Лазерный дальномер – какой купить? Устройство для измерения расстояния Прибор для измерения расстояния с уровнем

К механическим приборам для непосредственного измерения расстояний отно-

сят стальные землемерные ленты и рулетки.

Землемерные ленты изготавливают из стальной полосы шириной 15–20 мм,

толщиной 0,4–0,5 мм. Их обозначают ЛЗ-20, ЛЗ-24, ЛЗ-50 в соответствии с длиной

20, 24 или 50 м между концевыми штрихами ленты при натяжении 98 Н. Концы

ленты (рис. 11.1) снабжены ручками, напротив концевых штрихов в ленте сделаны

вырезы для закрепления ленты шпильками в натянутом состоянии на поверхности

земли. Метровые деления ленты закреплены оцифрованными пластинками, полу-

метры обозначены заклепками, дециметровые деления отмечены круглыми отвер-

стиями. Точность отсчета t ≈ 1 см.

В нерабочем состоянии лента должна быть намотана на каркас в виде кольца. В

комплекте с лентой типа ЛЗ применяется набор из 6 или 11 металлических шпилек.

Рулетки изготавливают многие зарубежные фирмы под различными наимено-

ваниями. В России выпускаются рулетки 2-го класса точности ОПК2-20 АНТ/1,

ОПК2-30 АНТ/1, ОПК2-50 АНТ/1. Их изготавливают из стальной ленты шириной 1

см, длиной соответственно 20, 30 и 50 м. Ленту покрывают защитной пленкой, на

нее наносят линейную шкалу с ценой деления 1 мм. Точность отсчета по такой

шкале t ≈ 0,2–0,5 мм.

Рулетка 3-го класса точности ОПК3-20 АНТ/10 длиной 20 м характеризуется

шкалой с ценой деления 10 мм (точность отсчета по шкале t ≈ 2–5 мм). В рулетках

ОПК2 и ОПК3 ленты намотаны на каркас. В комплект рулеток шпильки не по-

ставляются.

Примечание. В шифрах рулеток буквами и цифрами обозначены: О – откры-

тый корпус (вилка или крестовина); З – закрытый корпус; П – плоская лента (сече-

ние не в форме желоба); К – кольцо вытяжное; 2 или 3 – класс точности; А – удале-

ние шкалы от начала ленты; Н или У – нержавеющая или углеродистая сталь; Т –

штрихи шкалы нанесены травлением; /1 или /10 – в знаменателе дроби цена деле-

ния шкалы 1 или 10 мм.


Рис. 11.1. Лента землемерная ЛЗ-20:

а – метровые и дециметровые деления; б – на каркасе; в – шпильки

Рабочее натяжение всех лент ЛЗ и рулеток – 98 Н.

Поскольку землемерные ленты и рулетки принципиально не различаются, в

дальнейшем будем использовать их обобщающее наименование – мерные ленты.

Компарирование мерных лент – это сравнение рабочей длины ленты с длиной

рабочего эталона. Ленты, находящиеся в эксплуатации, ежегодно аттестуют (вы-

полняют их компарирование с выдачей документа на допуск к использованию) в

лаборатории метрологического надзора. Фактическая длины рабочей ленты выра-

жается уравнением, например l р = 20,000 + 0,005 м, или


l р = l 0 + ∆ l к,



где l 0 – номинальное значение длины; ∆ l к – поправка за компарирование, ука-

занная для температуры компарирования t к (обычно t к = 18 − 20°С).

В процессе эксплуатации мерных лент производят их рабочее компарирование

в метрологической лаборатории предприятия. Применяют также сравнение длины

l р рабочей ленты с длиной l а однотипной аттестованной ленты, хранящейся в каче-

стве рабочего эталона (рис. 11.2).

При рабочей проверке аттестованную и проверяемую ленты помещают на

ровной горизонтальной поверхности рядом, растягивают силой 98 Н (можно при-

менить пружинные динамометры для натяжения силой 10 кгс ± 0,3 кгс), совмеща-

ют нулевые штрихи лент, проверяют величины несовпадения шкал через каждые 1


– 3 м и находят разницу ∆lар длин лент рабочей и аттестованной ∆ l ар = l





(см. рис. 11.2).


Для аттестованной ленты 2 известна метрологически выявленная поправка ∆ l э

= l 0 – l а, где l 0 – номинальное значение длины; l а – фактическая длина аттестован-

ной ленты. Тогда поправка в длину рабочей ленты (приближенная поправка на


компарирование) ∆ l" к = ∆ l кр + ∆ l э.


Если численное значение ∆ l" к отличается от


метрологически выявленной поправки ∆ l к больше чем на 1 / 10 000 от длины l, то

рабочую ленту направляют на поверку метрологической службой.

l э





l ар


l к


Рис. 11.2. Сравнение рабочей ленты

с рабочей поверенной лентой:

1, 2 – ленты рабочая и контрольная


Измерение лентой длины линий на земной поверхности. Полосу местности

между конечными точками А и В измеряемой линии расчищают от высокой травы,

кустов и предметов, препятствующих выравниванию ленты при измерениях. Для

устранения чрезмерных боковых отклонений ленты от направления АВ (рис. 11.3,

а) вехами обозначают створ – вертикальную плоскость, проходящую через две

точки на местности, в данном примере через точки А и В. Кроме основных вех А и

В в створе выставляют дополнительные вехи через 50 – 150 м соответственно ус-

ловиям их видимости. Вешение протяженных линий производят различными спо-

Для установки промежуточных вех способом ”на себя“ наблюдатель распола-

гается в 2–3 м позади вехи В (см. рис. 11.3, а), по его сигналам помощник в створе

А-В выставляет вехи 1, 2, 3. Первой укрепляют дальнюю веху. При отсутствии за

возвышенностью прямой видимости между вехами Е и К (рис.11.3,б) промежуточ-

ную веху 1 ставят на глаз вблизи створа в точке 1". Затем по указанию наблюдате-

ля в точке 1" помощник выставляет веху 2 в точке 2" створа 1"–К . После этого веху

1 выставляют в точке 1" створа 2"–Е и аналогичными действиями быстро прихо-

дят к обозначению створа Е–К.


В случае вешения через овраг или балку (рис. 11.3, в) в створе М–N ставят вехи

1 и 5, в створе N–1 – веху 2, в створе М–5 – вехи 3 и 4.

При прямой видимости в створе более точное вешение достигается с помощью

зрительной трубы теодолита, установленного над одной из точек створа. Сначала

устанавливают дальнюю веху, затем ставят промежуточные вехи, приближаясь к

теодолиту.

