Кратность измерения. Измерение кратности воздухообмена. Испытания строительных конструкций в лабораторных условиях


В этой статье мы обсудим делители и кратные . Здесь мы дадим определения делителя и кратного числа. Эти определения нам позволят привести примеры делителей и кратных различных целых чисел. Отдельно рассмотрим делители единицы и минус единицы, а также поговорим о делителях и кратных нуля.

Навигация по странице.

Делители числа – определение, примеры

Сначала дадим определение делителя целого числа.

Определение.

Делителем целого числа a называется целое число b , на которое a делится нацело.

Натуральное число 1 имеет единственный положительный делитель – это число 1 . Этот факт отличает единицу от других натуральных чисел, так как натуральные числа, отличные от единицы, имеют не менее двух делителей, а именно себя самого и 1 . В зависимости от отсутствия или наличия делителей, отличных от самого натурального числа и от единицы, различают простые и составные числа .

Единица является наименьшим положительным делителем натурального числа a , отличного от 1 , а само число a является наибольшим положительным делителем (о наибольшем и наименьшем числе мы говорили в разделе ). То есть, для любого натурального числа a любой его положительный делитель b удовлетворяет условию .

Кратные числа – определение, примеры

Дадим определение кратного .

Определение.

Кратное целого числа b – это целое число a , которое делится на b нацело.

Иными словами, кратное целого числа b – это такое целое число a , которое может быть представлено в форме a=b·q , где q – некоторое целое число.

Если a является кратным целого числа b , то говорят, что a кратно b . При этом применяют обозначение ab .

Определение кратного и делимого явно указывает на существующую между ними связь. Действительно, по определению если a – кратное числа b , то b – делитель числа a , и наоборот, если b – делитель числа a , то a – кратное числа b .

Приведем примеры кратных . Например, целое число −12 есть кратное числа 3 , так как −12=3·(−4) . Другими кратными числа 3 являются целые числа 0 , 3 , −3 , 6 , −6 , 9 , −9 и так далее. А вот число 7 не является кратным целого числа 3 , так как 7 не делится на 3 без остатка, то есть, не существует такого целого числа q , чтобы выполнялось равенство 7=3·q .

Из определения кратного числа понятно, что нуль является кратным любого целого числа b , в том числе и нуля. Равенство 0=b·0 в этом случае выглядит очень доказательно.

Отметим, что существует бесконечно много кратных любого целого числа b , так как целых чисел бесконечно много, и любое целое число, равное произведению b·q , где q – произвольное целое число, является кратным числа b .

Наименьшим положительным кратным данного положительного числа a является само это число a . Здесь же стоит обратить внимание на то, что наименьшее положительное кратное не стоит путать с наименьшим общим кратным (НОК) нескольких чисел.

Дальше мы можем рассматривать лишь натуральные кратные целых положительных чисел. Это мы можем делать в силу тех же причин, которые были упомянуты в первом пункте этой статьи, при этом общность изложения не будет нарушена.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Способы измерения АД

Измерение АД проводит врач или медсестра в амбулаторных условиях или в стационаре (клиническое АД). АД также может регистрироваться самим пациентом или родственниками в домашних условиях - самоконтроль АД (СКАД). СМАД выполняют медработники амбулаторно или в условиях стационара. Клиническое измерение АД имеет наибольшую доказательную базу для обоснования классификации величины АД, прогноза рисков, оценки эффективности терапии. Точность измерения АД и, соответственно, гарантия правильной диагностики АГ, определения степени ее тяжести зависят от соблюдения правил по его измерению

Для измерения АД имеет значение соблюдение следующих условий:

1.1. Положение больного

Сидя в удобной позе: рука на столе и находится на уровне сердца: манжета накладывается на плечо, нижний край ее на 2 см выше локтевого сгиба.

1.2.Условия измерения ад

    исключается употребление кофе и крепкого чая в течение 1 часа перед исследованием;

    отменяется прием симпатомиметиков. включая назальные и глазные капли;

    АД измеряется в покое после 5-минутного отдыха; в случае если процедуре измерения АД предшествовала значительная физическая или эмоциональная нагрузка, период отдыха следует продлить до 15-30 минут.

