Двухтактный преобразователь напряжения. Двухтактные преобразователи Двухтактные преобразователи на транзисторах

На рис. 5 представлена схема двухтактного транзисторного каскада усиления с трансформаторным входом и выходом.

Верхнее плечо усилителя образует транзистор 1 и верхние полуобмотки трансформаторов ТV 1 и ТV 2, нижнее плечо включает в свой состав транзистор 2, нижние полуобмотки трансформаторов ТV 1 и ТV 2. В идеальном случае оба плеча совершенно одинаковы и схема симметрична относительно горизонтальной оси, проходящей через средние точки трансформаторов.

Усилитель может работать как в режиме класса А , так и класса В . Для перевода каскада в режим В достаточно уменьшить напряжение смещения на R 2 (увеличить сопротивление R 1 и уменьшить R 2 , либо исключить цепи смещения) до величины обеспечивающей, угол отсечки 90 0 . Рассмотрим режим класса В .

Характеристика схемы . Двухтактный каскад усиления с трансформаторным входом и выходом, последовательного коллекторного питания, со смещением постоянным напряжением, создаваемым током делителя на резисторах R 1, R 2, собран на транзисторах типа n-p-n по схеме с ОЭ, работающих в режиме класса В .

Назначение элементов. Трансформатор ТV 1 предназначен для получения двух одинаковых по амплитуде и противоположных по фазе напряжений, а также согласования сопротивлений источника сигнала с входным сопротивлением усилителя.

Трансформатор ТV 2 обеспечивает согласование сопротивлений нагрузки с выходным сопротивлением коллекторных цепей транзисторов.

Конденсатор С бл1 блокирует R 2 по переменному току, уменьшая потери переменной составляющей входного сигнала.

Делитель R 1 , R 2 обеспечивает требуемое положение НРТ на характеристиках транзисторов.

Принцип работы схемы. При отсутствии входного сигнала (U 1 =0) и включенном источнике питания протекает ток делителя. На резисторе R 2 создаётся напряжение смещения, величина которого обеспечивает положение НРТ в начале проходных статических характеристик транзисторов. Оба транзистора закрыты. Через трансформатор ТV2 ток не протекает и напряжение на выходе равно нулю. Таким образом, в статическом режиме постоянные токи через транзисторы не протекают, т.е. в режиме В ток покоя транзисторов практически равен нулю, что уже предопределяет пониженный расход тока питания.

При подаче на вход схемы переменного напряжения, например, гармонического сигнала (U 1 ¹ 0) на вторичных обмотках трансформатора ТV1 образуются два вторичных напряжения, сдвинутых относительно друг друга на 180 0 (см. рис. 5). В результате один из транзисторов, например, верхний VT1 переходит в активный режим (открывается) и форма тока через него повторяет форму приложенного напряжения. Импульс тока через верхний трансформатор протекает по цепи: +Е k , верхняя полуобмотка ТV2, К, КП, ЭП, Э, ┴, -Е k . Он индуцирует по вторичной обмотке TV2 импульс тока, протекающий через нагрузку. И в то же время нижний транзистор находится в режиме отсечки и через нижнюю полуобмотку трансформатора ток не протекает.

При смене полярности входного напряжения состояние транзисторов изменяется на противоположное. В этом случае импульс тока под воздействием входного сигнала протекает в нижнем плече каскада по цепи: +Е k , нижняя полуобмотка ТV2, К, КП, ЭП, Э, ┴, -Е k . В результате во вторичной обмотке трансформатора ТV2 возбуждается ток обратного направления.

Таким образом, через нагрузку протекает ток, форма которого совпадает с формой управляющего напряжения (U 1). Временные диаграммы управляющего напряжения, токов через транзисторы, нагрузку и через источник питания приведены на рис. 6.