Рис. 11.3. Вешение створа:

а – на мало пересеченной местности; б – через возвышенность;

в – через глубокий овраг

Измерения линий лентой ЛЗ-20 выполняют два замерщика. Передний берет 5

или 10 шпилек, задний – одну и этой шпилькой, поставленной вертикально, закре-

пляет задний конец ленты у начальной точки, убедившись, что подписи метровых

делений возрастают в направлении переднего ее конца. Затем задний замерщик

прижимает ногой ленту к земле с упором к шпильке и направляет переднего за-

мерщика в створ, т. е. по направлению на переднюю веху. Передний замерщик на-

тягивает ленту и передний ее конец закрепляет в земле шпилькой, при этом лента

не должна сдвигаться относительно задней шпильки. Затем задний замерщик вы-

нимает свою шпильку, а передний снимает ленту со шпильки, которая остается в

земле и от которой измерение продолжается после продвижения ленты вперед на

ее длину l.

Когда передний замерщик поставит последнюю шпильку, у заднего их будет 5

или 10, это значит, что измерен отрезок, равный 5 l = 100 м или 10 l = 200 м при l

20 м.. Задний замерщик передает переднему 5 или 10 шпилек. Каждая такая пе-

редача отмечается в журнале измерений.

При достижении конечной точки В линии АВ измеряют так называемый остаток

r – расстояние от заднего нулевого штриха ленты до центра знака В. Полевой ре-

зультат измерения вычисляется по формуле



D = n l + r,



где n – число отложений ленты до остатка r.

Расстояние измеряется дважды («прямо» и «обратно»). Допустимое расхожде-

ние ∆D первого и второго результатов D" и D" определяется по их допустимой от-

носительной погрешности, например (∆D /D) доп = 1: 2000, при этом ∆Dдоп = D

Если линия или ее часть расположены на наклонной поверхности, то измеряют

угол наклона ν и длину D ν соответствующего отрезка. Определяют температуру t

ленты во время измерений, если она отличается от температуры компарирования

более чем на 8 – 10°С.

Техника измерения линий с помощью рулеток практически не отличается от

рассмотренной для ленты ЛЗ.

Вычисление горизонтального проложения d измеренного отрезка D произво-

дится с учетом поправок на компарирование ленты, на приведение наклонных уча-

стков к горизонту и на температуру.

Поправка на компарирование вычисляется с учетом формулы (11.2), т. е.


∆D к = ∆lк (n + r / l ),



она прибавляется к расстоянию D , если лента длиннее номинального значения l 0 ,

и вычитается, если лента короче. Такая поправка не принимается во внимание, если

ее величина равна или меньше 1: 10 000 длины l, т.е. для ленты длиной l = 20 м

не учитываются поправки ∆lк ≤ 2 мм.

Поправка на наклон отрезка длиной D учитывается в неявном виде при вычис-

лении горизонтального проложения d (рис. 11.4) по формуле


d = D cos ν,



где ν – угол наклона отрезка.

Поправка за наклон ∆Dν – отрицательное число, которое равно разности d – D


∆D ν = d – D = D cos ν – D = D (cos ν 1).



Рис. 11.4. Наклонное положение и провес мерной ленты:

а – наклон и горизонтальное проложение линии; б – провисание;

в – определение стрелы провисания

Если известно превышение h между конечными точками А и В прямого отрезка

(см. рис. 11.4), то поправка на наклон


∆D ν ≈ h 2 / 2 D.



Приближенная формула (11.6) выводится из рис. 5.4: h 2 = D 2 – d 2 = (D + d)

(D – d). При ограниченных значениях h принимаем D + d ≈ 2D, а согласно фор-

муле (5.5) D – d = ∆D ν. С учетом этих преобразований получена формула (11.6).

Поправка ∆D ν учитывается при углах наклона ν ≥ 1,5° или при превышениях h

≥ 2,6 м на 100 м расстояния D.

Температурная поправка в измеренное расстояние


∆D t = α D (t – t к),



где α – коэффициент температурной деформации ленты на 1°С (для стали α =

0,0000125; для нержавеющей стали α = 0,0000205);

t и t к – температура ленты во время измерений и при компарировании соответст-

Поправка на провес мерной ленты. На земной поверхности и между строитель-

ными конструкциями нередко мерной лентой измеряют расстояния «на весу» под

постоянным натяжением динамометром (рис. 11.4, б). Лента получает провисание



или прогиб, стрела прогиба равна f, при этом расстояние lf между точками М и К

отсчитывается по шкале ленты преувеличенным, а поправка на провисание теоре-

тически вычисляется по формуле


Δlп = 8 f 2 / 3l,



но практически поправку ∆lп определяют опытным путем.

Для определения поправки ∆lп колья М и К забивают на одной высоте с кон-

тролем по горизонтальному вирному лучу теодолита или нивелира. Через верх ко-

лышков натягивают мерную ленту с помощью динамометра, с постоянной силой,

которая будет применяться на объекте (в геодезии сила натяжения принята вели-

чиной 98Н или 10 кгс). Рядом с точкой максимального провисания забивают ко-

лышек Е, совмещая его верх с уровнем ленты. Стрелу провеса измеряют с помо-

щью линейки относительно горизонтального луча теодолита. Или колышки ниве-

лируют с помощью нивелира и рейки, берут отсчеты по рейке, соответственно m,

е, к – расстояния от горизонтального визирного луча то точек ленты. Стрелу прове-

са вычисляют по формуле


f = (m + к )/ 2 – е.



Стрелу провеса следует определить для ряда длин провисания рулетки: 10, 15,

20, 25, 30, … м и, пользуясь формулой (11.8), рассчитать для данного типа мерной

ленты таблицу или график поправок –∆lп на провисание участков различной дли-

Горизонтальное проложения вычисляется по формуле


d = D + ∆D к + ∆D ν + ∆D t + ∑∆lп.



Пример. 1. Определить горизонтальное проложение d линии АС при условии,

что рабочая лента характеризуется уравнением l = l 0 + ∆ l к = 20 м + 0,008 м

при t к = + 20°С; результат первого измерения линии АС представлен числом от-

ложений ленты n = 15, остатком r 1 = 15,38 м, тогда D" = 315,38 м, а результат вто-

рого измерения: n = 15, r 2 = 15,48 м, поэтому D " = 315,38 м. На отрезке АВ = 100 м


линии АС угол наклона ν = 4° 30". Температура стальной ленты при измерении t =

–10°С, при компарировании t к = + 20°С.

Р е ш е н и е. 1. Оценка качества полевого измерения линии АС : абсолютное


расхождение результатов ∆D = D" – D " = 0,10 м;


относительная погрешность


расхождения ∆D / D = 0,10 / 315 = 1/ 3150 ≤ 1/ 2000, т.е. расхождение ∆D = 0,10 м

допустимо, а среднее значения расстояния D = (D" + D ") / 2 = 315, 43 м.

2. Поправки: ∆D к = + 0,008 (15 + 0,77) = + 0,126 м;

∆D ν = АВ cos ν – АВ = 100 · 0,996917 – 100 = – 0,308 м;

∆D t = 1,25 · 10–5 · 315 [–10 (+20)] = – 0,118 м.

