Дезинфекция воды в колодце: особенности проведения процедуры обеззараживания. Методы обеззараживания воды Метод обеззараживания воды самый эффективный

При помощи различных способов фильтрации из воды удаляются механические взвеси и растворенные вещества. Ее умягчают, освобождают од органических и неорганических соединений. Однако после фильтрации в воде могут оставаться загрязнения биологического характера. С бактериями и вирусами, многие из которых вызывают заболевания человека, может справиться далеко не каждый фильтр. Чтобы устранить биологическое загрязнение, выполняют обеззараживание питьевой воды.

Для обеззараживания применяют целый ряд методов. Все они делятся на три основные группы: физические, химические и комбинированные.

К этой группе относятся методы, в которых применяются химические реагенты. Жидкость обрабатывают хлорсодержащими веществами или хлором, озоном и некоторыми другими составами воздействующими на биологические объекты. При использовании химических средств важно точно определить количество реагента и время воздействия. Вещества в малых дозах не всегда могут убить всех бактерий, некоторые остаются и быстро восстанавливают численность.

Увеличивать дозу больше необходимого тоже нельзя. Многие вещества токсичные и при употреблении человеком могут вызвать отравление. Кроме того, они образуют мутагенные и канцерогенные соединения.

Хлорирование

Распространенным способом обработки воды является хлорирование. Это старый метод, который остается популярным до настоящего времени. Популярность объясняется дешевизной компонентов, эффективностью, длительным последействием, благодаря которому не происходит повторного роста микроорганизмов.

Однако хлор обладает высокой токсичностью, он создает мутагенные и канцерогенные соединения. Далеко не всегда они удерживаются фильтрами. Только очень тонкая очистка позволяет освободить воду от таких компонентов.

Рис. 1 Очистка и обеззараживание воды хлором

Наибольший вред человеку наносят соединения тригалометаны, обладающие высокой канцерогенностью. Хлор и производные способны вызывать заболевания пищеварительной системы, сердца и сосудов, а также некоторые другие.

Для обеззараживания воды используют хлорную известь, непосредственно сам хлор и другие соединения.

Озонирование

При внесении озона в воду происходит его распадение на атомарный кислород, который обладает сильной окислительной активностью. Он разрушает системы микробных клеток, устраняет ряд запахов. Но при излишнем внесении озон сам создает неприятный запах и усиливает коррозионные процессы, что разрушает металлические трубы.

Данный метод является одним из наиболее безопасных для здоровья человека. Его малое распространение объясняется высокими затратами и сложностью. Для использования озонирования требуется специальное сложное оборудование и специалисты, которые могут с ним работать. При таком методе обеззараживания увеличивается расход электроэнергии.


Рис. 2 Метод очистки и обеззараживания воды озоном

Сам озон токсичен и в некоторых случаях взрывоопасен. Для частного домовладения такой метод обеззараживания окажется весьма затратным. Потребуется не только дорогостоящая установка, но и регулярное посещение специалиста для обслуживания системы.

Другие реагенты

Группа других реагентов весьма обширная. В нее входят полимерные антисептики, которые эффективны и не вредят организму человека. Сюда же можно отнести соединения тяжелых металлов, бром и йод. Они используются не часто, поскольку требуют точных расчетов и определенных знаний, но их применение позволяет эффективно очистить воду от бактериального загрязнения.


Рис. 3 Домашний способ обеззараживания

Обеззараживают воду и сильные окислители. К ним относят гипохлорит натрия, перманганат калия, перекись водорода и некоторые другие. При их использовании надо правильно рассчитать дозу, а в случае перманганата калия еще и удалить соединения марганца.

Физические способы обеззараживания

Физические методы основаны на применении ультрафиолетовых лучей, ультразвука и других методов, которые убивают микроорганизмов. Предварительно воду очищают от взвеси, поскольку мутность снижает эффективность воздействия.