Как следует из рисунка ток, протекающий через транзисторы, представляет собой косинусоидальные импульсы с длительностью, равной половине периода управляющего напряжения. Транзисторы здесь работают строгопоочередно: каждый пропускает полуволну тока только в свой полупериод колебания (рис. 6). Во вторую половину периода он заперт и тока от источника питания не потребляет. В этот полупериод работает второй транзистор. Такой режим называют режимом класса В . Токи коллекторов транзисторов VT1 и VT2 можно представить в виде ряда Фурье:

Поскольку точки i k1 и i k2 обтекают половины обмоток ТV2 в противоположных направлениях, то результирующий магнитный поток, создаваемый ими, пропорционален их разности. Ток через нагрузку пропорционален магнитному потоку, следовательно, для тока в нагрузке можно записать

Ток в цепи питания усилителя равен сумме токов плеч:

Из полученных результатов следует:

1. Поскольку выходной ток содержит только нечётные гармоники , в двухтактном каскаде происходит компенсация чётных гармоник токов плеч в нагрузке . Это позволяет снизить уровень нелинейных искажений, используя экономичный режим В .

2. На выходе каскада будут компенсироваться все помехи , наводимые синфазно в плечах как от источника питания, так и от других источников. Это снижает чувствительность усилителя к пульсациям питающего напряжения, что позволяет упростить сглаживающие фильтры в цепях питания.

3. Разностный ток плеч не содержит постоянной составляющей тока , при этом отсутствует постоянное подмагничивание сердечника трансформатора. Это позволяет использовать данный трансформатор при более высоком уровне выходного сигнала или при заданной выходной мощности существенно снизить его габариты, массу, стоимость.

Поскольку токи через транзисторы протекают лишь в часть периода, а в остальное время транзистор закрыт, то уменьшается мощность рассеяния транзистора , что позволяет в двухтактной схеме усилителя применить транзистор, рассеивающий на порядок меньшую мощность, чем транзистор в однотактном каскаде, работающем в режиме класса А при той же полезной мощности. Расчёты показывают, что КПД в двухтактном каскаде может приблизиться к 78,6 %. Это достигается большим коэффициентом использования коллекторного напряжения и малой величиной постоянной составляющей тока коллектора (режим класса В ).

Форма частотных характеристик усилителя мощности определяется частотными свойствами трансформатора . Аналитические выражения для АЧХ совпадают с аналогичными выражениями для однотактного трансформаторного каскада.

Недостатки трансформаторного каскада :

· большие размеры, масса и стоимость;

· сравнительно узкая полоса рабочих частот;

· искажения и большие фазовые сдвиги на краях полосы пропускания, что препятствует охвату оконечного каскада глубокой ООС, так как нарушается устойчивость;

· наличие трансформаторов обусловливает невозможность интегрального исполнения УМ. Существуют дополнительные потери полезной энергии в трансформаторах, их КПД обычно составляет 0,7 ¸ 0,9.

Кроме того, режим В хотя и обеспечивает высокий КПД, но вносит повышенные нелинейные искажения, обусловленные кривизной начального участка передаточной характеристики транзисторов I к (U бэ), вследствие чего совмещенная характеристика обоих транзисторов (рис. 7, а ), представляющая зависимость их разностного тока, имеет подобие ступеньки в окрестности перехода через нуль.

Это вызывает так называемые центральные ступеньки на синусоиде разностного тока (рис. 7, б ), а значит, и выходного напряжения.

Для их устранения применяется режим АВ, в котором подается небольшое исходное смещение НРТ А1 и А2 транзисторов так, что они оказываются на середине начальных криволинейных участков передаточных характеристик (рис. 8, а ). Совмещая характеристики транзисторов по напряжению U бэ точками А1 и А2, видим, что характеристика разностного тока получается прямой (штриховая линия на рисунке) и ступенек не возникает (рис. 8, б ). В режиме АВ при малых токах работают оба плеча одновременно подобно режиму А и нелинейность характеристик плеч взаимно компенсируется.