3. Результат: dАС = 315, 43 + 0,126 – 0,308 – 0,118 = 315,13 м.

Внешние факторы ограничения точности измерения линий лентами. При

измерениях лентами на местности возникают систематические и случайные по-

грешности. Систематическая погрешность складывается из ряда односторонне дей-

ствующих факторов: остаточной погрешности компарирования ленты, погрешно-

стей за счет искривлений ленты на вертикальных неровностях земной поверхности

и отклонений ленты от створа, ее неверного натяжения и смещений шпилек, вслед-

ствие пренебрежения поправками за наклон при ν < 1,5°, а также температурными

поправками.

Случайная погрешность обусловлена случайными влияниями неточного учета

поправок на наклон и температуру, колебаниями силы натяжения ленты.

Внешние условия сильно влияют на точность измерений линий лентами. В бла-

гоприятных условиях (ровная поверхность связного грунта) относительная по-

грешность длины линии составляет в среднем 1/ Т = 1 / 3000, в средних условиях

измерений (небольшие неровности, низкая трава) 1/ Т = = 1 / 2000, в неблагопри-

ятных условиях (резко пересеченная или заболоченная местность, кочковатость,

пашня, высокие травы и др.) относительная погрешность 1/ Т = 1 / 1000 (или 0,1 м

на 100 м расстояния).

Оптические дальномеры

Оптические дальномеры служат для определения расстояний величиной до 100-

300 м с относительной погрешностью от 1/200 до 1/3000 в зависимости от конст-

рукции прибора. Принцип измерения расстояний оптическими дальномерами гео-

метрического типа основан на решении сильно вытянутого прямоугольника или

равнобедренного треугольника, называемого параллактическим (рис. 11.5, а), ма-


лая сторона которого b = MN называется базисом дальномера, а противолежащий

малый угол φ – параллактическим. Из прямоугольного треугольника FWM, где WM

= b / 2 находим измеряемое расстояние


D = (1/2) b ctg (φ /2).



Различают оптические дальномеры с постоянным базисом и с постоянным па-

раллактическим углом. В дальномерах с постоянным базисом используется специ-

альная рейка с визирными марками М и N , расстояние между которыми принима-

ется от 1,5 до 3 м и определяется с относительной погрешностью около 1: 50 000

(не грубее 0,03 – 0,05 мм). Рейку устанавливают на штативе горизонтально и пер-

пендикулярно линии FW, параллактический угол φ измеряют высокоточным тео-

долитом с погрешностью m φ ≤ 3". Расстояние D вычисляют по формуле (11.10) с

учетом температурной поправки в длину базиса. Относительная погрешность рас-

стояния длиной 100 – 200 м составляет около 1/1500 – 1/3000.

Рис. 11.5. Оптический дальномер геометрического типа:

а – геометрическая схема; б – поле зрения трубы; в – схема измерений

В дальномерах с постоянным параллактичесим углом (φ = const) измеряют ба-

зис b, при этом в формуле (11.10) произведение (1/2) ctg(φ /2) = К является посто-

янной величиной, которая называется коэффициентом дальномера, поэтому


D = К b.



Нитяной дальномер. Такие дальномеры конструктивно входят в устройство

теодолитов и нивелиров. В зрительной трубе теодолита и нивелира верхний и ниж-

ний горизонтальные штрихи n и m визирной сетки (рис. 11.5, б) образуют нитяной

дальномер с вертикальным постоянным параллактическим углом φ. Вершина F

этого угла (передний фокус оптической системы зрительной трубы – рис. 11.5, в)



расположена либо вне, либо внутри зрительной трубы. Визирные лучи, проходя-

щие через дальномерные нити и передний фокус F, пересекаются с вертикально

расположенной дальномерной шкалой в точках N и M . Наблюдатель через окуляр

трубы отсчитывает по шкале величину базиса b – число делений между нитями n и

m. Измеренное расстояние FW равно D 1 = К b. Полное расстояние JW = D между

вертикальной осью прибора ZZ и плоскостью шкалы вычисляются по формуле ни-

тяного дальномера


D = К b + с,



D = D 1 + с,



где с – постоянное слагаемое дальномера (расстояние между осью вращения ZZ

прибора и передним фокусом F.

В современных зрительных трубах К = 100; с ≈ 0, а соответствующий параллак-

тический угол φ = 34,38"

Дальномерные рейки к нитяному дальномеру могут быть специальными, шкала

которых нанесена с ценой деления 2 или 5 см для измерения расстояний до 200–

300 м. Но при топографических съемках масштаба 1: 1000 и крупнее обычно

используют рейки для технического нивелирования с сантиметровыми шашечными

делениями, при этом максимальное измеряемое расстояние близко к 150 м. На рис.

11.6, а по сантиметровым делениям между нитями t и m отсчитан отрезок шкалы b

17,6 см = 0,176 м. Здесь при К = 100 и с = 0 искомое расстояние D = 17,6 м.

П р и м е ч а н и е. При К = 100 наблюдатель принимает сантиметровые деле-

ния как условно метровые и в метрах отсчитывает по рейке искомое расстояние D,

в нашем примере D = 17,6 м и при с = 0 формула (11.12) принимает вид D = D 1.

Горизонтальное проложение. При измерениях расстояний дальномером зри-

тельной трубы теодолита дальномерную рейку устанавливают вертикально. Визи-

рование на рейку сопровождается наклоном визирной оси зрительной трубы на

угол ν (рис. 11.6, б).

Между проекциями дальномерных нитей на шкалу рейки в точки М и N берет-

ся отсчет базиса b, но его значение получается преувеличенным в сравнении с

величиной b" = М"N ", которая получается при наклоне рейки в положение, перпен-

дикулярное лучу ОW. Треугольник WMM " практически прямоугольный, так как


угол при вершине M " отличается от прямого на φ/2 = 17,2 " = 0,3°, поэтому b" / 2 =

WM " = WM cos ν = (b / 2) cos ν. Отсюда и b" = М " N " = b cosν. Тогда для треуголь-

ника F 1М"N" высота F 1W = К b", а наклонное расстояние D = ОW = К b" + с = К b

cos ν + с. Тогда горизонтальное проложение d = ОВ" = ОW cos ν = (D + с) cos ν ,


d = К b cos2 ν + с cos ν,



а при с = 0


d = К b cos2 ν = D cos2 ν.



Рис. 11.6. Определение расстояния по штриховому дальномеру:

а – отсчет по дальномерным штрихам; б – горизонтальное проложение

Горизонтальное проложение вычисляется также по формуле


d = D – ∆D ν ,



где ∆D ν = 2D sin 2ν – поправка на наклон в расстояние, измеренное нитяным

дальномером.

Для определения в полевых условиях величин d пользуются инженерными

калькуляторами или специальными тахеометрическими таблицами.