1.3. Оснащение

    размер манжеты должен соответствовать размеру руки: резиновая раздуваемая часть манжеты должна охватывать не менее 80 % окружности плеча; для взрослых лиц применяется манжета шириной 12-13 см и длиной 30-35 см (средний размер); необходимо иметь в наличии большую и маленькую манжеты для полных и худых рук, соответственно;

    столбик ртути или стрелка тонометра перед началом измерения должны находиться на нулевой отметке.

1.4. Кратность измерения

    для оценки величины АД на каждой руке следует выполнить не менее двух измерений с интервалом не менее минуты; при разнице > 5 мм рт.ст. производят одно дополнительное измерение; за конечное (регистрируемое) значение принимается среднее из двух последних измерений;

    для диагностики АГ при небольшом повышении АД повторное измерение (2-3 раза) проводится через несколько месяцев;

    при выраженном повышении АД и наличии ПОМ, высоком и очень высоком риске ССО повторные измерения АД проводятся через несколько дней.

1.5. Техника измерения

    быстро накачать воздух в манжету до величины давления на 20 мм рт.ст. превышающего САД (по исчезновению пульса);

    АД измеряется с точностью до 2 мм рт.ст.;

    снижать давление в манжете со скоростью примерно 2 мм рт.ст. в секунду;

    величина давления, при котором появляется 1 тон, соответствует САД (1 фаза тонов Короткова);

    величина давления, при котором происходит исчезновение тонов (5 фаза тонов Короткова) соответствует ДАД; у детей, подростков и молодых людей сразу после физической нагрузки, у беременных и при некоторых патологических состояниях, у взрослых, когда невозможно определить 5 фазу, следует попытаться определить 4 фазу тонов Короткова, которая характеризуется значительным ослаблением тонов;

    если тоны очень слабы, то следует поднять руку и выполнить несколько сжимающих движений кистью, затем измерение повторить, при этом не следует сильно сдавливать артерию мембраной фонендоскопа;

    при первичном осмотре пациента следует измерить давление на обеих руках: в дальнейшем измерения проводят на той руке, где АД выше:

    у больных старше 65 лет. при наличии СД и у лиц, получающих антигипертензивную терапию (АГТ), следует также произвести измерение АД через 2 минуты пребывания н положении стоя;

    целесообразно также измерять АД на ногах, особенно у больных моложе 30 лет: измерение проводится с помощью широкой манжеты (той же, что и у лиц с ожирением): фонендоскоп располагается в подколенной ямке; для выявления окклюзирующих поражений артерий и оценки лодыжечно-плечевого индекса измеряют САД с помощью манжеты, расположенной на лодыжке и/или УЗ методом;

    частота сердечных сокращений подсчитывается по пульсу на лучевой артерии (минимум за 3 0 секунд) после второго измерения АД в положении сидя.

На измерение кратности воздухообмена

Компания ООО «Строительно-Экспертное Бюро» оказывает услуги по измерению воздухопроницаемости ограждающих конструкций и кратности воздухообмена в помещении в соответствии с ГОСТ 31167-2009, СНиП 23-02-2003 и ГОСТ 54852-2011.

Необходимость проведения измерений кратности воздухообмена

В соответствии со СНиП 23-02-2003, п. 11.4, при приемке зданий в эксплуатацию следует осуществлять выборочный контроль кратности воздухообмена в 2-3 помещениях (квартирах) или в здании при разности давлений 50 Па согласно разделу 8 (данного СНиП) и ГОСТ 31167-2009 и при несоответствии данным нормам принимать меры по снижению воздухопроницаемости ограждающих конструкций по всему зданию. Также при приемке здания в эксплуатацию, согласно ГОСТ 26629 следует осуществлять тепловизионный контроль качества тепловой защиты здания с целью обнаружения скрытых дефектов и их устранения.