В режиме АВ при малых амплитудах КПД оконечного каскада понижается (по сравнению с режимом В). Однако общий КПД всего усилителя понижается мало, так как ток покоя оконечных транзисторов обычно бывает меньше общего тока питания предварительных каскадов. Режим АВ для двухтактных каскадов является самым распространенным, поскольку обеспечивает высокий КПД и небольшие нелинейные искажения.

Двухтактные бестрансформаторные каскады

Бестрансформаторные схемы получают всё большее применение. При их реализации легко осуществлять непосредственную связь между каскадами (без разделительных конденсаторов). Они имеют хорошие частотные и амплитудные характеристики, легко выполняются по интегральной технологии, т.к. не содержат громоздкие трансформаторы. Чаще всего бестрансформаторные усилители собирают по двухтактной схеме и работают они в основном в режиме АВ.

Название "бестрансформаторный каскад" в общем случае носит условный характер; дело в том, что, как правило, в усилителях применяются двух-трех элементные составные транзисторы в каждом плече. Поэтому плечо представляет собой двух-трехкаскадный усилитель.

На рис. 9 приведена одна из распространенных схем двухкаскадного бестрансформаторного усилителя мощности с параллельным управлением транзисторами оконечного двухтактного каскада (на VT 2 и VT 3) однофазным переменным напряжением.

Для исключения необходимости двух источников питания сопротивление нагрузки R н подключено через разделительный конденсатор C 2 к одному из полюсов источника E п. Это возможно потому, что через нагрузку протекает только переменный ток. Напряжение между выводами конденсатора C 2 почти постоянно и близко к E п /2. В режиме АВ, в полупериод когда транзистор VT 3 открывается, конденсатор С 2 в цепи нагрузки включается последовательно с источником Е п и их напряжения вычитаются, так что итоговое напряжение питания одного плеча равно Е п - Е С2 = Е п /2, а конденсатор С 2 частично заряжается током транзистора VT 3. В полупериод работы транзистора VT 2 конденсатор с напряжением E C 2 = Е п /2 служит источником питания и частично разряжается.

В схемах бестрансформаторных каскадов большой мощности возникает затруднение в выборе комплементарной пары мощных транзисторов с совпадающими или близкими параметрами. Выход - применение в плечах двухкаскадной схемы выходного каскада составных транзисторов.

Многие радиолюбители за свою практику пытались своими руками собрать инвертор напряжения. В этой статье я расскажу о конструкции сверхпростого инвертора, который предназначен для получения сетевого напряжения 220 Вольт из автомобильного аккумулятора. Мощность такого инвертора невелика, но это один из самых простых вариантов, который может существовать.

Как указал выше, схема из себя представляет выполненный всего на двух мощных полевых ключах. Можно использовать буквально любые N-канальные полевые транзисторы с током 40 Ампер и более. Отлично подходят дешевые полевики серии IRFZ44/46/48, в целях увеличения выходной мощности можно применить более мощные полевые транзисторы серии IRF3205 - выбор огромный, я перечислил только самые ходовые транзисторы, которые можно найти почти в любом магазине радиодеталей.

Трансформатор может быть намотан на кольце или броневом сердечнике Е50, сердечник тоже не критичен, лишь бы обмотки поместились. Первичная обмотка мотается двумя жилами провода 0,8мм (каждая) и состоит из 2х15 витков. При использовании броневых сердечников с двумя секциями на каркасе, первичка мотается в одном из секций, как в моем случе. Вторичная обмотка состоит из 110-120 витков медного провода с диаметром 0,3-0,4мм. Ставить межслойные изоляции не нужно. На выходе трансформатора образуется переменное напряжение номиналом 190-260 Вольт, но форма выходных импульсов прямоугольная, вместо сетевого синуса.

Частота такого отклоняется от сетевой, поэтому подключать к преобразователю активные нагрузки довольно рискованно, хотя практика показывает, что на выход можно подключить и активные нагрузки с импульсным блоком питания.

