Кто выпускает проходческий щит пщ 2. Проходческие щиты. Типы оборудования по способу разработки забоя

«Сегодня в Москве произошло знаковое событие в метростроении. Мы впервые в истории запускаем щит диаметром более 10 метров - размером фактически с полноценное трехэтажное здание. Два поезда будут ходить в одном тоннеле. Это совершенно новые технологии, которые раньше в Москве не применялись. За очень короткое время была проделана большая работа, щит собран за 27 дней. Его вес - 1600 тонн», - сказал М. Хуснуллин.

По его словам, машину фирмы Herrenknecht AG изготовили специально для Москвы в Германии. На создание щита потребовался почти год. Длина ТПМК - 66 метров.

«Самой тяжелой частью комплекса является ротор, который весит 156 тонн», - добавил М. Хуснуллин.

Глава Стройкомплекса сравнил работу ТПМК с механизмом мясорубки.

«Машина перемалывает породу как мясорубка и передает на конвейеры, затем грунт вывозится. Скорость работы щита - 350 метров в месяц. Грубо говоря, в день он должен проходить 10 метров. Это высокая скорость, но она зависит от грунтов», - пояснил М. Хуснуллин.

Он отметил, что проходку планируется закончить к концу 2017 года.

«В дальнейшем тоннелепроходческий комплекс будет задействован на строительстве Третьего пересадочного контура метро . Время работы щита расписано по суткам», - уточнил заммэра.

Обслуживать щит будет бригада из 49 человек в каждую смену.

Из Германии в Москву щит доставляли четырьмя видами транспорта: автотранспортом завода-изготовителя в речной порт в Германии, затем речным транспортом по этой стране. Оттуда через Балтийское море ТПМК привезли в Санкт-Петербург, а затем автоколонной доставили в Москву.

Такие комплексы нужны для возведения двухпутных тоннелей большого диаметра, что позволит построить станции с двумя боковыми платформами. Строительство метро по этой технологии дает экономию до 30% по сравнению с традиционными проектами.

Напомним, в Москве традиционно строили однопутные тоннели метро, в которых поезд движется в одном направлении. Платформа располагается посередине.

При строительстве двухпутных тоннелей платформы станции располагаются по бокам, а поезда следуют навстречу друг другу в центральной части платформы.

Подробнее о двухпутных тоннелях метро и машинах, которые их строят, читайте в

Наша справка

Кожуховскую ветку метро планируется открыть в 2018 году. Запуск этой линии позволит значительно улучшить транспортное обслуживание жителей нескольких районов -

Десятиметровый тоннелепроходческий механизированный комплекс (ТПМК) «Лилия» начал строительство двухпутного тоннеля на Кожуховской линии московского метрополитена, сообщил в четверг, 29 декабря, заместитель мэра Москвы по вопросам градостроительной политики и строительства Марат Хуснуллин. АО «Мосинжпроект» является управляющей организацией по строительству новых линий и станций столичной подземки.

«Сегодня в Москве произошло знаковое событие в метростроении. Мы впервые в истории запускаем щит диаметром более 10 метров - размером фактически с полноценное трехэтажное здание. За очень короткое время была проделана большая работа, щит собран за 27 дней», - подчеркнул Хуснуллин.


Генеральный директор АО «Мосинжпроект» Марс Газизуллин уточнил, что ТМПК двигается от переходной камеры за станцией метро «Косино» в направлении станции «Нижегородская улица». 10-метровый проходческий щит будет строить двухпутный тоннель, в котором поедут сразу два поезда метро (в противоположных направлениях).

«Два поезда будут ходить в одном тоннеле. Это совершенно новые технологии, которые раньше в Москве не применялись», - добавил Марат Хуснуллин. Строительство двухпутных тоннелей позволяет возводить метро быстрее и дешевле: как отмечают в столичном Стройкомплексе, строительство метро по этой технологии дает экономию до 30% по сравнению с традиционными проектами.