Определение постоянных нитяного дальномера. Для каждого теодолита не-

обходимо определить фактические значения поправки с и коэффициента дальноме-

ра К, поскольку его погрешность может достигать 0,5% (т. е. 1/200 от измеряемого

расстояния). Для проверки на ровном горизонтальном участке местности через 30–

35 м забивают колышки, над начальным колышком центрируют теодолит, на ос-

тальных последовательно ставят рейку и по дальномеру отсчитывают значения b 1,



b 2,…,bn , затем рулеткой измеряют расстояние каждого колышка от начального. В

соответствии с формулой (11.11) составляют несколько уравнений:


D 1 = К b 1 + с; D 2 = К b 2 + с; …, D n = К b n + с,



где D 1, D 1, …, D n – расстояния, измеренные рулеткой с точностью 0,01-0,02 м.

Вычитая одно уравнение из другого, находим, например,


D 2 – D 1


D 3 – D 1


D 3 – D 2



b 2 – b 1



b 3 – b 1



b 3 – b 2



и получаем среднее значение коэффициента дальномера


К = (К1 + К 2 + …, К n ) / n.



Подставив значение К в каждое из уравнений (11.16) получаем величины с 1, с 2,

…, с n и среднее с. В современных теодолитах с ≈ 0.


Постоянную дальномеров удобно определять


путем измерения комбинаций


расстояний. Для этого на горизонтальной поверхности в одном створе откладывают


несколько (не менее трех) расстояний: D 1, D 2, D


. Измеряют эти расстояния, а


также расстояния:


D 4 = D 1 + D 2 ; D 5 = D 3 + D 2 ; D 6 = D 1 + D 2 + D 3





В каждом результате измерений будет присутствовать постоянная поправка

дальномера сi , поэтому можно записать: Di = Di / + c , где Di ‒ результат измере-

ний. Тогда можно записать систему уравнений:

D 4 + c = D 1 + D

расстояния вычисляют при помощи инженерного калькулятора или исправляют по-

правками, которые выбирают из специально составленной таблички.

Точность нитяного дальномера. При помощи нитяного дальномера техниче-

ских теодолитов в комплекте с нивелирной рейкой с сантиметровыми делениями

расстояния измеряются с погрешностями, которые зависят от ряда факторов: точ-

ности учета коэффициента дальномера К и постоянной с; вертикальности рейки;

состояния приземного слоя воздуха (величины рефракционных колебаний изобра-

жения). При точном учете величин К и с, старательной работе и благоприятных по-

годных условиях (облачность) на расстояниях D до 50–60 м погрешность ∆D равна

приблизительно 0,05–0,1 м (относительная погрешность расстояния составляет

около ∆D / D = 1/500), на расстояниях от 80 до 120 м ∆D ≈ 0,2 м (или в относи-

тельной мере тоже 1/500), на расстояниях D ≈ 130–150 м ∆D ≈ 0,3–0,5 м (∆D / D

1/400 – 1/300). Однако при менее благоприятных условиях и недостаточной стара-

тельности наведения штрихов дальномера погрешности ∆D значительно возраста-

Рассмотренные погрешности нитяного дальномера учитываются в инструкциях

по наземным крупномасштабным топографическим съемкам: расстояния от теодо-

лита до рейки ограничивают до 80 – 100 м.

39 Мерные приборы для непосредственного измерения расстояний.

Измерниние линий на местности – один из самых распространенных видов геодезических измерений. Без измерения линий не обходится ни одна геодезическая работа. Линии измеряют на горизонтальной, наклонной и вертикальной плоскости. Их производят непосведственно – металлическими, деревянными метрами, улетками, землемерными лентами и спец проволками, а также косвенно- электронными, нитяными и другими дальномерами. Рулетки выпускают стальные и тесёмочные длиной 1,2,5,10,20,30,50, и 100 м шилиной 10-12 мм, толщиной 0,15…0,30 мм. На полотны рулетки наносят штрихи – деления через 1 мм по всей длине или только на первом дециметрею в последнем случае все остальное полотно размечают сантиметровыми штрихами. Цифры подписывают у каждого дециметрового деления.стальные рулетки выпускают либо с полотном, намотанном на крестовины, либо в футляре. Для измерений коротких отрезков металлические рулетки делают изогнутыми по ширине- желобковыми. Длинномерные рулетки типа РК (на крестовине) и РВ (на вилке) применяют в комплекте с приборами для натяжения- динамометрами. Тесёмочные рулетки состоят из плотного полотна с метал, обычно медными поджилками. Полотно тесёмочной рулетки покрыто краской и имеет деления через 1см. тесёмочными рулетками пользуются, когда не трубуется высокая точность измерений. Тесемочные рулетки свертываются в пластмассовый корпус. Землемерная лента. ЛЗ– стальная полоса – 20 24 30 и 50 метров шириной 1…15 мм и толщиной 0,5 мм.на концах ленты нанесено по одному штриху 1, между которыми и считается длина ленты. У штрихов сделаны вырезы, в которых вчтавляют шпильки, фиксируя злины измеряемых отрезков. Оканчивается лента ручками. На каждой плоскости ленты отмечены деления через 1, 0,5 и 0,1 мюметры на ленте отмечены медными пластинами полуметровые - заклепками.землемерная шкаловая лента ЗЛШ отличается наличием на её концах шкал с миллиметровами делениями. Длины отрезков на концах ленты с миллим делениями равны 10 см. номинальной длиной ленты яв расстояние между нулевыми штрихами шкал. В комплекте ЛЗ и ЗЛШ входят наборы шпиле 6-11 штук. Для переноса шпильки одеваются на проволочное кольцо. Для некоторых видов точных измерений применяют спец инварные проволки. Инвар обладает малым коэффициентом линейного расширения. На концах проволки закреплены спец шкалы линейки с наименш делением 1 мм. На остальной части проволки маркировки нет. Поэтому измеряют расстояния равные длине между штрихами 24 м расстояния не кратные 24 м измеряют инварными рулетками.

40 Компарирование мерных приборов

До начала работы мерные приборы сравнивают с эталонами – компарируют. За эталоны принимают отрезки линий на месности или в либоратории, длины которых известны с особой точностью. Длинна l мерного прибора ленты или рулетки выражается уравнением, - l=l0+дельтаl k+ дел l t где l0- нормальная длина ленты при нормальной температуре РФ - +20 град. 2 цифра поправка компарирования, 3 поправка из-за температуры.чтобы вычислить номинальную длину мерного прибора для каждого темпер режима эксплуатации нужно-сначала опред величину поправки из-за тепмературы. Известно, тчо коэффициент линейного расширения стали при изменении темпер на 1 град = 12,5 х10 в степени –6. в производственных условиях мерные приборы чаще всего эталонируют на полевых компараторах. Эти компараторы представляют собой выровненные участки месности преимущественно с твердым покрымием. Концы компаратора закрепляют знаками со спец метками, расстояние между которыми известно с большой точностью. Компарирование длинномерных рулеток и лент полевых условиях производят на компараторах, длина которых, как правило, близка к 120 м. Это нужно чтобы уложить мерный прибор в компараторе несколько раз. Уложение мерных приборов ведут в прямом и обратном направлениях.