При проведении тепловизионного контроля качества теплоизоляции ограждающих конструкций в соответствии с ГОСТ 54852-2011 при расположении дефектного участка в зоне стыкового соединения стеновых панелей или оконного блока и панели следует проверить сопротивление воздухопроницанию стыкового соединения по ГОСТ 31167.

Что такое воздухопроницаемость и кратность воздухообмена

Воздухопроницаемость - свойство ограждающих конструкций пропускать воздух. Объемная воздухопроницаемость - это воздухопроницаемость, равная объемному расходу воздуха в единицу времени, приходящемуся на 1 м2 ограждения, и выраженная в кубических метрах на квадратный метр в час (м3/(м2×ч)).

В зависимости от направления движения воздуха через ограждающую конструкцию, различают такие понятия, как инфильтрация и эксфильтрация.

Инфильтрация - обусловлена перемещением воздуха через ограждения из окружающей среды в помещение вследствие ветрового, теплового и гравитационного напоров, формирующих перепад давления воздуха снаружи и внутри помещения.

Эксфильтрация - это понятие обратное инфильтрации.

Кратность воздухообмена - отношение при испытаниях объемного расхода воздуха к внутреннему объему в единицу времени, выражаемая в часах в минус первой степени (ч-1). Другими словами, это то количество воздуха которое удаляется из помещения за 1 час и заменяется свежим воздухом.

С какой целью проводятся измерения по воздухопроницаемости и кратности воздухообмена

Воздухопроницаемость влияет на температурно - влажностный режим помещений, на санитарно -гигиенические нормы, на долговечность строительных конструкций, на тепловой баланс здания, на систему вентиляции.

Если воздухопроницаемость не соответствует нормам, то это может привести к следующим последствиям:

  • Увеличиваются тепловые потери через ограждающие конструкции, что в свою очередь приводит к нехватке тепловой энергии на обогрев помещения и как следствие понижение температуры.
  • При эксфильтрации, через ограждающие конструкции проходит влажный воздух, скопившийся в помещении, что приводит к переувлажнению строительных конструкций и как следствие ухудшение ими своих теплотехнических свойств и к их разрушению.
  • Нарушению систем вентиляции и кондиционирования воздуха, при определенных перепадах давления они не справляются со своими обязанностями, а порой и вовсе не работают.
  • При повышенной воздухопроницаемости между внутренними ограждающими конструкциями, возможно проникновение из соседних помещений (подвал, подземная авто парковка, чердак, бойлерная, котельная и др.) вредных загрязняющих веществ.

Кратность воздухообмена напрямую влияет на здоровье и безопасность жизни людей.

Если кратность воздухообмена не соответствует нормам, то это может привести к следующим последствиям:

  • При повышенной кратности воздухообмена не справляется система ОВК и как следствие нарушается температурно - влажностный режим в помещении и увеличиваются тепловые потери. Кроме того нарушается микроклимат в помещении, люди начинают испытывать дискомфорт от повышенной скорости движения воздуха.
  • При низкой кратности воздухообмена, в помещении увеличивается концентрация вредных веществ, уменьшается концентрация кислорода в воздухе, что приводит к выделению угарного газа и кислородному голоданию. Также в помещении увеличивается концентрация водяных паров, повышается влажность и это может приводить к образованию плесени во влажных и плохо проветриваемых местах.

Вот почему так необходимо контролировать параметры воздухопроницаемости и воздухообмена.

Оборудование для проведения измерений кратности воздухообмена

В качестве измерительного оборудование применяется устройство под названием «Аэродверь». Оно включает в себя специально разработанный калиброванный вентилятор с максимальной производительностью 14000 м3/ч, частотный преобразователь, 2-х канальный цифровой микроманометр с программным обеспечением для управления, измерения и контроля необходимых параметров, раздвижную раму с воздухонепроницаемым полотном для установки вентилятора в любой дверной или оконный проем.

Данное оборудование производится в США и Канаде и удовлетворяет всем требованиям международных и российских стандартов.