Марат Хуснуллин сравнил работу ТПМК с механизмом мясорубки: «Машина перемалывает породу, как мясорубка, и передает на конвейеры, затем грунт вывозится. Скорость работы щита - 350 погонных метров в месяц. Грубо говоря, в день он должен проходить 10 метров. Это высокая скорость, но она зависит от грунтов», - пояснил Глава Стройкомплекса. Он также уточнил, что проходку планируется завершить в конце следующего года. Заместитель мэра Москвы также сообщил, что в дальнейшем данный тоннелепроходческий комплекс предполагается задействовать на строительстве Третьего пересадочного контура (ТПК) метро.

Длина ТПМК составляет 66 метров, вес - около 1600 тонн. Самой тяжелой частью ТПМК является ротор, который весит 156 тонн. Обслуживать щит будет бригада из 49 человек в каждую смену.

ТПМК изготовлен в Германии одним из самых авторитетных мировых производителей подобной техники - фирмой Herrenknecht AG. На его создание потребовался почти год. Из Германии в Москву тоннелепроходческий комплекс доставили с помощью четырех видов транспорта: автотранспортом завода-изготовителя в речной порт в Германии, потом речным транспортом по Германии, откуда через Балтийское море ТПМК привезли в Санкт-Петербург, а затем автоколонной доставили в Москву.

Напомним, ввести в эксплуатацию строящуюся Кожуховскую линию метрополитена планируется в 2018 году. На ней возведут девять станций: «Авиамоторная», «Нижегородская улица», «Стахановская», «Окская улица», «Юго-Восточная», «Косино», «Улица Дмитриевского», «Лухмановская» и «Некрасовка» (в будущем участок «Нижегородская улица» - «Авиамоторная» войдет в состав ТПК).

Генеральный директор АО «Мосинжпроект» Марс Газизуллин отметил, что строительство Кожуховской ветки метро позволит значительно улучшить транспортное обслуживание жителей сразу нескольких московских районов: Нижегородский, Рязанский, Выхино-Жулебино, Косино-Ухтомский, Некрасовка, Текстильщики, Кузьминки и городского поселения Люберцы Московской области. Новая ветка метро также позволит перераспределить пассажиропотоки Таганско-Краснопресненской линии, которая сегодня работает с перегрузом в 1,3 раза. Сократится и время пребывания пассажиров в пути - на 15-20 минут.

Фото: пресс-служба Стройкомплекса Москвы

Видео: пресс-служба АО «Мосинжпроект», «Вести.RU», «ТВЦ»

Проходческий щит , или Тоннелепроходческий комплекс (ТПК) - устройство, предназначенное для строительства подземных тоннелей.

История щитов

Примерно так выглядел щит Брунеля

Первый проходческий щит придумал английский инженер Марк Исамбард Брунель в начале XIX века, взяв за основу принцип морского червя-древоточца. В 1814 году Брунель предложил русскому императору Александру I построить при помощи свежепридуманного дивайса тоннель под Невой, но отсталый тиран предпочел банальный мост. Марк Исамбард расстроился, но не сильно: в 1818 году он запатентовал свой щит, а в 1825-м началось строительство тоннеля под Темзой. С тех пор Великобритания заслуженно считается пионером щитовой проходки. Более того, сам щитовой метод в специальной литературе получил название "лондонский" .

Советская копия английского щита на Театральной площади в Москве

В Советском союзе щит был впервые построен в 1934 году для проходки сложного участка первой очереди московского метро между Театральной площадью и Лубянкой. Несмотря на то, что советские пропагандисты преподносили этот факт как победу социалистической индустрии, на самом деле советский щит был копией английского щита фирмы "Маркхэм и Ко" , который был ранее куплен за валюту и уже работал на том же участке.

Что любопытно - английский щит прибыл на стройплощадку в разобранном, разумеется, виде, но без чертежей и документов. Поскольку вероятность того, что их проебали англичане, является абсурдной, современные ксенобиологи считают, что с чертежей в это самое время снимали копии пытливые советские инженеры. В результате собирать английский щит пришлось комсомольцам-ударникам при помощи кувалд, народной смекалки, такой-то матери и иностранного консультанта. Советский щит вступил в строй буквально в считанные месяцы - совершенно очевидно, что создать "с нуля" устройство такой сложности, не имея в этой области ни малейшего опыта, невозможно физически - даже если товарищ Каганович очень попросит.