Практическое применение двухтактного инвертора

Преобразователь без проблем может питать лампы накаливания, ЛДС, маломощные паяльники и т.п., мощность которых не превышает 70 ватт. Полевые ключи устанавливают на теплоотводы, в случае использования общего теплоотвода не забудьте использовать изолирующие прокладки.

Корпус - ваша фантазия, у меня он был взят от китайского электронного трансформатора на 150 ватт. КПД этой схемы двухтактного преобразователя может доходить до 70%. автор статьи - АКА КАСЬЯН.

Наибольшее распространение получили двухтактные источники вторичного электропитания, хотя и имеют более сложную электрическую схему по сравнению с однотактными. Они позволяют получать на выходе значительно большую выходную мощность при высоком КПД.
Схемы двухтактных преобразователей-инверторов имеют три вида включения ключевых транзисторов и первичной обмотки выходного трансформатора: полумостовая, мостовая и с первичной обмоткой имеющей отвод от середины.

Полумостовая схема построения ключевого каскада.
Ее особенностью является включение первичной обмотки выходного трансформатора в среднюю точку емкостного делителя С1 — С2.

Амплитуда импульсов напряжения на переходах транзисторов эмиттер-коллектор Т1 и Т2 не превышает Uпит величины питающего напряжения. Это позволяет использовать транзисторы с максимальным напряжением Uэк до 400 вольт.
В то же время напряжение на первичной обмотке трансформатора Т2 не превышает значения Uпит/2, потому, что снимается с делителя С1 — С2 (Uпит/2).
Управляющее напряжение противоположной полярности подается на базы ключевых транзисторов Т1 и Т2 через трансформатор Тр1.


В мостовом преобразователе емкостной делитель (С1 и С2) заменен транзисторами Т3 и Т4. Транзисторы в каждом полупериоде открываются попарно по диагонали (Т1, Т4) и (Т2, Т3).

Напряжение на переходах Uэк закрытых транзисторов не превышает напряжения питания Uпит. Но напряжение на первичной обмотке трансформатора Тр3 увеличится и будет равно величине Uпит, что повышает КПД преобразователя. Ток же через первичную обмотку трансформатора Тр3 при той же мощности, по сравнению с полумостовой схемой, будет меньше.
Из за сложности в наладке цепей управления транзисторов Т1 – Т4, мостовая схема включения применяется редко.

Схема инвертора с так называемым пушпульным выходом наиболее предпочтительна в мощных преобразователях-инверторах. Отличительной особенностью в данной схеме является то, что первичная обмотка выходного трансформатора Тр2 имеет вывод от середины. За каждый полупериод напряжения поочередно работает один транзистор и одна полуобмотка трансформатора.

Данная схема отличается наибольшим КПД, низким уровнем пульсаций и слабым излучением помех. Достигается это за счет уменьшения тока в первичной обмотке и уменьшения рассеиваемой мощности в ключевых транзисторах.
Амплитуда напряжения импульсов в половине первичной обмотки Тр2 возрастает до значения Uпит, а напряжение Uэк на каждом транзисторе достигает значения 2 Uпит (ЭДС самоиндукции + Uпит).
Необходимо использовать транзисторы с высоким значением Uкэmах, равным 600 – 700 вольт.
Средний ток через каждый транзистор равен половине тока потребления от питающей сети.

Обратная связь по току или по напряжению.

Особенностью двухтактных схем с самовозбуждением является наличие обратной связи (ОС) с выхода на вход, по току или по напряжению.

В схеме обратной связи по току обмотка связи w3 трансформатора Тр1 включена последовательно с первичной обмоткой w1 выходного трансформатора Тр2. Чем больше нагрузка на выходе инвертора, тем больше ток в первичной обмотке Тр2, тем больше обратная связь и больше базовый ток транзисторов Т1 и Т2.
Если нагрузка меньше минимально допустимой, ток обратной связи в обмотке w3 трансформатора Тр1 недостаточен для управления транзисторами и генерация переменного напряжения срывается.
Иными словами, при пропадании нагрузки — генератор не работает.