Обеззараживание ультрафиолетом

Ультрафиолетовые лучи оказывают действие на обмен веществ в бактериальной клетке и на ее ферментные системы. Уничтожаются и споры бактерий. При этом вкус, цвет и запах воды не изменяются. Токсические вещества при воздействии не образуются, поэтому можно увеличивать дозу облучения.


Рис. 4 Чтобы обеззаразить воду ультрафиолетом нужна установка

Для выполнения ультрафиолетового обеззараживания потребуется специальная установка. Стоимость ее будет выше, чем стоимость хлорирования, но дешевле озонирования.

Используют ультрафиолет только после очистки воды от механических взвесей. Замутненность препятствует проникновению лучей.

Эффективность работы установки снижается при отложении на поверхности лампы минеральных солей. Очищают их механическим способом или создавая кислую среду проходящей жидкости.

Ультразвуковая обработка

Использование ультразвука для обеззараживания воды является относительно новой методикой. Звуковые волны, имеющие определенную частоту, создают в воде пустоты с большой разницей в давлении. Это давление разрывает оболочки бактериальных клеток.

Характер бактерицидного воздействия и эффективность обеззараживания зависит от особенностей звуковых колебаний. Особенную роль играет их интенсивность.

Такая обработка безопасна для человека. Она не изменяет характеристики воды, но требует дорогостоящего оборудования. Оборудование нужно периодически обслуживать, а услуги специалистов также не дешевы.

Создается ультразвук специальным генератором. Он может быть пьезоэлектрическим или магнитострикционным.

Применяя ультразвук для уничтожения микроорганизмов, следует помнить, что низкая частота звука усиливает рост бактерий. Очень важно правильно настроить прибор.

Кипячение

Самым простым вариантом физического обеззараживания является кипячение. С его помощью уничтожаются все виды микроорганизмов. Помимо них при кипячении из воды выводятся антибиотики, растворенные газы и снижается жесткость.


Рис. 5 Очищение кипячением

Широкое промышленное применение такого метода обеззараживания невозможно из-за его высокой энергозатратности.

Комбинированные способы обеззараживания

Чтобы увеличить эффективность обеззараживания воды, методы применяют в комплексе. Сочетают обычно безреагентные способы с реагентными.

Примером такого воздействия становится сочетание ультрафиолетовой обработки с последующим хлорированием. Ультрафиолет убивает все возможные бактерии, вирусы и их споры, а хлорирование предотвращает повторное заражение. В результате не только вода длительное время оказывается не зараженной микроорганизмами, но и значительно сокращается количество используемых реагентов. С уменьшением концентрации хлора снижается и негативное воздействие на организм человека.

Существуют и другие варианты комбинированного обеззараживания. Так вода подвергается воздействию сразу двух физических методов: ультразвука и ультрафиолета. На выходе получают полностью обеззараженный объем жидкости. Существуют приборы, в которых объединены эти два способа.

Какой бы вариант ни был выбран, обязательно требуется предварительный анализ биологической загрязненности. На основании этого подбирается дозировка реагентов, длительность воздействия и необходимость доочистки. В домашних условиях оптимальными будут ультрафиолетовые установки.

Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов , вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.

К химическим способам обеззараживания питьевой воды относят ее обработку окислителями: хлором , озоном и т. п., а также ионами тяжелых металлов. К физическим – обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д. Перед обеззараживанием вода обычно подвергается очистке фильтрацией и (или) коагуляцией, при которой удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов.

Метод озонирования воды технически сложен и наиболее дорогостоящ. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это требует также дополнительного вспомогательного оборудования (озонаторы, компрессоры, установки осушки воздуха, холодильные агрегаты и т. д.), объемных строительно-монтажных работ.

Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м 3 . К тому же существует опасность взрыва озоновоздушной смеси.