Устройство щитов

Классический проходческий щит состоит из рабочего органа (это то, чем копают), трубы (чтобы сверху песок и земля не сыпались), эректора (это то, чем укладывают блоки, а не то, что вы подумали) и домкратов, которыми щит отталкивается от построенного тоннеля.

Классификация щитов

С точки зрения любителей полазить под землей, щиты делятся на четыре категории:

Ржавая труба с домкратами, некогда гнившая на пути из Строгино в Митино

Ржавая труба с домкратами

Старый советский щит серии Щ или ЩН. В качестве рабочего органа используются рабочие с отбойными молотками и лопатами. Особой ценности для эксплуатирующей организации не представляет, поэтому, как только кончаются деньги на строительство, бросается, как есть.

Под просторами нашей родины гниют десятки устройств этой категории. Еще больше их гниет на секретных складах метростроя. Как только стоимость нефти достигает 130 баксов за баррель, денег на строительство метрополитенов становится много, а заграничных щитов катастрофически не хватает, метрострой извлекает со складов десяток ржавых труб и отправляет их работать.

Метровентиляторы и другие интересующиеся товарищи с нетерпением ждали, когда же наконец из загашников появится тот самый щит 1934-го года, но тут наступил кризис и бабло иссякло.

Популярным щитом КТ-1-5,6 в нашей стране построили хер его знает сколько километров тоннелей

Обычно серия КТ, производства Ясиноватского завода (Украина). Одно время (в 70-е годы) считались лучшими щитами в мире, но за прошедшие годы скатились в сраное говно. Так, последний, купленный московским метростроем КТ (с компьютерным управлением и другими прибамбасами), прошел порядка 100 метров перегона "Улица Академика Янгеля" - "Анино" и сдох совсем. Метрострой оказался перед выбором - копать демонтажную камеру, вытаскивать щит и сдавать по гарантии или делать что-то еще. Сделали что-то еще: выломали из щита все компьютерное управление, рабочий орган, поставили перед ним рабочих с лопатами и отбойными молотками. Вобщем, получилась ржавая труба с домкратами. Некоторое количество таких щитов тоже гниет под просторами, несколько штук используется.

Российский щит Топаз-М. Компьютерное управление, лазерный теодолит, роторный рабочий орган, все дела.

Российский щит

Собранный на коленке девайс, обычно используемый при проходке коллекторов. Выпущен, чаще всего, той же организацией, которая его использует. Надо отметить, что существуют довольно продвинутые, даже по сравнению с западными, модели. Однако, российские производители по неизвестным причинам являются фанатами прессобетонной обделки тоннелей. После эпического фэйла, случившегося с такой отделкой в нижегородском метрополитене, ее применение в метростроении запретили.

Кроме того, сколько-нибудь серийное производство щитов в России отсутствует и все известные модели являются штучными изделиями, собранными десятком Левшей и Кулибиных. Поэтому в природе российские щиты встречаются крайне редко.

Заграничный щит

Продвинутый девайс производства фирм Херренкнехт, Ловат, Вирт и еще миллиона японских компаний (в Японии практически каждая крупная компания выпускает щиты, кроме шуток!). Весь в компьютерах, датчиках, лазерных теодолитах и тому подобных устройствах. Может копать, может не копать, может делать еще кучу полезных вещей, приносить кофе и рассказывать сказку на ночь. А вот крестиком не вышивает. Упс. Хотя нет, постойте. Говорят, что некоторые японские щиты вышивают.

Заграничный щит. Где-то за границей. Судя по надписи US AIR FORCE, он еще и летать умеет.

Такой щит (и отдельные его части) представляют собой серьезную ценность для владельца. Поэтому застревают они редко. Если вдруг кончаются деньги, подрядчик копает сверху шахту, извлекает через нее щит и увозит его туда, где деньги есть. Ввиду наличия перечисленных недешевых девайсов, без присмотра находятся редко - обычно на щите тусуется пара монтеров, вне зависимости от времени суток. Тоннели, заканчивающиеся заграничным щитом, обычно охраняются лучше, чем тоннели без оного.