Вентилятор в системе может работать в режиме нагнетания воздуха (перепад давлений положительный) и в режиме разряжения воздуха (перепад давлений отрицательный).

Система автоматически выполняет измерения и управляет работой вентилятора, поэтому тест на воздухопроницаемость выполняется с большой точностью (за счет большого массива измерений) и с минимальными временными затратами.

Аэродверь Retrotec Q4E

Совместное применение аэродвери и тепловизионной съемки

Использование аэродвери позволяет повысить качество проводимого тепловизионного обследования. Сущность метода заключается в том, что изначально проводится съемка тепловизором без использования аэродвери и фиксируются все обнаруженные дефекты. Затем устанавливается аэродверь и создается гарантированный перепад давлений между внутренним и наружным воздухом. После чего вновь производится съемка тепловизором и т.к. температуры воздуха отличаются друг от друга, то тепловизором легко обнаруживаются дефекты, связанные с плохой герметичностью строительных конструкций. Также в этом случае, легче интерпретировать характер теплотехнических дефектов, можно с уверенностью сказать, вызван ли дефект плохой теплоизоляцией, наличием мостика холода либо повышенной воздухопроницаемостью.

Кроме того дефекты вызванные повышенной воздухопроницаемостью можно детектировать при перепадах температур всего 2-3 0С, что позволяет данные измерения производить в любой период года. Особенно это важно для заказчиков строительства, которые хотят хоть как-то оценить работу подрядчика, сдающего строительный объект в летний период.

Услуги для частных лиц

Для частных лиц мы также оказываем услуги по измерению и совместному применению аэродвери и тепловизионной съемке. Для собственников квартир это поможет решить ряд следующих проблем:

  • Нехватка тепловой энергии в отопительный сезон года (повышенные счета за электричество).
  • Повышенная скорость движения воздуха внутри помещения.
  • Образование грибка на ограждающих конструкциях.
  • Разрушение строительных конструкций.
  • Будет выявлен характер теплотехнических дефектов, что позволит сэкономить средства на устранение дефектов.
  • Недостаточная производительность (нехватка) систем вентиляции и кондиционирования воздуха в летний период года (повышенные счета за электричество).
  • Попадание вредных загрязняющих веществ внутрь помещения.

Для индивидуальных застройщиков (владельцев коттеджей) помимо решения выше указанных проблем, преимущество проведения данных измерений заключается в следующем:

  • При строительстве дома, можно проконтролировать работы по утеплению и креплению пароизоляции до начала отделочных работ.
  • При строительстве энергоэффективного дома, с применением приточно-вытяжной вентиляции с рекуператором, очень важно чтобы воздухопроницаемость была как можно ниже. Проводя измерения и снимая объект тепловизором, выявляются и устраняются все дефектные места.
  • Снижение воздухопроницаемости позволяет экономить на счетах за электричество, газ и др.

Испытания строительных конструкций в лабораторных условиях

Имея в своем распоряжении климатическую камеру размерами 5 м на 6 м и высотой 4 м, помимо теплотехнических испытаний фрагментов строительных конструкций, окон, дверей и др. Мы можем также проводить испытания данных конструкций с помощью аэродвери на воздухопроницаемость. А также проводить совместные теплотехнические испытания с имитацией в холодном отделении камеры ветрового напора на строительную конструкцию.

Приставки для кратных единиц

Кратные единицы - единицы, которые в целое число раз превышают основную единицу измерения некоторой физической величины. Международная система единиц (СИ) рекомендует следующие приставки для обозначений кратных единиц:

Кратность Приставка Обозначение Пример
русская международная русское международное
10 1 дека deca да da дал - декалитр
10 2 гекто hecto г h гПа - гектопаскаль
10 3 кило kilo к k кН - килоньютон
10 6 мега Mega М M МПа - мегапаскаль
10 9 гига Giga Г G ГГц - гигагерц
10 12 тера Tera Т T ТВ - теравольт
10 15 пета Peta П P Пфлоп - 10 18 экса Hexa Э E ЭБ - эксабайт
10 21 зетта Zetta З Z ЗэВ - зеттаэлектронвольт
10 24 йотта Yotta И Y Йб - йоттабайт

Двоичное понимание приставок

В программировании и индустрии, связанной с компьютерами, те же самые приставки кило-, мега-, гига-, тера- и т. д. в случае применения к величинам, кратным степеням двойки (напр., байт), могут означать кратность не 1000, а 1024=2 10 . Какая именно система применяется, должно быть ясно из контекста (напр., применительно к объёму оперативной памяти используется кратность 1024, а применительно к объёму дисковой памяти введена производителями жёстких дисков - кратность 1000).