Следует отметить, что, хотя ряд зарубежных фирм предлагает автономные озонаторные установки для организации водоснабжения отдельного коттеджа или очистки воды в бассейне, кроме очень высокой стоимости таких устройств, требуется обеспечение их высококачественного обслуживания. Применение установки, предлагаемой одной из отечественных фирм, для автономного водоснабжения без всяких систем контроля содержания озона в воздухе и воде, может печально кончиться для ее владельцев. В этих условиях возможно применение дозирования в воду гипохлорита, получаемого в малогабаритном электролизере типа «Санатор», хотя и здесь требуется квалифицированное обслуживание.

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. о беззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщен ные йодом. При пропускании через них воды йод постепенно вымыва ется из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром , например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

Из физических способов обеззараживания питьевой воды наибольшее распространение получило обеззараживание воды ультрафиолетовыми лучами , бактерицидные свойства которых обусловлены действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. В ажно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания.

Основным недостатком метода является полное отсутствие последействия.

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззара­живание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Фактором, снижающим эффективность работы установок УФ-обез­зараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Обеззараживание питьевой воды ультразвуком основано на способности его вызывать т. н. кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Из физических способов индивидуального обеззараживания воды наиболее распространенным и надежным является кипячение, при котором, кроме уничтожения бактерий, вирусов, бактериофагов, антибиотиков и др. биологических объектов, часто содержащихся в открытых водоисточниках, удаляются растворенные в воде газы и уменьшается жесткость воды. Вкусовые качества воды при кипячении меняются мало.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды . Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим
ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Достаточно новыми способами обеззараживания воды являются электрохимический и электроимпульсный. Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т. п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности. Кроме того, их используют для получения дезинфицирующих растворов – католита и анолита, применяемых в медицинской практике. Что касается заявлений разработчиков об изменении структуры воды и ее чудодейственных свойствах, оставим это без комментариев.

При электроимпульсном воздействии производится электрический разряд в воде – электрогидравлический удар, т. н. эффект Л. А. Юткина. При разряде возникает ударная волна сверхвысокого давления, световое излучение и образуется озон. Эти факторы губительно действуют на биологические объекты в воде.

Реагентные (химические) методы обеззараживания питьевой воды:

  • 1. Хлорирование
  • 2. Озонирование
  • 3. Применение тяжелых металлов

Физические методы обеззараживания питьевой воды:

  • 1. Кипячение
  • 2. Ультрафиолетовое излучение
  • 3. Обеззараживание ультразвуком
  • 4. Радиационное обеззараживание
  • 5. Обеззараживание с помощью ионообменных смол

Хлорирование. Часто встречающийся и проверенный метод дезинфекции воды - первичное хлорирование. Именно этим методом на сегодняшний день обеззараживается 98,6 % воды. Первопричина успеха данного метода объясняется повышенной эффективностью обеззараживания воды и экономичности научно-технического процесса по сравнению с иными методами. Метод хлорирования не только очищает воду от ненужных органических и биологических примесей, но и благополучно удаляет соли железа и марганца, также преимущество этого метода заключается в том, что данный метод сохраняет способность обеспечить микробиологическую защищенность воды при ее транспортировании за счет эффекта последействия.?Имеются и недостатки данного метода. Например после хлорирования в воде наблюдается наличие свободного хлора. Данный процесс занимает по времени до нескольких десятков часов.Для уничтожения примесей потребуется доочистка воды на угольных фильтрах. ?Для хлорирования воды применяются препараты: как непосредственно хлор (водянистый либо газообразный), диоксид хлора и прочие хлорсодержащие препараты.

Озонирование. Превосходство озона (О3) перед иными дезинфектантами содержится в свойственных ему дезинфицирующих и окислительных свойствах, обусловленных выделением при контакте с органическими объектами энергичного атомарного воздуха, рушащего ферментные системы микробных клеток и окисляющего какие-либо соединения, которые дают воде досадный аромат. Помимо неповторимой возможности ликвидирования микробов, озон владеет высочайшей отдачей в ликвидировании спор, цист и множества иных патогенных бактерий. Численность озона, важное для обеззараживания питьевой воды, находится в зависимости от ступени засорения воды и составляет 1-6 мг/литр. при контакте в 8-15 мин; остаточного озона должно быть менее 0,3-0,5 мг/литр. С гигиенической стороны метод озонирование воды - лучший из методов обеззараживания питьевой воды.