Впрочем, один из навороченных заграничных щитов - Lovat "Полина" на строительстве станции "Борисово" Люблинской линии Московского метрополитена - торчал под землёй без движения чуть более чем два года, практически без охраны. То, что он сохранился, можно объяснить только предельно малой распространённостью диггерства в те далёкие, но прекрасные годы.

В начале 2004 года владелец "Полины" - компания "Протонтоннельстрой" - сообразила, что в Казани, где в те времена олимпийскими темпами строили метро, есть столь необходимое им бабло. Не согласовав это ни с московской Дирекцией строящегося метрополитена, ни вообще с кем бы то ни было, "Протонтоннельстрой" отгородил площадку во дворе жилого дома на ул. Борисовские пруды, вырыл на ней шахту, извлек через нее щит и отправил в Казань.

Наивные метровентиляторы восторженно написали о прибытии щита на своих метрофорумах . Оттуда информация перетекла на многочисленные сайты, посвященные строительству казанского метро. Тут Протонтоннельстрой спохватился: сотрудники службы безопасности оного стали писать и звонить владельцам сайтов, предлагать встретиться, требовать убрать информацию и фотографии, угрожать, предлагать деньги. В итоге они ничего не добились, но вся эта история доставила участникам массу лулзов.

В 2008 году компания Lovat была поглощена международным монстром Caterpillar, и уже через пять лет было объявлено, что выпуск проходческой техники на заводе в Торонто будет прекращен. Боссы Caterpillar в заявлениях для прессы о причинах остановки производства щитов отделывались бессмысленной маркетинговой хуйней в стиле "Lovat больше не представляет собой стратегическую возможность для роста" - глобализация экономики рулит, ога. Все оборудование продали китайской компании Liaoning (мы не знаем, как это правильно транскрибировать, попытайтесь сами), пообещав сохранить сервисное обслуживание ранее купленной техники до 2016 года.

Факты

Наклейка с предупреждением.

Щит Клавдия. Можно просто Клава.

  • Средняя скорость среднего заграничного щита - 500-600 метров в месяц, зависит от грунтов.
  • Мировой рекорд скорости проходки - 1240 метров в месяц - установлен в 1981 году щитом КТ-1-5,6 на строительстве перегонного тоннеля в Ленинграде от "Пионерской" до "Удельной". Щит гнали на убой и по завершении проходки утилизировали.
  • Самый большой в мире щит произведен компанией Херренкнехт и имеет диаметр 15,2 метра.
  • Щит диаметром 20 метров был спроектирован, но так никогда и не выпущен компанией Херренкнехт по заказу правительства Москвы. Техническим заказчиком выступало ЗАО "Инфраструктура", принадлежащее на паях Абрамовичу (тому самому) и Абрамсону. Проект щита отложен в долгий ящик и предполагается, что к нему вернутся, когда Москва дорастёт до строительства автомобильного тоннеля из Коломенского в Печатники по трассе 5-го автомобильного кольца.
  • Многие детали заграничных щитов имеют противокражную маркировку, наподобие кода, наносимого на детали автомобилей. Данные по этой маркировке у производителей щитов сведены в единую базу, поэтому всегда можно узнать, с какого именно щита был украден купленный вами в подворотне за пару бутылок водки лазерный теодолит. Очень удобно.
  • Фирма Lovat с легкой руки ее основателя Ричарда Ловата любит давать щитам женские имена в честь покровительницы горняков Святой Варвары (в католичестве также считается, будто она предохраняет от внезапной смерти, что кагбы намекаэ). Подхватили эту традицию и

Одним из самых важных элементов при строительстве туннелей и метрополитенов, для первоначальной обработки горной породы, в которых будет производиться строительство того или иного объекта, является проходческий щит. Данное оборудование, как правило, работает в составе комплекса проходческой техники, однако он является наиважнейшим из всех его рабочих частей.

Устройство проходческого щита

Как правило, в диаметральном выражении размеры проходческого щита могут варьироваться от одного до девятнадцати метров, что является достаточно большим размером. Соответственно, что чем больше размеры строительства, тем большего диаметра выбирается для использования проходческий щит. Так же нередко данное средство используется при всевозможных , в тех случаях, когда работы проводятся под землей.

