара в твёрдую фазу (с конденсацией пара в градиенте температуры; с направленным затвердеванием конденсата; зонная дистилляция)

Дистилляция с конденсацией пара в градиенте температуры – дистилляционный процесс, в котором конденсация в твёрдую фазу осуществляется на поверхности, имеющей градиент температуры, с многократным реиспарением частиц пара. Менее летучие компоненты осаждаются при более высоких температурах. В результате в конденсате возникает распределение примесей вдоль температурного градиента, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Разделение компонентов пара при реиспарении подчиняется собственным закономерностям. Так, при молекулярной дистиляции соотношение между количествами и осаждённых в конденсаторе первого и второго компонентов, соответственно, выражается равенством:

где и - скорости испарения первого компонента из расплава и с поверхности реиспарения соответственно, и - то же для второго компонента, и - коэффициенты конденсации первого и второго компонентов соответственно, μ – коэффициент, зависящий от поверхности испарения и углов испарения и реиспарения. Реиспарение повышает эффективность очистки от трудноудаляемых малолетучих примесей в 2-5 раз, а от легколетучих - на порядок и более (по сравнению с простой перегонкой). Этот вид дистилляции нашёл применение в промышленном производстве высокочистого бериллия.

Дистилляция с направленным затвердеванием конденсата (дистилляция с вытягиванием дистиллята) – дистилляционный процесс в контейнере удлинённой формы c полным расплавлением дистиллируемого вещества и конденсацией пара в твёрдую фазу по мере вытягивания конденсата в холодную область. Процесс разработан теоретически.

В получаемом конденсате возникает неравномерное распределение примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс является дистилляционным аналогом нормальной направленной кристаллизации. Распределение примеси в конденсате описывается уравнением:

где С – концентрация примеси в дистилляте на расстоянии х от начала, L – высота конденсата при полностью испарившемся дистиллируемом материале.

Зонная дистилляция - дистилляционный процесс в контейнере удлинённой формы c частичным расплавлением рафинируемого вещества в перемещаемой жидкой зоне и конденсацией пара в твёрдую фазу по мере выхода конденсата в холодную область. Процесс разработан теоретически.

При движении зонного нагревателя вдоль контейнера сверху вниз в контейнере формируется твёрдый конденсат с неравномерным распределением примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс может быть повторён многократно, для чего конденсат, полученный в предыдущем процессе, должен быть перемещён (без переворота) в нижнюю часть контейнера на место рафинируемого вещества. Неравномерность распределения примесей в конденсате (т. е. эффективность очистки) растёт с увеличением числа повторений процесса.

Зонная дистилляция является дистилляционным аналогом зонной перекристаллизации. Распределение примесей в конденсате описывается известными уравнениями зонной перекристаллизации с заданным числом проходов зоны – при замене коэффициента распределения k для кристаллизации на коэффициент разделения α для дистилляции. Так, после одного прохода зоны

где С – концентрация примеси в конденсате на расстоянии х от начала конденсата, λ – длина жидкой зоны.

См. также

Литература

  • Девятых Г.Г., Еллиев Ю.Е. Введение в теорию глубокой очистки веществ. - М.: Наука, 1981. - 320 с.
  • Девятых Г.Г., Еллиев Ю.Е. Глубокая очистка веществ. - М.: Высшая школа, 1974. - 180 с.
  • Степин Б.Д., Горштейн И.Г., Блюм Г.З., Курдюмов Г.М., Оглоблина И.П. Методы получения особо чистых неорганических веществ. - Л.: Химия, 1969. - 480 с.
  • Корякин Ю.В., Ангелов И.И. Чистые химические вещества. Руководство по приготовлению неорганических реактивов и препаратов в лабораторных условиях. - М.: Химия, 1974. - с.
  • Беляев А.И. Физико-химические основы очиски металлов и полупроводниковых веществ. - М.: Металлургия, 1973. - 320 с.
  • Пазухин В.А., Фишер А.Я. Разделение и рафинирование металлов в вакууме. - М.: Металлургия, 1969. - 204 с.
  • Иванов В.Е., Папиров И.И., Тихинский Г.Ф., Амоненко В.М. Чистые и сверхчистые металлы (получение методом дистилляции в вакууме). - М.: Металлургия, 1965. - 263 с.
  • Несмеянов А.Н. Давление пара химических элементов. - М.: Издательство АН СССР, 1961 - 320 с.
  • Кравченко А.И. О временной зависимости состава двойного сплава при его разгонке в вакууме // Известия АН СССР. Серия: Металлы. - 1983. - № 3. - С. 61-63.
  • Кравченко А.И. Об уравнениях дистилляции при малом содержании примеси // Вопросы атомной науки и техники, 1990. - № 1 - Серия: «Ядерно-физические исследования» (9). - С. 29-30.
  • Нисельсон Л.Я., Ярошевский А.Г. Межфазовые коэффициенты распределения (Равновесия кристалл-жидкость и жидкость-пар). - М.: Наука, 1992. - 399 с.
  • Kravchenko A.I. Simple substances refining: efficiency of distillation methods // Functional Materials, 2000 - V.7. - N. 2. - P. 315-318.
  • Кравченко А.И. Уравнение распределения примеси в твёрдом дистилляте // Неорганические материалы, 2007. - Т. 43. - № 8. - С. 1021-1022.
  • Кравченко А.И. Эффективность очистки в дистилляционном и кристаллизационном процессах // Неорганические материалы, 2010. - Т. 46. - № 1. - С. 99-101.
  • Кравченко А.И. Дистилляция с вытягиванием дистиллята // Вопросы атомной науки и техники, 2008. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (17). - С. 18-19.
  • Кравченко А.И. Зонная дистилляция // Вопросы атомной науки и техники, 2011. - № 6 - Серия: «Вакуум, чистые материалы, сверхпроводники» (19). - С. 24-26.
  • Кравченко А.И. О распределении примесей при фазовых переходах из фазы с идеальным перемешиванием // Вопросы атомной науки и техники, 2011. - № 6 - Серия: «Вакуум, чистые материалы, сверхпроводники» (19). - С. 27-29.
  • ГОСТ 2177 (ASTM D86)

Галерея

Химические методы разделения