Подсчитывают число целых и дробных уложений рулетки или ленты и опред поправку за коппарирование по формуле дельта l k = (l0-l e)|n где n- число уложений мерного прибора I e измеренная длина компаратора.

42 Оптические дальномеры. Нитяной дальномер.

Дальномерами называются геодезические приборы, с помощью которых расстояние между двумя точками измеряют косвенным способом. Дальномеры подразделяют на косвенные и оптические и электронные.оптические дальномеры делятся на ддальномеры с постоянным параллактическим углом и с постоянным базисом.электронные дальномеры – на электронно-оптические (светодальномеры) и радиоэлектронные(радиодальномеры). Простейший оптический дальномер с постоянным углом – нитяной дальномер имеется в зрительных трубах всех геодезических приборов. В поле зрения трубы прибора видны три горизонтальные нити. Две из них расположенные симметрично относительно средней нити, наз дальномерными. Нитяной дальномер применяют в комплекте снивелирной рейкой, разделенной на сантиметровые деления. Нитяным дальномером можно измерить линии длиной до 300 м с погрешностью 1/300 от длины.

44Светодальномеры и радиодальномеры

в основе электронных средств измерения лежит известное из физики соотношение S=vt|2 между измеряемымирасстоянием и скоростьюраспространения электромагнитных колебаний вдоль измеряемой линии и обратно. Из-за особенностей излучения приема и распространения радиоволн радиодальномеры применяют главным образом при измерении сравнительно больших расстояний и в навигации. Светодальномеры же, использующие электромагнитные колебания светового диапазона, широко применяют в практике инженерно-геодезических измерений. Для измерения расстояния АВ в точке А устанавливают светодальномер, а в точке В – отражатель. Световой поток посылается из передатчика на отражатель, который отражает его обратно. Время распрастранения световых волн определяется 2 способами – 1 прямым и 2 косвенным методом. Прямое опред промежутка времени осущ в дальномерах, наз импульсными. В них измерение времени производится по запаздыванию принимаемого после отражения светового импульса по отношению к моменту его излучения. Косвенное опред времени основано на измерении разности фаз двух эл. Маг колебаний.светодальномера с пассивным отражением измеряют расстояние до предметов без отражателя т. е. исп отражательные свойства самих предметов. (ДИМ-2) в настоящее время известны дальномеры с пассивн отражением и погрешностью до 10 мм.

52) Теодолитной съемкой наз горизонтальная или контурная съемка местности, которая выполняется с помощью теодолита. Теодолитом измеряются горизонтальные углы и углы наклона. Линии измеряются стальной лентой и дальномерами различных конструкций.

По результатам теодолитной съемки может быть составлен план без изображения рельефа. Для получения плана с изображением рельефа необходимо произвести нивелирование поверхности, на которой выполнялась теодолитная съемка. Сочетание теодолитной съемки и нивелирования поверхности целесообразно применять для получения плана строительного участка. Процесс теодолитной съемки складывается из следующих видов работ: проложения теодолитных ходов, привязка их к пунктам геодезической сети, съемка ситуации.

48)Плановым обоснованием теодолитной съемки служат теодолитные ходы, которые прокладываются в виде замкнутых полигонов и разомкнутых ходов. При съемке населенного пункта или участка для строительства обычно на границе прокладывается замкнутый полигон. Для обеспечения съемки ситуации и для контроля измерений внутри полигона может быть проложен диагональный ход. Разомкнутый теодолитный ход должен быть вытянутым т.е. с углами поворота, по возможности, близким к 180 0 , и прокладывается как правило, между пунктами триангуляции или полигонометрии.

Проложение теодолитных ходов начинается с закрепления на местности колышками или деревянными столбами вершин углов поворота. Точки углов поворота теодолитного хода выбирают так, чтобы стороны между соседними точками было удобно измерять, а длины их были не более 350 м и не менее 20 м. Линии измеряются дважды, в прямом и обратном направлениях. Углы поворота в теодолитных ходах измеряют обычно правые походу лежащие. Измерения выполняются при двух положениях вертикального круга и за окончательный результат принимается среднее из двух измерений, если разница не превышает двойной точности прибора. Углы наклона линий измеряют с помощью вертикального круга теодолита. Результаты угловых и линейных измерений записывают в журнал установленной формы.

49) При теодолитной съемке получают геодезический журнал измерений углов, линий и абрис. Эти документы служат основанием для построения плана. Поэтому обработку результатов полевых измерений начинают с проверки правильности всех записей и вычислений, сделанных в журнале, а также вычислений поправок за наклон сторон теодолитного хода. Дальнейшая обработка измерений при теодолитной съемке складывается из следующих действий: обработка угловых измерений и вычисление дирекционных углов и румбов сторон, вычисленных приращений и координат вершин теодолитного хода, построение плана участка теодолитной съемки.

Угловая невязка замкнутого хода. f b =åb п -180 0 (n-2)

Допустимая предельная невязка суммы углов f b =1`√n, распределяется с обратным знаком поровну на все углы с округлением до 0,1`

Вычисление дирекционных углов и румбов сторон замкнутого хода. Исходный дирекционный угол a 1 , получают привязкой стороны к пунктам геодезической сети или определяют для нее истинный или магнитный азимут. По известному дирекционному углу a 1 и по исправленным углам b вычисляют дирекционные углы всех сторон замкнутого хода по формулам: a n =a n-1 +180 0 -b n ; a 1 =a n +180 0 -b 1 (контроль измерений)

Угловая невязка разомкнутого теодолитного хода f b =åb n -åb т

57) Геодезическая сеть – это система закрепленных точек земной поверхности, положение которых определено в общей для них системе геодезических координат. Геодезическая сеть бывает 2-х видов: плановая и высотная. В России геодезические сети, как плановые, так и высотные, подразделяются на государственную геодезическую сеть, геодезическую сеть сгущения и съемочную геодезическую сеть. Государственная геодезическая сеть является исходной для построения всех других геодезических сетей. Сеть сгущения служит для дальнейшего увеличения количества точек геодезической сети. Съемочная сеть является геодезическим обоснованием для производства топографических съемок, а также для выполнения различного рода инженерно-геодезических работ.

Плановые геодезические сети создаются методами триангуляции, полигонометрии и трилатерации.

При построении геодезической сети методом триангуляции на местности закрепляют ряд точек, которые в своей совокупности образуют систему треугольников. В треугольниках измеряются все углы и некоторые стороны, которые наз базисными.

Метод полигонометрии заключается в построении на местности ломанных линий, наз полигонометрическими ходами. Эти ходы прокладываются обычно между пунктами триангуляции. В полигонометрических ходах измеряются все углы поворота и длины всех сторон.

При построении сети методом трилатерации на местности также строится сеть треугольников, в которых при помощи свето- и радиодальномеров измеряются все стороны.