Причинами медленного распространения технологии озонирования считаются большая цена оборудования, большой расход электричества, высокие производственные затраты, а также потребность высококвалифицированного оборудования. Также, в ходе эксплуатации установлено, что в разных температурных режимах, например, если температура обрабатываемой естественной воды выше 22 °С) процесс озонирования не может достичь необходимых микробиологических показателей из-за недоступности результата дезинфицирующего действия?Способ озонирования воды технически трудоемок и наиболее дорогой, в отличии от иных способов обеззараживания питьевой воды. Это все ограничивает внедрение этого способа в ежедневной жизни.?Иным значимым изъяном озонирования явялется токсичность озона.

Применение тяжелых металлов . Использование тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды базируется на применении их «олигодинамического» качества -возможности оказывать антибактериальное действие в небольших концентрациях. Данные сплавы могут вводиться в виде растворов солей или способом химического растворения. У обоих способов вероятен косвенный контроль их содержания в воде. Также к методам обеззараживания питьевой воды относится обширно применявшийся способ в начале прошлого века -- обеззараживание соединениями брома и йода, кстати этот способ более эффективен в отличие от хлора и обладает лучшими антибактериальными качествами, чем хлор, хотя технология более трудоемкая. В современной практике для обеззараживания питьевой воды йодированием обычно применяется специализированные иониты, обогащенные йодом. При пропускании воды через иониты, йод понемногу вымывается из ионита, обеспечивая требуемую дозу в воде. Это решение приемлемо для компактных персональных установок. Минусом данного метода считается перемена сосредоточения йода в период работы и отсутствия полного контролирования его сосредоточения.?

Кипячение . Из физических методов обеззараживания воды самым популярным и верным считается кипячение .?При кипячении уничтожаются большинство бактерий, микробов, бактериофагов, вирусов, антибиотиков и остальные биологические объекты, которые находятся в открытых водоисточниках и как следствие в системах центрального водоснабжения. Также, при кипячении воды удаляются растворенные газы и вода становится более мягкой. Вкусовые свойства воды при кипячении изменяются мало. Для хорошей дезинфекции рекомендуется прокипятить воду на протяжении 15 -- 20 мин., так как при недолгом кипячении мельчайшие организмы все-таки имеют шансы сохранить жизнеспособность. Но использование кипячения в промышленных масштабах, не осуществимо ввиду высокой стоимости процесса.

Ультрафиолетовое излучение . УФ-излучение- многообещающий промышленный метод дезинфекции воды. Дезинфицирующие свойства данного света обусловлены особым воздействием на клеточный обмен, а также на ферментные системы бактериальной клетки. В итоге антибактериальный свет истребляет вегетативные и споровые формы микробов. Сами установки представлят собой камеры сделанные из нержавеющей стали с размещенными внутри Ультрафиолетовыми-лампами, защищенными от контакта с водой прозрачными кварцевыми чехлами. Вода, проходя через камеру обеззараживания, постоянно подвергается ультрафиолетовому облучению, который убивает все оказавшиеся в ней мельчайшие организмы.

При УФ-облучении не образуются вторичные токсины, и потому верхнего порога дозы ультрафиолетового облучения не существует. Повышением дозы УФ-облучения практически всегда можно достичь желаемого уровня обеззараживания.

Также УФ-облучение не ухудшает органолептические качества воды , в следствии этого данный метод может быть отнесен к экологически чистым способам обработки воды.?Но даже у этого метода имеются недостатки. УФ-обработка не обеспечивает пролонгированного действия в отличие от метода озонирования.