1 килобайт = 1024 1 = 2 10 = 1024 байт
1 мегабайт = 1024 2 = 2 20 = 1 048 576 байт
1 гигабайт = 1024 3 = 2 30 = 1 073 741 824 байт
1 терабайт = 1024 4 = 2 40 = 1 099 511 627 776 байт
1 петабайт = 1024 5 = 2 50 = 1 125 899 906 842 624 байт
1 эксабайт = 1024 6 = 2 60 = 1 152 921 504 606 846 976 байт
1 зеттабайт = 1024 7 = 2 70 = 1 180 591 620 717 411 303 424 байт
1 йоттабайт = 1024 8 = 2 80 = 1 208 925 819 614 629 174 706 176 байт

Во избежание путаницы в апреле 1999 года Международная электротехническая комиссия ввела новый стандарт по именованию двоичных чисел (см. Двоичные приставки).

Приставки для дольных единиц

Дольные единицы , составляют опредёленную долю (часть) от установленной единицы измерения некоторой величины. Международная система единиц (СИ) рекомендует следующие приставки для обозначений дольных единиц:

Дольность Приставка Обозначение Пример
русская международная русское международное
10 −1 деци deci д d дм - дециметр
10 −2 санти centi с c см - сантиметр
10 −3 милли milli м m мм - миллиметр
10 −6 микро micro мк (u) мкм - микрометр, микрон
10 −9 нано nano н n нм - нанометр
10 −12 пико pico п p пФ - пикофарад
10 −15 фемто femto ф f фс - фемтосекунда
10 −18 атто atto а a ас - аттосекунда
10 −21 зепто zepto з z
10 −24 йокто yocto и y

Происхождение приставок

Большинство приставок образовано от греческих слов. Дека происходит от слова deca или deka (δέκα) - «десять», гекто - от hekaton (ἑκατόν) - «сто», кило - от chiloi (χίλιοι) - «тысяча», мега - от megas (μέγας), то есть «большой», гига - это gigantos (γίγας) - «гигантский», а тера - от teratos (τέρας), что означает «чудовищный». Пета (πέντε) и экса (ἕξ) соответствуют пяти и шести разрядам по тысяче и переводятся, соответственно, как «пять» и «шесть». Дольные микро (от micros, μικρός) и нано (от nanos, νᾶνος) переводятся как «малый» и «карлик». От одного слова ὀκτώ (októ), означающего «восемь», образованы приставки йотта (1000 8) и йокто (1/1000 8).

Как «тысяча» переводится и приставка милли, восходящая к латинскому mille. Латинские корни имеют также приставки санти - от centum («сто») и деци - от decimus («десятый»), зетта - от septem («семь»). Зепто («семь») происходит от латинского слова septem или от французского sept.

Приставка атто образована от датского atten («восемнадцать»). Фемто восходит к датскому (норвежскому) femten или к древнеисландскому fimmtān и означает «пятнадцать».

Приставка пико происходит либо от французского pico («клюв» или «маленькое количество»), либо от итальянского piccolo, то есть «маленький».