Высотная геодезическоя сеть строится методом геометрического или тригонометрического нивелирования.

51) Съемку местности производят в зависимости от конкретных условий местности одним из следующих методов: прямоугольных координат, полярным, прямых угловых засечек, линейных засечек, обхода, створов.

При съемках методом прямоугольных координат положение каждой ситуационной точки местности устанавливают по величинам абсциссы Х(расстояние от ближайшей точки съемочного обоснования по стороне теодолитного хода или расстоянием от начала трасы) и ординатой Y(расстояние от соответствующей стороны теодолитного хода или от трассы). Определение ординат Y обычно производят с помощью зеркального эккера и рулетки.

Метод прямоугольных координат наиболее часто используют при съемке притрассовой полосы линейных сооружений в ходе разбивки пикетажа. Ширину съемку притрассовой полосы в масштабе 1:2000 принимают по 100 м в обе стороны от трассы, при этом в пределах ожидаемой полосы отвода съемку ведут инструментально, а далее глазомерно.

Теодолитную съемку методом полярных координат применяют преимущественно в открытой местности, при этом положение каждой ситуационной точки определяют горизонтальным углом b, измеряемым от соответствующей стороны теодолитного хода, и расстоянием S, измеряемым от соответствующей точки съемочного обоснования. Съемку характерных точек местности наиболее часто осуществляют оптическими теодолитами с измерением расстояний нитяным дальномером.

Съемка методом полярных координат оказывается особенно эффективной при использовании электронных тахеометров.

Метод прямых угловых засечек применяют главным образом в открытой местности, там, где не представляется возможным производить непосредственное измерение расстояний до интересуемых точек местности. Положение каждой снимаемой точки относительно соответствующей стороны теодолитного хода определяют измерением двух горизонтальных углов b1 и b2, примыкающих к базису. В качестве базиса обычно служит одна из сторон съемочного обоснования или её часть. Съемку методом прямых угловых засечек обычно ведут оптическими теодолитами и особенно часто используют при производстве гидрометрических работ на реках: измерение поверхностных скоростей течения поплавками, траекторий льдин и речных судов, при выполнении подводных съемок дна русел рек и водоемов и т. д.

Метод линейных засечек применяют, если условия местности позволяют легко и быстро производить линейные измерения до характерных ситуационных точек местности. Измерения производят лентами или рулетками от базисов, расположенных на сторонах съемочного обоснования. Положение каждой снимаемой точки местности определяют измерением двух горизонтальных расстояний s1 и s2 с разных концов базиса.

Метод обхода реализуют проложение теодолитного хода по контуру снимаемого объекта с привязкой этого хода к съемочному обоснованию. Углы b1,b…, bn снимают при одном положении круга теодолита, а измерения длин сторон осуществляют землемерной лентой или рулеткой, нитяным дальномером или светодальномером электронного тахеометра.

Метод обхода используют, как правило, в закрытой местности для обозначения недоступных объектов значительной площади.

Суть метода створов состоит в том, что на прямо между двумя известными точками, размещенными на сторонах съемочного обоснования, с помощью одного из мерных приборов определяют положение характерных ситуационных точек местности.

Метод створов находит применение, главным образом, при изыскании аэродромов, для установления ситуационных особенностей местности в ходе топографических съемок методом геометрического нивелирования по квадратам. При производстве изысканий других инженерных объектов метод створов применяют крайне редко.

50) Теодолитная съемка явл съемкой ситуационной, при которой горизонтальные углы измеряются теодолитом, а горизонтальные

проекции расстояний различными мерными приборами. Превышения между точками местности при этом не определяют, поэтому теодолитная съемка явл частным случаем тахеометрической съемки.

Тахеометрическая съемка явл самым распространенным видом наземных топографических съемок, применяемых при инженерных изысканиях объектов строительства. Высокая производительность тахеометрических съемок обеспечивается тем, что все измерения, необходимые для определения пространственных координат характерных точек местности, выполняются комплексно с использованием одного геодезического прибора – теодолита тахеометра.

Для составления топографических планов участков местности со слабовыраженным рельефом необходима повышенная точность топографической съемки. В таких случаях может быть применен метод геометрического нивелирования, который строят способами:

Способ поперечников к магистральному ходу.

Способ параллельных линий

Способ полигонов

Способ квадратов

Фототеодолитная съемка позволяет определять координаты точек местности и составлять топографические планы, а также готовить цифровые модели местности по фотоснимкам, получаемым при фотографировании земной поверхности.

Аэрофотосъемкой наз комплекс работ, выполняемых для получения топографических планов и цифровых моделей местности с использованием материалов фотографирования местности с летательных аппаратов или из космоса.


В порядке, определенном Правительством Российской Федерации; - организации и обеспечения воинских и специальных железнодорожных перевозок; - руководства мобилизационной подготовкой и гражданской обороной на железнодорожном транспорте; - осуществления государственного контроля (надзора) за деятельностью физических и юридических лиц на железнодорожном транспорте, в том числе в части безопасности...

Частности, в отношении услуг, которые могут повлиять на здоровье граждан или нанести ущерб окружающей среде). Технические регламенты будут двух видов: общие (например, по вопросам экологической безопасности) и специальные (учитывающие особенные виды деятельности). Стандартизация будет носить добровольный характер. Лицензирование отдельных видов деятельности в области охраны окружающей среды. В...

Помощь, предоставляемую коммерческим организациям, являющимся юридическими лицами по законодательству Российской Федерации, в форме субвенций, субсидий, бюджетных кредитов, в т.ч. в виде ресурсов, отличных от денежных средств. Таким образом, взаимоотношения предприятия с бюджетом проходят только через налогообложение. При этом предприятие имеет право использовать все предоставляемые законодатель

Культурный и этнографический музей-заповедник «Кижи»; Госфильмофонд РФ; Государственный мемориальный и природный заповедник «Музей-усадьба Л.Н. Толстого «Ясная поляна»; Московская фабрика декоративной росписи; Российский государственный архив древних актов; – объекты, необходимые для функционирования федеральных органов государственной власти и решения общероссийских задач. К их числу относится...

Измерение расстояния - одна из самых основных задач в геодезии. Есть разные расстояния, а также большое количество приборов, созданных для проведения этих работ. Итак, рассмотрим данный вопрос более детально.

Прямой метод измерения расстояний

Если требуется определить расстояние к объекту по прямой линии и местность является доступной для исследования, используется такой простейший прибор для измерения расстояния, как стальная рулетка.

Ее длина - от десяти и до двадцати метров. Еще может применяться шнур или провод, с белыми обозначениями через два и красными через десять метров. При необходимости измерять криволинейные объекты применяется старый и всем хорошо известный двухметровый деревянный циркуль (сажень) или, как еще его называют, «Ковылек». Иногда возникает необходимость произвести предварительные замеры приблизительной точности. Делают это, измеряя расстояние шагами (из расчета два шага равно росту измеряющего минус 10 или 20 см).