Для персонального водоснабжения УФ-установки считаются более перспективными.?Также при УФ-излучении, возможна реактивация микроорганизмов и даже выработка новых штаммов, стойких к лучевому поражению. Организация процесса УФ обеззараживания требует больших инвестиций, чем у метода хлорирования, но меньших, чем у озонирования. Невысокие эксплуатационные затраты делают УФ-обеззараживание и хлорирование сравнимо недорогими способами очистки воды. Расход электричества незначителен, а цена ежегодной замены ламп составляют максимум 10% от стоимости установки.

Обеззараживание ультразвуком . В данном способе обеззараживания воды употребляется ультразвук. Механизм действия ультразвука до конца пока еще не изучен. Есть некие предположения: ультразвук вызывает образование пустот, это и приводит к разрыву клеточных стенок бактерий;? ультразвук вызывает выделение растворенного в воде газа, а пузырьки от газа, оказавшиеся в бактериальной клетке, вызывают разрыв клетки.?Превосходством применения ультразвука перед остальными методами обеззараживания сточных вод является его нечувствительность к таким моментам, как высокая мутность и цветность воды, количество микроорганизмов и присутствие в воде растворенных веществ.?Единственный момент, который оказывает большое влияние на обеззараживание сточных вод ультразвуком является - интенсивность ультразвуковых колебаний. Бактерицидное влияние ультразвука различной частоты очень существенно и зависит от интенсивности звуковых колебаний.

Обеззараживание и очищение воды ультразвуком считается одним из самых современных способов дезинфекции. Ультразвуковое воздействие не часто используется в фильтрах обеззараживания питьевой воды, однако эффективность данного метода говорит о перспективности метода обеззараживания воды ультразвуком, даже несмотря на его дороговизну.

Радиационное излучение . Есть предложения применения для обеззараживания воды гамма-излучений.?Гамма-установки действуют следующим способом: при поступлении воды в полость сетчатого цилиндра приёмно-разделительного агрегата, твёрдые включения переходят вверх шнеком, далее отжимаются в диффузоре и следуют в бункер - сборник. Потом вода разбавляется чистой водой до определённой концентрации и подается в агрегат гамма-установки, в нем под действием гамма излучения изотопа Со60 и начинает происходить сам процесс обеззараживания. Гамма-излучение угнетающе действует на активность микробных ферментов. При больших порциях гамма-излучения гибнет большинство возбудителей таких опасных болезней как полиомиелит, тиф и прочее.

С помощью ионнообменных сил . Еще один физико-химический метод обеззараживания воды при помощи внедрения ионообменных смол. G.Gillissen (1960) продемонстрировал способность анионообменных смол освобождать жидкость от микробов категории соli. Вероятна регенерация смолы. Е.В.Штанников (1965) установил вероятность очистки воды от микробов ионообменными полимерами. Учитывая мнение творца данный результат связан с сорбцией вируса и с его денатурацией с помощью кислотной либо особо щелочной реакции. Еще одна работа Штанникова описывает метод обеззараживания воды ионактивными полимерами, где располагаться токсин ботулизма. Обеззараживание случается с помощью окисления токсина и его сорбции.?Кроме этих факторов изучалась возможность обеззараживания воды токами высокой частоты и магнитной обработкой. обеззараживание вода дезинфекция озонирование

Обеззараживание питьевой воды это необходимая мера, направленная на уничтожение болезнетворных бактерий в воде, предназначенной для питья. Не так давно благодаря обеззараживанию, человечество миновало те времена, когда людей выкашивали эпидемии заболеваний, распространявшихся через воду. Известный ученый, микробиолог Луи Пастер сказал: «80% своих болезней мы выпиваем». Список заболеваний, передающихся микробами через воду, когда обеззараживание не производится, весьма внушителен: холера, дизентерия, брюшной тиф, полиомиелит, гепатит А, трахома – и это далеко не полный список.