В схеме обратной связи по напряжению обмотка обратной связи w3 трансформатора Тр2 соединена через резистор R с обмоткой связи w3 трансформатора Тр1. По этой цепи осуществляется обратная связь с выходного трансформатора на вход управляющего трансформатора Тр1 и далее в базовые цепи транзисторов Т1 и Т2.
Обратная связь по напряжению слабо зависит от нагрузки. Если же на выходе будет очень большая нагрузка (короткое замыкание), напряжение на обмотке w3 трансформатора Тр2 снижается и может наступить такой момент, когда напряжение на базовых обмотках w1 и w2 трансформатора Тр1 будет недостаточно для управления транзисторами. Генератор перестанет работать.
При определенных обстоятельствах это явление может быть использовано как защита от короткого замыкания на выходе.
На практике широко применяются обе схемы с обратной связью ОС как по току, так и по напряжению.

Двухтактная схема инвертора с ОС по напряжению

Для примера, рассмотрим работу наиболее распространенной схемы преобразователя-инвертора – полумостовой схемы.
Схема состоит из нескольких независимых блоков:

      • — выпрямительный блок – преобразует переменное напряжение 220 вольт 50 Гц в постоянное напряжение 310 вольт;
      • — устройство запускающих импульсов – вырабатывает короткие импульсы напряжения для запуска автогенератора;
      • — генератор переменного напряжения – преобразует постоянное напряжение 310 вольт в переменное напряжение прямоугольной формы высокой частоты 20 – 100 КГц;
      • — выпрямитель – преобразует переменное напряжение 20 -100 КГц в постоянное напряжение.

Сразу после включения питания 220 вольт начинает работать устройство запускающих импульсов, представляющий из себя генератор пилообразного напряжения (R2, С2, Д7). От него запускающие импульсы поступают на базу транзистора Т2. Происходит запуск автогенератора.
Ключевые транзисторы открываются поочередно и в первичной обмотке выходного трансформатора Тр2, включенной в диагональ моста (Т1,Т2 – С3,С4), образуется переменное напряжение прямоугольной формы.
С вторичной обмотки трансформатора Тр2 снимается выходное напряжение, выпрямляется диодами Д9 — Д12 (двухполупериодное выпрямление) и сглаживается конденсатором С5.
На выходе получается постоянное напряжение заданной величины.
Трансформатор Т1 используется для передачи импульсов обратной связи от выходного трансформатора Тр2 на базы ключевых транзисторов Т1 и Т2.


Двухтактная схема ИБП имеет ряд преимуществ перед однотактной схемой:

    • — ферритовый сердечник выходного трансформатора Тр2 работает с активным перемагничиванием (наиболее полно используется магнитный сердечник по мощности);
    • — напряжение коллектор – эмиттер Uэк на каждом транзисторе не превышает напряжение источника постоянного тока в 310 вольт;
    • — при изменении тока нагрузки от I = 0 до Imax, выходное напряжение изменяется незначительно;
    • — выбросы высокого напряжения в первичной обмотке трансформатора Тр2 очень малы, соответственно меньше уровень излучаемых помех.

И еще одно замечание в пользу двухтактной схемы!!

Сравним работу двухтактного и однотактного автогенераторов с одинаковой нагрузкой.
Каждый ключевой транзистор Т1 и Т2 за один такт работы генератора используется всего половину времени (одну полуволну), вторую половину такта «отдыхает». То есть вся вырабатываемая мощность генератора, делится пополам между обоими транзисторами и передача энергии в нагрузку идет непрерывно (то от одного транзистора, то от другого), во время всего такта. Транзисторы работают в щадящем режиме.
В однотактном же генераторе накопление энергии в ферритовом сердечнике происходит во время половины такта, во второй половине такта идет ее отдача в нагрузку.