Основными рабочими элементами проходческого щита являются такие части, как кольцо ножевого типа действия, кольцо опорного типа, домкраты, которые могут быть щитовыми, платформенными и забойными. Так же к элементам рабочих органов щита относятся трубы, система управления и перегородки, которые могут вертикальными и горизонтальными.

Разновидности проходческих щитов

Проходческие щиты имеют подразделения на щиты механического действия и немеханического действия. Немеханизированный щит практически не выгоняет никаких функций, кроме того, что служит так называемым защитным от разрушения средством, в то время, пока рабочие выполняют все физические работы самостоятельно, посредством применения отбойных молотков.

К данному виду можно отнести еще и щиты проходческие, оснащенные кессонном. Они используются в водонасыщенных местах. На данном щите вмонтирована специальная заслонка, куда происходит скопление воздуха под высоким давлением, посредством чего происходит откачка воды из грунта.

Принцип работы проходческого щита

Работа щита происходит посредством вращающихся роторных частей, которые оснащены специального вида резаками. Именно за счет вращения данных механизмов и происходит разрушение горной породы. Далее уже переработанный грунт, поступает по конвейерному устройству на дальнейшую транспортировку. в щитах с механизированным принципом действия так же имеются подразделения.

Механизированные проходческие щиты так же бывают оснащены такими элементами как кессон. Еще одной разновидностью механизированных щитов являются щиты которые оснащаются таким рабочим элементом, как грунтопригруз, куда выдается грунт, а уже потом уже в более измельченном виде выводится посредством работы конвейера шнекового типа действия.

Так же существует еще одна разновидность механических проходческих щитов, которая оснащается таким рабочим элементом, как гидропригруз. В данном приспособлении грунт смешивается с таким веществом как бентонитовый раствор, который выводит грунт по трубопроводу на поверхность, при этом происходит отделение самого грунта от раствора, который остается в гидропригрузе. Однако применение данных моделей не является чрезвычайно частым, поскольку такой вид техники считается наиболее дорогостоящим.

Производительность проходческих щитов является достаточно высокой, именно этим и обусловлено их широкое использование. Сегодня данный тип техники выпускается, как российским, так и зарубежным производителем и выбор той или иной модели зависит лишь от характера и сложности работ, которые будут выполняться.

Строительство первой очереди Московского метрополитена характеризовалось широким применением классического горного способа проходки с разработкой сечения тоннеля по частям. Этому способу присущи высокая степень использования ручного труда во всех производственных процессах, теснота рабочего пространства, лишающая возможности механизировать работы.

Устройство монолитной бетонной обделки, сооружаемой по частям, чрезвычайно трудоемко, требует большого количества деревянной опалубки и крепежного леса для сложного временного крепления. Бетонная конструкция обделки тоннелей обусловливала сложный комплекс гидроизоляционных работ - устройство оклеенной гидроизоляции и сооружение поддерживающей железобетонной рубашки. Технологическая необходимость последовательного выполнения операций по сооружению тоннеля затрудняла возможность совмещения трудоемких процессов во времени, ограничивая темпы проходки и возможности механизации.

Затраты труда на основные процессы по сооружению перегонного тоннеля первой очереди строительства равнялись 646 чел.-ч на 1 пог.м, а приведенная скорость проходки - 0,2 пог. м в сутки. В период наибольшего развертывания работ общая численность занятого персонала составляла около 75 тыс. человек.

Первая очередь Московского метрополитена стала своеобразной лабораторией. На опытных участках испытывались почти все известные в то время способы проходки, в том числе и щитовой способ сооружения тоннелей. Этим способом сооружали участок перегонного тоннеля от Театральной площади (ныне площадь Свердлова) до станции «Дзержинская». В работе находилось два щита. Один был поставлен из Англии, другой - изготовлен отечественной промышленностью.

Сооружение тоннелей с помощью проходческого щита показало полную техническую и экономическую целесообразность такого способа работ. Разработка забоя на полное сечение, исключение тяжелого ручного труда по устройству временного деревянного крепления, применение для устройства обделки бетонных блоков, а позднее чугунных тюбингов вместо монолитного бетона, т. е., по существу, замена сооружения обделки ее монтажом, резко снизившая трудоемкость работ и позволившая полностью механизировать их с помощью специальных укладчиков блоков и тюбингов, значительное уменьшение трудоемкости гидроизоляционных работ - таковы важнейшие преимущества щитового способа проходки.