Обеззараживание питьевой воды может быть домашним и промышленным. Домашнее обеззараживание не обязательно то, которое проводится дома, а скорее то, что проводится домашними средствами, наиболее простым, доступным и эффективным из которых является кипячение. В масштабах подачи воды целому населенному пункту, кипячение, конечно же, затруднительно. Поэтому для обеззараживания питьевой воды в промышленных масштабах применяют другие методы. Методы очистки от микробов делятся на физические и химические.

Химические методы обеззараживания питьевой воды представляют собой добавление в воду химических веществ, вызывающих гибель микроорганизмов. Это такие вещества как хлор и его соединения (диоксид хлора, гипохлорит натрия), озон, ионы серебра. К физическим методам обеззараживания относится воздействие на воду ультрафиолетовым излучением, гамма-излучением, ультразвуковыми волнами. У каждого из этих методов есть достоинства и недостатки, но с задачей устранения патогенной микрофлоры успешно справляется каждый из них.

В настоящее время основным способом обеззараживания питьевой воды на территории России и стран постсоветского пространства является ее хлорирование. Хлор эффективно уничтожает болезнетворные микроорганизмы и дешев в применении, дешевле всех остальных методов. Из недостатков метода чаще всего упоминают патогенное воздействие хлора на организм людей, постоянно употребляющих воду, обработанную с его помощью. Установлено, что некоторые соединения хлора, попадающие внутрь с питьевой водой, обладают мутагенными и канцерогенными свойствами. Это означает, что они способны приводить к мутациям клеток организма, перерождая их, и тем самым вызывая появление злокачественных опухолей.

Важно не путать обеззараженную воду с очищенной. Обеззараженная – та, в которой убита патогенная микрофлора. Очищенная – та, из которой удалены все вредные химические соединения.

Нашли ошибку в тексте? Выделите ее и нажмите Ctrl + Enter.

Знаете ли вы, что:

У 5% пациентов антидепрессант Кломипрамин вызывает оргазм.

В нашем кишечнике рождаются, живут и умирают миллионы бактерий. Их можно увидеть только при сильном увеличении, но, если бы они собрались вместе, то поместились бы в обычной кофейной чашке.

Человеческие кости крепче бетона в четыре раза.

Общеизвестный препарат «Виагра» изначально разрабатывался для лечения артериальной гипертонии.

Печень – это самый тяжелый орган в нашем теле. Ее средний вес составляет 1,5 кг.

Первый вибратор изобрели в 19 веке. Работал он на паровом двигателе и предназначался для лечения женской истерии.

Раньше считалось, что зевота обогащает организм кислородом. Однако это мнение было опровергнуто. Ученые доказали, что зевая, человек охлаждает мозг и улучшает его работоспособность.

Каждый человек имеет не только уникальные отпечатки пальцев, но и языка.

Желудок человека неплохо справляется с посторонними предметами и без врачебного вмешательства. Известно, что желудочный сок способен растворять даже монеты.

Во время работы наш мозг затрачивает количество энергии, равное лампочке мощностью в 10 Ватт. Так что образ лампочки над головой в момент возникновения интересной мысли не так уж далек от истины.

Препарат от кашля «Терпинкод» является одним из лидеров продаж, совсем не из-за своих лечебных свойств.

74-летний житель Австралии Джеймс Харрисон становился донором крови около 1000 раз. У него редкая группа крови, антитела которой помогают выжить новорожденным с тяжелой формой анемии. Таким образом, австралиец спас около двух миллионов детей.

В четырех дольках темного шоколада содержится порядка двухсот калорий. Так что если не хотите поправиться, лучше не есть больше двух долек в сутки.

В стремлении вытащить больного, доктора часто перегибают палку. Так, например, некий Чарльз Йенсен в период с 1954 по 1994 гг. пережил более 900 операций по удалению новообразований.

Работа, которая человеку не по душе, гораздо вреднее для его психики, чем отсутствие работы вообще.