Ключевой транзистор в однотактной схеме работает в четыре раза более напряженном режиме, чем ключевой транзистор в двухтактной схеме.

Простейшим двухтактным инвертором является автогенератор по схеме Ройера. Здесь транзисторы попеременно находятся в состоянии насыщения и отсечки (рис.5.7).

Рисунок 5.7 – Двухтактный автогенератор

После включения питания через резистор R 1 протекает ток, открывающий оба транзистора. Схема симметрична и коллекторные токи транзисторов равны между собой i K 1 = i K 2, ЭДС самоиндукции в обмотках W 1 также равны по величине, но противоположно направлены. Поэтому коллекторная обмотка в целом нейтральна и в базовой обмотке ничего не наводится. За счёт тепловых, дробовых или фликкер – шумов ток одного из транзисторов мгновенно станет больше. Пусть i K 1 > i K 2 , тогда в базовой обмотке появится ЭДС, как показано на рис.5.7, под действием которой VT1 приоткрывается, а VT2 призакрывается, i K 1 ещё больше возрастает, возрастает ЭДС и т.д. протекает лавинообразный процесс, в результате которого VT1 входит в насыщение, а VT2 – в состояние отсечки. Рабочая точка сердечника входит в область насыщения рост тока прекращается, ЭДС самоиндукции меняет знак на противоположный, чтобы поддержать падающий ток и происходит обратный лавинообразный процесс, в результате которого VT2 входит в насыщение, а VT1 – в состояние отсечки и так далее.

Это автогенератор с насыщающимся трансформатором. Индукция в сердечнике меняется от –B m до +B m . . Резистор R1 служит для запуска схемы, а резистор Rб ограничивает базовый ток в открытом состоянии.

Из– за конечного быстродействия транзисторов, работающих с насыщением, время рассасывания коллекторного тока не равно нулю и время выключения больше времени включения. Поэтому в момент смены полярности напряжения на W 1 , VT1 ещё не успевает перейти в состояние отсечки, а VT2 уже включился и, к ещё открытому VT1, прикладывается напряжение

(5.6)

Поэтому коллекторный ток имеет всплеск – так называемый сквозной ток (рис.5.8).

Рисунок 5.8 – Сквозные токи в схеме Ройера

Величина сквозного тока может в несколько раз превышать рабочий ток.

Поэтому в современных источниках питания такие схемы используется редко, но в радиолюбительской практике очень широко – простота и надёжность, при небольшой выходной мощности – до 100 Ватт делают схему очень привлекательной.

Для больших мощностей используют преобразователи с независимым возбуждением, чтобы уменьшить мощность потерь в насыщающемся выходном трансформаторе. Усложняется схема управления, формируются сигналы управления с запасом по времени на выключение транзисторов.

К двухтактным относятся также мостовые и полумостовые схемы. На рис.5.9а приведена силовая цепь мостового инвертора, а на рис. 5.9б – диаграмма работы при активной нагрузке. Ключи работают попарно и поочерёдно (VT 1 , VT 4 и VT 2 , VT 3). Потери здесь больше, чем в обычной схеме, поскольку в цепи тока включены последовательно два ключа. Напряжение на закрытом ключе равно всего Eк, поэтому такая схема предпочтительна при высоких напряжениях питания. Форма напряжения на нагрузке и форма тока совпадают.

Рисунок 5.9 – Мостовой инвертор

На практике нагрузка редко бывает активной, обычно она имеет индуктивный характер (рис.5.10) и ток в первичной обмотке не может измениться мгновенно.