Результаты опытных работ с использованием щитовой проходки на строительстве первой очереди Московского метрополитена позволили принять решение - начиная со второй очереди строительства проходческие работы вести в перегонных и станционных тоннелях метрополитена в основном щитовым способом. Для практической реализации этого решения требовалось 42 проходческих щита, а в распоряжении строителей было только два. 40 щитов (28 перегонных диаметром 6 м и 12 станционных диаметром 9,5 м) - такой огромный заказ должен был быть выполнен менее чем за два года.

Созданная за годы первых пятилеток отечественная промышленность сумела успешно справиться с этой задачей. Партия и правительство уделяли большое внимание Метрострою. За выполнением заказа лично следил нарком тяжелой промышленности Серго Орджоникидзе. Станционные щиты изготовляли в Ленинграде и Новокраматорске, перегонные - в Горловке и Коломне. Производство станционных тюбингов было поручено Уральскому заводу тяжелого машиностроения, перегонных тюбингов - Днепропетровскому машиностроительному заводу.

Пока на заводах велось изготовление щитов, метростроевцы проводили подготовительные работы, готовили квалифицированные бригады монтажников. Инженеры, техники и рабочие-тоннельщики знакомились с конструкцией проходческих щитов и технологией щитовой проходки. Были созданы две бригады по 20 человек с учетом четырехсменной круглосуточной работы. Начальником монтажных работ назначили Е. П. Солдатова, опытного мастера-монтажника. Его высокая квалификация, отличные организаторские способности способствовали успешной работе монтажных бригад. Скорость монтажа щитов была доведена с месяца до двух недель.

Радикальные изменения, которые щитовой способ проходки внес в технологию сооружения тоннелей, позволили резко повысить производительность труда тоннелестроителей. Затраты труда на основные процессы по сооружению 1 пог.м перегонного тоннеля снизились с 646 чел.-ч на первой очереди до 249 чел.-ч на второй очереди, т.е. более чем в 2,5 раза. По мере освоения щитового способа на второй очереди строительства скорости проходки перегонных тоннелей возросли с 2 пог.м в месяц в начале работ до 45-50 пог. м в конце работ. Изменив коренным образом основные процессы проходки, щитовой способ потребовал механизации остальных процессов.

При новом соотношении трудоемкости основных процессов возрос удельный вес таких операций, как разработка забоя, погрузка породы, ее транспортировка, остававшихся ручными. Эти операции стали узким местом в общей технологической цепи, ограничивая развитие и темпы строительства. Главной задачей дальнейшего совершенствования производства работ на строительстве третьей и особенно четвертой очередей Московского метрополитена стала механизация разработки породы, ее погрузки и транспортировки.


Массовое внедрение породопогрузочных машин, электровозной откатки, механических сбалчивателей тюбингов, механизация поверхностного шахтного комплекса: опрокидывателей вагонеток, выталкивателей груженых вагонеток из шахтной клети и другого оборудования - обеспечили дальнейшее снижение трудоемкости сооружения тоннелей и повышение производительности труда на четвертой очереди строительства в 4 раза по сравнению с первой очередью. При возведении перегонного тоннеля между станциями «Арбатская» и «Смоленская» в начале 50-х гг. в тяжелых гидрогеологических условиях, под сжатым воздухом с помощью проходческого щита сооружали более 6 пог.м тоннеля в сутки, т.е. выполняли 167% нормы.

В 60-х гг. при проходке перегонного тоннеля на Ждановском радиусе Московского метрополитена, а позже на Замоскворецком радиусе в песках естественной влажности московские метростроевцы, разрабатывая забой проходческим щитом, временное крепление забоя поручили песку, превратив его из врага в помощника, по образному замечанию начальника СМУ. Угол естественного откоса песка обеспечивал временную устойчивость лба забоя, а гидравлический напор щитовых домкратов помогал выполнять разработку забоя. Когда появились небольшие глинистые прослойки, затруднявшие проходку, конструкторы совместно со строителями создали специальные лопастные рыхлители, которые были установлены на площадках щита и включались в работу, способствуя разработке породы.