Частичное отсутствие зубов или даже полная адентия могут быть последствием травм, кариеса или заболеваний дёсен. Однако утраченные зубы можно заменить протезами...

Цель занятия:

1. Ознакомление с методами очистки и обеззараживания воды.

2. Проведение очистки и обеззараживания конкретной воды.

3. Оформление санитарно-гигиенических заключений по оценке результатов проведенных очистки и обеззараживания методами коагуляции, фильтрации и нормального хлорирования.

Место проведения занятия: учебно-профильная лаборатория кафедры общей гигиены.

Оборудование: титровальные установки, лабораторные посуда и реактивы; таблицы и схемы.

Для улучшения качества воды применяются следующие методы: очистка, обеззараживание и специальные методы обработки. Очистка предполагает улучшение органолептических и физико-химических показателей воды. Обеззараживание является конечной ступенью защиты и предохраняет питьевую воду от внешнего загрязнения и вторичного роста микроорганизмов при распределении.

9.1. Гигиеническая оценка современных способов очистки питьевой воды.

Основными способами очистки воды являются отстаивание, коагуляция, фильтрация и аэрация. Коагуляция связана с добавлением химических реактивов (сульфат алюминия, сульфат двухили трехвалентного железа и хлорид трехвалентного железа) для нейтрализации зарядов на частицах и облегчения их агломерации при медленном перемешивании. Образующиеся при этом хлопья подвергаются осаждению, поглощая и захватывая природные окрашенные вещества и минеральные частицы и вызывая значительное снижение цветности, мутности и содержания простейших бактерий и вирусов. При использовании в качестве коагулянта сернокислого алюминия образование хлопьев протекает по следующей реакции:

Al2 (SO4 )3 + Ca(HCO3 )2 = 2Al(OH)3 + 3CaSO4 + 6CO2 .

Хлопья не образуются, если щелочность воды ниже 1,4 мг-экв/л. В этом случае требуется предварительное ее подщелачивание. Затруднен процесс

хлопьеобразования и в холодной воде. При низкой температуре воды целесообразно использовать вместо сернокислого алюминия более тяжелые коагулянты: сернокислое железо и хлорное железо. Эффективность коагуляции зависит также от цветности, мутности воды и других факторов. Учитывая вышеизложенное, не представляется возможным точно рассчитать оптимальную дозу коагулянта. Она подбирается опытным путем, когда из трех взятых в опыте доз выбирается та, которая обеспечивает хорошее осветление воды.

С целью интенсификации очистки воды разработаны современные реагентные материалы, позволяющие оптимизировать процессы хлопьеобразования при коагуляции воды, повысить скорость седиментации образовавшихся хлопьев и тем самым увеличить эффективность работы фильтров. Созданы коагулянты оксихлоридного ряда (КОР), состоящие из гидроокиси алюминия и аниона хлора. При растворении в воде коагулянт образует коллоидный раствор, который обладает свойствами электролита.

Дистилляция – наиболее распространенный способ очистки воды в аптеках. Вода переходит из жидкого состояния в парообразное и обратно, в результате чего происходит очистка от примесей. Применяются и другие современные методы: ультрафильтрация , обратный осмос и ионообмен . Это сочетание обеспечивает удаление мелких примесей, коллоидов, микробов, органических молекул, деионизацию воды.

Для удаления крупных примесей используют волоконные фильтры. Освобождение от мелких примесей и микробов происходит на мембранных фильтрах, имеющих субмикронный размер пор. Обратный осмос – метод предварительной очистки воды перед дистилляцией, деионизацией. Очистка воды обратным осмосом основана на фильтрации через полупроницаемую мембрану под действием внешнего давления. Большинство примесей не проходит через такую мембрану. Они собираются на поверхности мембраны, а затем смываются. Деионизация – пропускание воды через катионообменные и анионообменные смолы. Адсорбция на активированном угле применяется с целью удаления органических соединений и хлора.