Измерение расстояний на местности дистанционно

В случае нахождения объекта измерения в зоне прямой видимости, но при наличии неодолимой преграды, делающей невозможным прямой доступ к объекту, (например озера, речки, болота, ущелья и пр), применяется измерение расстояния дистанционно визуальным методом, а точнее методами, так как существует их несколько разновидностей:

  1. Высокоточные измерения.
  2. Низкоточные или приблизительные измерения.

К первым относятся измерения при помощи специальных приборов, таких, как оптические дальномеры, электромагнитные или радиодальномеры, световые или лазерные дальномеры, ультразвуковые дальномеры. Ко второму виду измерений относится такой способ, как геометрический глазомерный. Тут и определение расстояния по угловой величине предметов, и построение равных прямоугольных треугольников, и метод прямой засечки многими другими геометрическими способами. Рассмотрим некоторые из способов высокоточных и приблизительных измерений.

Оптический измеритель расстояния

Такие замеры расстояний с точностью до миллиметра в обычной практике необходимы нечасто. Ведь ни туристы, ни военные разведчики не будут носить с собой габаритные и тяжелые предметы. В основном их используют при проведении профессиональных геодезических и строительных работ. Часто используют при этом такой прибор для измерения расстояния, как оптический дальномер. Он может быть как с постоянным, так и с переменным параллактическим углом и представлять собой насадку к обычному теодолиту.

Измерения производятся по вертикальным и горизонтальным измерительным рейкам, имеющим специальный установочный уровень. такого дальномера достаточно высока, и погрешность может достигать значения 1:2000. Дальность же измерения небольшая и составляет всего лишь от 20 и до 200-300 метров.

Электромагнитный и лазерный дальномеры

Электромагнитный измеритель расстояния относится к так называемым приборам импульсного типа, точность их измерения считается средней и может иметь погрешность от 1,2 и до 2 метров. Но зато эти приборы имеют большое преимущество перед своими оптическими собратьями, так как оптимально подходят для определения расстояния между движущимися объектами. Единицы измерения расстояния у них могут исчисляться как метрами, так и километрами, поэтому их часто применяют при проведении аэрофотосъемки.

Что же касается лазерного дальномера, он предназначен для измерения не очень больших расстояний, обладает высокой точностью и очень компактен. Особенно это относится к современным портативным Эти устройства измеряют расстояние до объектов на расстоянии от 20-30 метров и до 200 метров, с погрешностью не более 2-2,5 мм на всей длине.

Ультразвуковой дальномер

Это один из самых простых и удобных приборов. Он легок и прост в эксплуатации и относится к устройствам, которые могут измерять площадь и угловые координаты отдельно заданной точки на местности. Тем не менее кроме очевидных плюсов есть у него и минусы. Во-первых, из-за небольшой дальности замера единицы измерения расстояния у этого прибора могут исчисляться только в сантиметрах и метрах - от 0,3 и до 20 метров. Также точность замера может незначительно изменятся, так как скорость прохождения звука напрямую зависит от плотности среды, а она, как известно, не может быть постоянной. Тем не менее это устройство отлично подходит для быстрых небольших замеров, не требующих высокой точности.

Геометрические глазомерные способы измерения расстояний

Выше шла речь о профессиональных способах замера расстояний. А что делать, когда под рукой отсутствует специальный измеритель расстояния? Тут на помощь приходит геометрия. Например, если необходимо измерить ширину водной преграды, то можно построить на ее берегу два равносторонних прямоугольных треугольника, как это изображено на схеме.

В данном случае ширина реки AF будет равна DE-BF Углы можно выверить с помощью компаса, квадратного листочка бумаги и даже с помощью одинаковых скрещенных веточек. Здесь проблем возникнуть не должно.

Еще можно измерить расстояние до цели через преграду, использовав также геометрический метод прямой засечки, построив прямоугольный треугольник с вершиной на цели и разделив его на два разносторонних. Есть способ определения ширины преграды с помощью простой травинки или нитки, или способ с помощью выставленного большого пальца…

Стоит рассмотреть этот способ подробнее, так как он является самым простым. На противоположной стороне преграды выбирается приметный предмет (обязательно нужно знать приблизительную его высоту), один глаз закрывается и на выбранный предмет наводится поднятый большой палец вытянутой руки. Потом, не убирая палец, закрывают открытый глаз и открывают закрытый. Палец получается по отношению к выбранному предмету сдвинут в сторону. Исходя из предполагаемой высоты предмета, приблизительно представляется на сколько метров визуально переместился палец. Это расстояние умножается на десять и в результате получается приблизительная ширина преграды. В данном случае сам человек выступает как стереофотограмметрический измеритель расстояния.

Геометрических способов измерения расстояния немало. Что бы о каждом рассказать подробно, понадобится немало времени. Но все они приблизительны и годятся только для условий, когда точное измерение с помощью приборов является невозможным.

Ультразвуковая рулетка измеритель расстояния, объема и температуры CP-3007 - простой и очень удобный прибор для измерения расстояния, объема и температуры, использовав ультразвуковую рулетку вы сможете легко измерить площадь стены, площадь комнаты, окружающую температуру. Для более точного измерения в рулетку встроен лазерный указатель, что позволяет точно измерить нужное расстояние. Прибор имеет высокую точность и скорость измерения.

  • Быстрое и точное измерение
  • Компактный размер, низкий вес
  • Подсветка дисплея
  • Низкая цена

Ультразвуковая рулетка измеритель расстояния, объема и температуры CP-3007 пригодится в строительстве и ремонте, с помощью вы сможете точно рассчитать площадь и как следствие избежать излишних расходов на стройматериалы.

Рулетка будет полезна тем, кто связан с недвижимостью где необходимо точное измерение площади помещения и его объема.

Ультразвуковой измеритель расстояния не просто удобен он экономит значительное количество времени - представьте сколько бы времени вы потратили на точное измерение всех размеров пусть даже однокомнатной квартиры, наша рулетка считает мгновенно - скорость измерения1 секунда.

Обычные рулетки неудобны в использовании их нужно каждый раз сматывать и разматывать, наш прибор - Ультразвуковая рулетка измеритель расстояния, объема и температуры CP-3007 - всегда готова к работа вы получите результат через 1 секунду после его включения.

Подсветка дисплея облегчит работу в темноте, а встроенный градусник пригодится при ремонтно строительных работах, для контроля температуры в помещении.

Мы сделали все, чтобы цена, на этот уникальный по своим функциональным возможностям прибор, была действительно привлекательной.

Инструкция:

Установите батарею 9 вольт. При включении прибор показывает текущую температуру. Индикатор разряда батареи загорается в случае её разряда. Для экономии разряда батареи прибор отключается автоматически через 30 секунд. Устанавливайте только качественные элементы питания!