Так был создан механизированный щит ЩМ-17, который использовали при строительстве Краснопресненского радиуса Московского метрополитена на проходке участка перегонного тоннеля длиной 1800 м в песках естественной влажности со средней скоростью 117 пог.м в месяц. Другой такой щит используется на строительстве Горьковского метрополитена.

На линиях второй и третьей очередей строительства Московского метрополитена щитовой способ проходки тоннелей с применением сборной чугунной обделки оставался единственным для всех забоев, независимо от гидрогеологических условий. Позже, на линиях четвертой очереди, щитовую проходку использовали только в забоях со сложными гидрогеологическими условиями и при слабоустойчивых породах. Одновременно продолжалась дальнейшая механизация и рационализация отдельных процессов проходки. Создание и внедрение механических сбалчивателей позволило во всех забоях перегонных, станционных и эскалаторных тоннелей полностью исключить тяжелый ручной труд по монтажу обделки и повысить производительность труда на этом процессе почти в 3 раза по сравнению с третьей очередью строительства. Тяжелый и малопроизводительный труд по ручной очистке лотка тоннеля перед его бетонированием был исключен благодаря внедрению плоского лотка. Все это позволило превысить установленные проектом четвертой очереди скорости проходки перегонных и станционных тоннелей.

Как показывает практика строительства, наиболее эффективное совершенствование методов разработки породы в забое и комплексная механизация процессов сооружения тоннелей могут быть достигнуты только путем создания и внедрения специальных механизированных щитов - тоннельных комбайнов, позволяющих полностью устранить ручной труд в трудоемких процессах тоннельных работ и значительно повысить скорости сооружения тоннелей.

Много лет проектировщиками и метростроителями проводится большая работа по разработке конструкций, созданию и внедрению в практику строительства механизированных проходческих щитов. Специалистами Главтоннельметростроя созданы механизированные щиты для разнообразных условий работы в породах различной крепости. Первым вариантом такой конструкции был щит, использованный в Ленинграде. Результаты испытаний оказались настолько успешными, что была изготовлена партия из шести щитов, используемых на проходке перегонных тоннелей с 1949 г. С помощью этих щитов сооружено около 70 км перегонных тоннелей. Ленинградский механизированный щит имеет планетарный привод мощностью 80 кВт, режущий рабочий орган из четырех дисков-фрез, каждая из которых оснащена 12 стержневыми резцами, армированными твердым сплавом; подача на забой гидравлическая.

Создание механизированных щитов для разнообразных и сложных гидрогеологических условий сооружения тоннелей в Москве представляет собой более трудную задачу. Первый механизированный щит для строительства Московского метрополитена был создан в 1953 г. Он предназначался для механического разрушения горных пород крепостью до 175-200 кгс/см 2 и был выполнен по типу ленинградского механизированного щита, с планетарным режущим органом - двумя рабочими дисками по 24 резца на каждом. Щит прошел заводские и производственные испытания. С его помощью были построены 623 м перегонного тоннеля на Рижском радиусе.

К концу 50-х гг. было принято решение сооружать тоннели Московского метрополитена в основном мелкого заложения. Большую часть перегонных тоннелей должны были проходить в моренных глинах, суглинках, супесях, песках естественной влажности. Созданный для этих условий механизированный щит имел плоскую планшайбу, оснащенную ножами. Каменистые включения размером более 250 мм вынимались вручную, для чего в планшайбе были предусмотрены специальные отверстия. Этим щитом были сооружены два участка перегонного тоннеля длиной 900 м вблизи станции «Профсоюзная». Проходка велась со средней скоростью 118 пог. м и максимальной скоростью 187 пог. м в месяц. Участок тоннеля длиной 450 м вблизи станции «Первомайская» был пройден со средней скоростью 80 пог. м и максимальной скоростью 132 пог. м в месяц.