Правила использования приставок

  • Приставки следует писать слитно с наименованием единицы или, соответственно, с её обозначением.
  • Использование двух или более приставок подряд (напр., микромиллифарад) не разрешается.
  • Обозначения кратных и дольных единиц исходной единицы, возведенной в степень, образуют добавлением соответствующего показателя степени к обозначению кратной или дольной единицы исходной единицы, причём показатель означает возведение в степень кратной или дольной единицы (вместе с приставкой). Пример: 1 км² = (10³ м)² =10 6 м² (а не 10³ м²). Наименования таких единиц образуют, присоединяя приставку к наименованию исходной единицы: квадратный километр (а не кило-квадратный метр).
  • Если единица представляет собой произведение или отношение единиц, приставку, или её обозначение, присоединяют, как правило, к наименованию или обозначению первой единицы: кПа·с/м (килопаскаль-секунда на метр). Присоединять приставку ко второму множителю произведения или к знаменателю допускается лишь в обоснованных случаях.

Применимость приставок

В связи с тем, что наименование единицы массы в СИ - килограмм - содержит приставку «кило», для образования кратных и дольных единиц массы используют дольную единицу массы - грамм (0,001 кг).

Приставки ограниченно используются с единицами времени: кратные приставки вообще не сочетаются с ними (никто не использует «килосекунду», хотя это формально и не запрещено), дольные приставки присоединяются только к секунде (миллисекунда, микросекунда и т. д.). В соответствии с ГОСТ 8.417-2002 , наименование и обозначения следующих единиц СИ не допускается применять с приставками: минута, час, сутки (единицы времени), градус , минута , секунда (единицы плоского угла), астрономическая единица , диоптрия и атомная единица массы .

См. также

  • Non-SI unit prefix (английская Википедия)
  • IEEE стандарт для префиксов(англ.)

Литература

Урок 1 : Группировка информации.

Цели:

  • образовательная : научиться систематизировать полученную информацию, ввести основные понятия статистики: общий ряд данных, ряд данных, объём измерения, варианта измерения, кратность измерения, частота варианты, сгруппированный ряд данных. На конкретных примерах рассмотреть алгоритм нахождения указанных понятий;
  • развивающая : развивать способность обобщать, замечать закономерности;
  • воспитывающая : воспитывать внимание, аккуратность.

Оборудование: диск с презентацией.

Ход урока

I. Организационный момент.

II. Проверка домашнего задания, актуализация ЗУН.

Несколько обучающихся у доски: вычислить:

В это время проверяем домашнее задание по готовым ответам или слайдам.

III. Объяснение нового материала.

Мы живём, влюбляясь и мечтая,
Падая и поднимаясь ввысь.
А статистика упрямая старается
В цифрах выразить всю нашу жизнь.
Всё-то эта статистика знает,
Кто рождается и умирает,
Сколько нефти в стране добывают,
Кто какие журналы читает.
Вот столько здоровых, а столько больных,
Вот столько-то умных, а столько иных,
Вот столько студентов, а столько рабочих –
Считает статистика днём нас и ночью.

Как вы уже догадались, тема нашего урока – статистика. Статистика – наука, которая занимается получением, обработкой и анализом количественных данных о разнообразных массовых явлениях, происходящих в природе и обществе.

Задача сегодняшнего урока – научиться группировать и частично анализировать имеющуюся у нас информацию.

Сейчас я предоставлю вам ваши оценки по алгебре за предыдущую контрольную работу. Не применяя никакой системы, я просто выписала данные из вашего журнала.

Не глядя на эти данные, ответьте, какие числа могут встретиться среди них? (наводящие вопросы: какая у нас система оценивания? (пятибалльная). Значит, какие отметки мы здесь можем увидеть? (1;2;3;4;5.)). В статистике цепочку данных, которая может встретиться среди измерений, называют общим рядом данных (открываю данные).

3 3 4 4 5 3
5 4 3 4 3 4
4 4 4 5 3 3
2 3 3 4 3 4 3.

Но теперь мы видим, что не все из указанных чисел здесь имеются, а только 2; 3; 4; 5. Числа, которые действительно встретились в нашей цепочке, называют рядом данных .

Глядя на эти данные, что мы можем сказать о вашей успеваемости? (варианты ответов).

Если не пытаться проанализировать данные, сказать мы можем очень мало. Но для анализа запись очень неудачна – в ней нет системы, нет закономерности. Какая запись, по-вашему, будет удачнее? (варианты ответов, останавливаемся на расположении в порядке возрастания).

2; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 5; 5; 5.

Такой порядок данных называют сгруппированным рядом данных.

Сколько у нас различных данных? (4).

Каждый результат называют вариантой измерения. Запомнить очень легко – один из вариантов, только женского рода.

(Записываем в тетрадь определение: Варианта измерения – один из результатов этого измерения ).

Так как количество данных невелико, мы уже сейчас можем сказать, что наибольшее число оценок составляют «тройки» и «четвёрки», наименьшее (слава Богу!) «двойки». Но на сколько? Таких расплывчатых данных явно недостаточно. Сколько у нас двоек? Троек? Четвёрок? Пятёрок?

Запишем определение: Каждая варианта наблюдается в ряде данных определённое количество раз. Это количество называется кратностью варианты.

Давайте оформим результаты наблюдений, а точнее, измерений, в виде таблицы: (рекомендую после таблицы оставить немного места, так как таблицу мы будем дополнять).

варианта сумма
2 3 4 5
Кратность варианты 1 11 10 3 25

Если сложить все кратности, то получится общее количество оценок в классе, в статистике общее количество данных измерения называют объёмом измерения. (Записываем в тетрадь: Количество всех данных измерения – объём измерения ).

Итак, группировка данных завершена. Количество двоек у нас – 1. Если это среди ста обучающихся, то это немного, а если среди пяти? То есть нам нужно связать кратность варианты с объёмом измерения. Какую часть составляет наша варианта от общего объёма измерения? (Вычисляем: ; ; ; .)

Мы нашли с вами частоту варианты.

(Записываем: Частота варианты = кратность варианты/ объём измерения ).

Часто частоту переводят в проценты, для этого полученные результаты умножают на 100%.

Итак, запишем результаты в таблицу.

варианта сумма
2 3 4 5
Кратность варианты 1 11 10 3 25
частота 0,04 0,44 0,40 0,12 1
Частота, % 4 44 40 12 100

Теперь информация о вашей успеваемости стала намного понятней: успеваемость в вашем классе составляет 96%, это те, кто успевает по предмету (имеет положительную оценку). Хорошим результатом это назвать нельзя, так как успевать должны все 100%. Качество знаний составляет 52%, это те, кто учится качественно , то есть на «4» и «5».

Какой вывод можно сделать из нашего исследования? Нам есть куда расти!

IV. Закрепление.

№ 19.3.Вопросы задания меняю.

    Давайте составим общий ряд данных . Не думаю, что могут встретиться арбузы массой меньше 3 кг и больше 15 кг.
    3; 3,5; 4; 4,5; 5; 5,5; 6; 6,5; 7; 7,5; 8; 8,5; 9; 9,5; 10; 10,5; 11; 11,5; 12; 12,5; 13; 13,5; 14; 14,5; 15.

    А теперь составим ряд данных , то есть тех, которые имеются у нас в действительности.
    5; 6; 6,5; 7; 8; 8,5; 9; 9,5; 10; 10,5; 11; 12.

  1. Сейчас мы заполним таблицу, такую же, как в предыдущем примере:
варианта Сумма
5 6 6,5 7 8 8,5 9 9,5 10 10,5 11 12
Кратность варианты 2 5 2 9 14 3 5 1 7 3 6 3 60
Частота 0,03 0,08 0,03 0,15 0,24 0,05 0,08 0,02 0,12 0,05 0,1 0,05 1
Частота, %. 3 8 3 15 24 5 8 2 12 5 10 5 100

(Дополнительные вопросы могут быть различными: Какова разница между самым тяжёлым и самым лёгким арбузом? Арбуз какой массы встречается чаще всего? Реже всего?)

(В зависимости от уровня класса эту таблицу можно закончить дома или задать другое домашнее задание).

V. Итоги урока.

(повторяем основные понятия, изученные на уроке, в тетради находим определения этих понятий). Домашнее задание: 19.4, 19.5.