Рисунок 5.10 – Мостовой инвертор с индуктивным характером нагрузки

После коммутации ключей (VT1,4 закрываются, VT2,3 открываются) под действием ЭДС самоиндукции ток протекает ещё некоторое время () через первичную обмотку в том же направлении. Ключи VT2,3 не держат обратного напряжения и могут быть пробиты этой ЭДС самоиндукции. Для их защиты и создания пути тока разряда индуктивности все ключи шунтируют диодами. На рис. 5.10 условно показаны только два из них. Энергия, запасённая в индуктивности, возвращается в источник по цепи: минус источника Е К, диод VD3, обмотка W1, диод VD2, плюс источника Е К, имеет место рекуперация, а чтобы ток протекал в источник, величина ЭДС превышает Е К на величину . Мгновенная мощность на интервале отрицательна . (5.7)

Рекуперация энергии может играть и положительную роль. Например, городской электротранспорт и локомотивы на железной дороге. В них, при движении идёт потребление энергии от контактной сети приводными электродвигателями. При торможении двигатели переключаются в генераторный режим, кинетическая энергия движения преобразуется в электрическую и возвращается в сеть. В источниках электропитания рекуперация приводит только к дополнительным потерям и её следует избегать. В мостовом инверторе, например, можно изменить алгоритм управления ключами, как показано на рис.5.11.

Рисунок 5.11 – Мостовой инвертор без рекуперации

В этой схеме при замкнутых ключах VT1 и VT4, идёт передача энергии в нагрузку и её накопление в индуктивности. После размыкания VT1, ЭДС самоиндукции меняет знак, как показано на рис.5.11а и индуктивность разряжается через открытый ключ VT4 и защитный диод VD3 на нагрузку. Здесь запас по времени такой, что индуктивность полностью разряжается и появляются высшие гармоники в составе выходного напряжения. Если не будет разрыва между токами i p и i 1 , то не будет провала в выходном напряжении и в его спектре будет меньше высших гармоник.

В мостовых схемах инверторов имеется четыре управляемых ключа и довольно сложная схема управления. Уменьшить число ключей позволяет полумостовая схема инвертора, которая приведена на рис.5.12.

Рисунок 5.12 – Полумостовой инвертор

Здесь конденсаторы С 1 и С 2 создают искусственную среднюю точку источника . При открытом VT 1 С 1 разряжается на нагрузку и подзаряжается С 2 , а при открытом VT 2 – наоборот (С 2 разряжается на нагрузку и подзаряжается С 1). Напряжение, прикладываемое к первичной обмотке трансформатора равно напряжению на одном конденсаторе.

В автономной переносной и передвижной радиоаппаратуре, потребляющей сравнительно небольшие мощности, в качестве источников электроэнергии используются работающие независимо от внешней сети источники постоянного тока низкого напряжения: гальванические элементы, аккумуляторы, термогенераторы, солнечные и атомные батареи. Иногда для функционирования радиоаппаратуры возникает необходимость преобразования постоянного напряжения одного номинала в постоянное напряжение другого номинала. Эту задачу выполняют различные преобразователи постоянного тока, а именно: электромашинные, электромеханические, электронные и полупроводниковые.

В полупроводниковом преобразователе энергия постоянного тока превращается в энергию прямоугольных импульсов с помощью переключающего устройства. В качестве основных элементов этого устройства используются MOS FET и IGBT транзисторы и тиристоры. Преобразователи с выходом на переменном токе называются инверторами. Если выход инвертора, соединить с выпрямителем, включающим сглаживающий фильтр, то на выходе устройства, называемого конвертором, можно получить постоянное напряжение U вых, которое может существенно отличаться от напряжения на входе U BX ,, т.е. конвертор - это своеобразный трансформатор постоянного напряжения.

При высоком значении питающего напряжения, а также при отсутствии ограничений по массе и объему преобразователи рационально выполнять на тиристорах. Полупроводниковые преобразователи на транзисторах и тиристорах подразделяются на нерегулируемые и регулируемые, причем последние используются и как стабилизаторы постоянного и переменного напряжения.