Более удачным по конструкции и эксплуатационным качествам был созданный в 1961 г. механизированный щит ЩМ-8 диаметром 3,6 м с гидроприводом и рабочим органом в виде конической планшайбы, оснащенной пластинчатыми ножами и стержневыми резцами, для проходки гидротехнических и коллекторных тоннелей в породах крепостью от 20 до 250 кгс/см 2 (мягкие вязкие глины, карбонные глины, мергели, суглинки, лессы, слабые известняки).

На основе опыта использования механизированных щитов М-105, 105Т, ЩМ-4, ЩН-1 для широкого диапазона устойчивых пород крепостью от 20 до 400 кгс/см 2 был создан механизированный щит ЩМР-1. При разработке конструкции были значительно улучшены основные параметры щита. Привод выполнен на постоянном токе, что позволяет в широких пределах регулировать работу щита, изменяя обороты рабочего органа в зависимости от крепости пород. Значительно увеличена мощность привода, она составляет 320 кВт (2X160). Двухмоторный привод позволяет регулировать мощность отключением одного из двигателей при проходке слабых мягких пород. Благодаря упрочненным стержневым резцам улучшено резание крепких пород.

При испытаниях щита в Киеве на проходке участка в спондиловых глинах было сооружено более 3 тыс. м перегонного тоннеля, в том числе 2190 м с обделкой, обжатой в породу. При этом достигнута скорость 262 м в месяц, 14 м в сутки и 6,03 м в смену. Второй щит ЩМР-1 был использован в Москве на проходке участка перегонного тоннеля в породах средней крепости (карбонные глины и известняки. Было пройдено 1370 м, максимальная скорость составила 147 пог. м в месяц.

Ленинградские механизированные щиты, проработавшие более 25 лет, в настоящее время заменяются новыми механизированными щитами КТ-1-5,6, созданными и изготовленными на Ясиноватском машиностроительном заводе. Щиты КТ-1-5,6 оснащены рабочим органом щелевого типа. Он состоит из четырех лучевых баров со стержневыми резцами, разрабатывающими кольцевые концентрические щели, и устройством, ломающим остающиеся кольцевые выступы породы. Мощность привода щитов 200 кВт, т. е. в 2,5 раза больше, чем щитов предыдущей модели, а наибольшее усилие подачи 50 тс, т. е. в 6 раз больше прежнего. Средняя скорость проходки при использовании этих щитов 330 - 350 пог. м в месяц. Рекордная скорость проходки 1250 пог. м в месяц превышает мировой рекорд для тоннелей этого диаметра.

С внедрением механизированных щитов ЩМ-17, КТ-1-5,6 и ЩМР-1 может быть осуществлена комплексная механизация проходки перегонных тоннелей метрополитена, залегающих в породах диапазоном от песков естественной влажности до слабых известняков и песчаников.

Для комплексной механизации проходческих работ при строительстве перегонных тоннелей метрополитена открытым способом создан специальный щит. Он представляет собой комплекс проходческого оборудования, включающий щит прямоугольной формы - металлическое передвижное крепление котлована под двухпутный тоннель. В передней изолированной части комплекса ведется разработка породы экскаватором с погрузкой ее в автотранспорт, позади производится монтаж цельносекционной обделки при помощи 20-тонного козлового крана ККТС-20. Комплекс позволяет- обеспечить полный проходческий цикл при значительном сокращении вскрышных работ.

Двукратные испытания комплекса в обычных и тяжелых условиях строительства показали его высокую производительность. Достигнутая скорость проходки составила 6 пог. м двухпутного тоннеля в сутки. Проходка тоннеля с применением щита открытого способа работ была начата в конце 1979 г. в Киеве.

Работы по совершенствованию конструкций механизированных щитов и созданию новых щитов продолжаются. Ведутся разработки щита со сменными рабочими органами, экскаваторным рабочим органом, а также работы по ряду других направлений.

Огромная доля участия в ведущихся более чем четверть века поисках наиболее совершенных конструкций механизированных щитов принадлежит Московскому механическому заводу (ранее завод № 5 Метростроя), который изготовил восемь моделей таких щитов в количестве 24 экземпляров, со всем оборудованием проходческого комплекса. С помощью щитовых комплексов, включая ленинградские механизированные щиты, сооружено более 120 км тоннелей метрополитенов во многих городах нашей страны.