Придел измерения (расстояние) 18м

Кнопки управления:

MEASURE (измерение) - кнопка измерения расстояния, направьте прибор перпендикулярно к точке измерения, кратковременно нажмите на кнопку для измерения расстояния, если на экране появляется надпись ERROR (ошибка) повторите измерение расстояния, при необходимости сместите точку изменения расстояния нажатием на кнопку LASER вы можете увидеть точное место до которого прибор проводит измерения расстояния.

LASER - кнопку включает лазерный целеуказатель, до которого рулетка измеряет расстояние. Лазер автоматически отключается через 10 секунд, для экономии батареи. При необходимости повторно нажмите на кнопку.

М1 М2 М3 - кнопки памяти измеренного расстояния. Для занесения в память измеренного расстояния - нажмите на кнопку Measure (измерение) затем нажмите кнопку включения памяти STORE? затем нажмите любую из кнопок памяти М1 М2 или М3, для занесения показаний в память, после чего на экране появится соответствующий индикатор памяти - М1 М2 или М3, теперь показания занесены в память. Извлечение показаний из памяти - (рулетка сохраняет все данные занесенные в память, если батарея не извлечена или разряжена, даже при отключении энергосберегающего режима). Включите прибор, если на экране нет никакой индикации, нажмите кнопку М1 М2 или М3 для извлечения занесенных данных из памяти - на экране отражаются занесенные в память данные. Стирание все данных из памяти - включите рулетку нажмите и удерживайте кнопку ALL MEMORY CLEAR в течение 3-5 секунд, пока на экране индикация М1 М2 или М3 не погаснет - теперь все данные из памяти стерты.

FEET METER - кнопку переключает режим измерения с футов на метры и наобарот.

AREA - кнопка измерения площади, измерьте расстояния и зенесите показания в память, нажмите на кнопку AREA затем на кнопки М1 М2 или М3 показания которых рулетка перемножит и покажет на экране результат измерения.

VOL - кнопка измерения объема - занесите в память кнопок М1 М2 и М3 (длинна, ширина и высота) данные ваших измерений, включите прибор, нажмите на кнопку VOL - прибор автоматически посчитает объем из занесенных в память данных.

Раздел 2. Геодезические измерения и съемки

Измерение линий. Дальномеры. Нивелирование. Угловые измерения. Приборы для измерения превышений и углов.. Оптико-электронные приборы. Лазерные измерения. Спутниковые измерения. Математическая обработка результатов геодезических измерений. Геодезические съемки и средства их выполнения. Основы топографии.

Геодезические измерения

Измерение длин и расстояний. Дальномеры

Измерение – это процесс определения количественных значений с помощью технических устройств. Измерения могут быть как непосредственными, так и косвенными, как статическими, так и динамическими, как равноточными, так и неравноточными.

Расстоянием называется пространство, разделяющее два пункта. Длиной называется расстояние между двумя наиболее удаленными точками объекта. Следовательно, для каждой линии (отрезка) можно однозначно определить расстояние, выражающее его длину, в то время как для объекта определяются несколько расстояний (длин) – например длина, ширина и высота.

В инженерных сетях для измерения расстояний и длин используются оптические и электронные дальномеры, стальные ленты, а также стальные, пластиково-кордовые и лазерные рулетки.

При прямых измерениях искомое значение величины находят путем непосредственного измерения этой величины. При косвенных измерениях искомое значение величины определяют на основании известной функциональной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Рулетка представляет собой стальную или металлопластиковую гибкую ленту, льняную тесьму, разделенные на сантиметровые и миллиметровые деления. Рулетки имеют длину 10 – 200 м и наматываются на ось, находящуюся внутри кожаного или металлического футляра при помощи небольшой рукоятки. Метровые и дециметровые деления имеют цифровые обозначения.

Стальная 20-метровая мерная лента имеет ширину от 10 до 15 мм, а толщину – от 0,2 до 0,4мм. По всей длине ленты пробиты небольшие отверстия через каждые 10 см; каждое пятое отверстие закреплено металлической пластиной диаметром 5 мм. В конце каждого метра с обеих сторон ленты приклепаны пластинки, на которых выдавлены порядковые номера метров, отсчитываемых от обоих концов ленты.

Дальномерами называются приборы, при помощи которых определяются расстояния без непосредственного измерения их стальной лентой, рулеткой или другими мерными приборами.

Прежде чем выйти в поле и начать измерение мерной лентой или рулеткой, они должны быть проверены. Проверка мерной ленты производится путем сравнения ее длины с эталоном на особых приборах, называемых компараторами, а сам процесс сравнения носит название компарирование.


Измерение расстояний рулеткой заключается в следующем (рис.20).

Рис. 20. Измерение линий рулеткой

Один съемщик держит начало рулетки около нулевого значения на первом центре (у прибора), а второй натягивает полотно рулетки ко второму центру (сигналу) с определенным усилием (обычно 5, 10 или 20 кг). Величина силы натяжения необходима для определения поправки за провес (l ). Очевидно, что при разном натяжении, стрела провеса будет различной. Отсчеты по рулетке берутся обоими съемщиками с точностью до миллиметра. Измеренной длиной в этом случае будет разность отсчетов. Для контроля все длины измеряются дважды – в прямом и обратном направлениях. Если расхождение не превышает допустимого значения, за результат принимается средняя величина, в которую вводятся поправки за провес, компарирование, температуру.

При измерении линий, длина которых превышает длину мерного инструмента линию провешивают, то есть устанавливают вешки с отметкой створа линии. Измеряются расстояния между вешками. Длина линии определяется как сумма расстояний между вешками.

При измерении длин сторон теодолитного хода стальной лентой, ее укладывают непосредственно на земле, а концы отмечают шпильками, установленными строго в створе линии. Шпильки изготавливаются из стальной проволоки длиной 40 см, диаметром 3 - 4 мм. Расстояние определяется количеством уложенных лент и домером от последней ленты до точки.

Оптические дальномеры существуют двух типов: с постоянным и переменным параллактическими углами.

Геодезические приборы технической точности (Т30, Т60, Н-3) снабжены нитяными (оптическими) дальномерами с постоянным параллактическим углом.

Устройство нитяного дальномера состоит в том, что в трубе геодезического инструмента, кроме средней горизонтальной нити, натягиваются на диафрагме или нарезаются на стекле две дополнительных горизонтальных нити, отстоящих на одинаковых расстояниях от средней горизонтальной нити сетки (рис.21). Необходимой принадлежностью дальномера является рейка с нанесенными на ней делениями одинаковой величины.

Теория дальномера с постоянным углом состоит в следующем.

На рис.21 визирная ось трубы ОС направлена на рейку MN , которую она встречает в точке С под прямым углом. Параллельные лучи аа 1 и bb 1 , идущие в трубе от крайних нитей сетки а и b , после преломления в объективе, проходят через главный фокус объектива, образуя при пересечении постоянный угол a. Рейку МN эти лучи встречают в точках А и В.