Полная безопасность воды в эпидемическом отношении достигается проведением обеззараживания. Традиционная система отечественной очистки воды включает последовательное использование хлорирования, отстаивания и фильтрации. Вода, поступившая на водозабор, подвергается хлорированию. Затем крупные взвешенные органические частицы в течение нескольких часов оседают в отстойнике. Затем – фильтрация через песчано-гравийный и (или) сорбционно-угольный фильтры. Поскольку качество воды в городе Воронеже отличается повышенным содержанием железа и марганца, запахом (до 3 б.) и повышенной цветностью (до 400 ), помимо обеззараживания методом хлорирования и очистки фильтрованием, проводится безреагентное обезжелезивание.

9.2. Гигиеническая оценка современных способов обеззараживания питьевой воды.

Все методы обеззараживания делятся на два группы: безреагентные и реагентные. К безреагентным методам относят кипячение, воздействие ультразвуком (УЗ), токами высокой частоты, γ -лучами, ультрафиолетовыми лучами (УФ) и др. К реагентным методам обеззараживания относят хлорирование, перехлорирование, двойное хлорирование, хлорирование с предварительной аммонизацией; озонирование; использование ионов серебра и других химических соединений (перманганат калия, перекись водорода), в основе которых лежит окисление органических, неорганических веществ и бактерий. Известно, что самым сильным окислителем является озон.

Использование традиционного метода обеззараживания воды – хлорирования – сейчас расценивают как фактор повышенной опасности для здоровья населения. В сведениях ВОЗ указаны 19 соединений, которые образуются в результате хлорирования: хлорфенолы, кетоны, фураноны,

галогенированные альдегиды и т.д. Во всех случаях присутствия галогенсодержащих соединений (ГСС) в воде максимум концентраций приходится на хлороформ, именно это вещество принято как ведущее приоритетное ГСС (с канцерогенным действием). Многие ГСС обладают полиморфизмом токсического действия, оказывают гепато-, рено- и нейротоксический эффекты, нарушают функции сердечно-сосудистой и репродуктивной систем. Опасность ГСС связана и с их выраженными кумулятивными свойствами. Некоторые из ГСС обладают канцерогенным действием.

Избежать образования ГСС при хлорировании невозможно. Радикальный выход – переход на другие способы обеззараживания воды. Приемлемым является озонирование. Количество побочных продуктов при озонировании значительно меньше и они менее токсичны. Лишь для одного из продуктов озонолиза – бромата характерно канцерогенное действие. Лучшим в арсенале обеззараживающих средств продолжает оставаться УФ.

Вместе с тем хлорирование пока остается наиболее доступным и простым способом обеззараживания воды. Поэтому надо реализовать приемы защиты от воздействия ГСС питьевой воды – применение активированного угля; снижение цветности и окисляемости воды; охрана водоисточников от загрязнения промышленными сточными водами; использование вместо газообразного хлора хлораминов или, лучше, двуокиси хлора.

Однако только полный запрет хлорирования воды позволит кардинально решить проблему ГСС и предупредить неблагоприятное влияние ГСС на здоровье нации.

Недостатки традиционных способов обеззараживания питьевой воды заставляют искать новые, основанные, как правило, на комбинированном действии двух или нескольких факторов: хлор+озон; хлор+УФ; перекись водорода+озон; УФ+УЗ; комплекс электрических воздействий.

Для хлорирования используют газообразный хлор, хлорную известь, гипохлориды, хлорамины. Хлорную известь получают при взаимодействии хлора с гашеной известью:

2Cl + 2CA(OH)2 = Ca(OCl)2 + CaCl2 + 2 H2 O.

Действующей частью хлорной извести является гипохлорит кальция – Ca(OCl)2 . OClявляется сильным окислителем. Свежие препараты хлорной извести содержат до 30–35% активного хлора. Уменьшение количества