По способу возбуждения колебаний в преобразователе различают схемы с самовозбуждением и с независимым возбуждением. Схемы с самовозбуждением представляют собой импульсные автогенераторы. Схемы с независимым возбуждением состоят из задающего генератора и усилителя мощности. Импульсы с выхода задающего генератора поступают на вход усилителя мощности и управляют им.

1. Преобразователи с самовозбуждением

Преобразователи с самовозбуждением выполняются на мощности до нескольких десятков ватт. В радиоустройствах они нашли применение как маломощные автономные источники, электропитания и как задающие генераторы мощных преобразователей, Структурная схема преобразователя с самовозбуждением приведена на рис. 1.

Рис. 1. Структурная схема преобразователя напряжения с самовозбуждением

На вход преобразователя подается постоянное питающее напряжение U BX . В автогенераторе постоянное напряжение преобразуется в напряжение, имеющее форму прямоугольных импульсов.

Прямоугольные импульсы с помощью трансформатора изменяются по амплитуде и поступают на вход выпрямителя, после которого на выходе преобразователя (конвертора) получим требуемое по величине и напряжение постоянного тока U вых . При прямоугольной форме импульсов выпрямленное напряжение по форме близко к постоянному, вследствие чего упрощается сглаживающий фильтр выпрямителя.

2. Однотактный преобразователь напряжения.

В основе работы схемы (рис. 2), как и большинства преобразователей, лежит принцип прерывания постоянного тока в первичной обмотке импульсного трансформатора с помощью транзистора, работающего в ключевом режиме.

Рис. 2. Однотактный полупроводниковый преобразователь

напряжения с самовозбуждением

В коллекторную цепь транзистора включена первичная обмотка трансформатора ω к, в эмиттерно-базовую цепь - обмотка обратной связи ω б. Поскольку обмотки ω к и ω б размещаются на одном магнитопроводе, то существующая между ними магнитная связь и порядок подключения концов обмоток обеспечивают в итоге положительную обратную связь в автогенераторе.

При подключении источника постоянного тока U BX в цепи коллектора транзистора VT и в обмотке ω к начинает: протекать ток, который вызывает нарастающий магнитный поток в магнитопроводе импульсного трансформатора. Этот поток, воздействуя на обмотку обратной связи ω б, наводит в ней ЭДС самоиндукции, причем обмотка ω б включается, относительно обмотки ω к таким образом, чтобы ЭДС, наведенная в ней, еще больше открыла транзистор (для р-п-р транзистора на базе относительно эмиттера создается дополнительное отрицательное напряжение). Когда магнитный поток достигнет насыщения, исчезнут ЭДС и токи в обмотках, появится противо-ЭДС, запирающая транзистор, и процесс начнется сначала. Необходимо отметить, что при открытом транзисторе VT вследствие небольшого значения его внутреннего сопротивления весьма небольшим будет падение напряжения на нем, даже при токе, равном току насыщения. Поэтому в этом случае практически все входное напряжение U BX приложено к первичной коллекторной обмотке трансформатора ω к.

В результате периодического включения транзистора по первичной обмотке трансформатора ω к потечет ток, импульсы которого будут иметь почти прямоугольную форму. Во вторичную обмотку трансформатора ω вых трансформируются импульсы той же формы, частоты следования и полярности; эти импульсы используются для получения выпрямленного напряжения с помощью однополупериодного выпрямителя. Резистор R Р Б в базе транзистора ограничивает ток базы.

Преобразователи описанного типа целесообразно применять при высоком значении выходного напряжения U B Ы X и малых токах, в частности, для питания высоковольтного анода в электронно-лучевых трубках. Основным недостатком однотактной схемы автогенератора является постоянное подмагничивание магнитопровода, обусловленное тем, что ток по коллекторной (первичной) обмотке трансформатора течет только в одном направлении, Постоянное подмагничивание ухудшает условия передачи мощности из первичной обмотки трансформатора во вторичную, и поэтому однотактные автогенераторы используют при малых мощностях (несколько ватт), когда невысокий КПД не является определяющим фактором.