От чего зависит срок службы электродвигателей. Надежный электродвигатель. Выполняйте регламентные работы вовремя

Транскрипт

1 МЕТОДЫ ОЦЕНКИ СРОКА СЛУЖБЫ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ Закладной А.Н., к.т.н., доцент; Закладной О.А., аспирант Национальный технический университет Украины «КПИ» Асинхронные двигатели, как правило, рассчитаны на срок службы 15-0 лет без капитального ремонта при условии правильной их эксплуатации. Под правильной эксплуатацией понимается работа в соответствии с инальными параметрами, указанными в паспорте АД. В реальной жизни имеет место значительное отклонение от инальных режимов эксплуатации. В настоящее время более 70% эксплуатируемого парка асинхронных двигателей составляют машины, побывавшие в капиталь ремонте хотя бы один раз . В подавляющем большинстве случаев (85-95%) отказы АД мощностью свыше 5 квт связаны с повреждением изоляции обмоток и распределяются следующим образом: межвитковые замыкания 93%, пробой межвитковой изоляции %. Остальные отказы в работе вызваны механическими повреждениями . Таким образом, срок службы асинхронного электродвигателя определяется, в основ, качеством изоляции обмоток. Надежность электрической машины свойство машины выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортировки. Надежность является комплексным свойством, которое в зависимости от назначения машины и условий ее эксплуатации может включать в себя безотказность, долговечность и сохраняемость. Срок службы показатель долговечности, а его прогнозирование сводится к расчету надежности электрической машины . В настоящее время надежность двигателей электроприводов во всех областях промышленности очень низкая. Ежегодно выходят из строя и ремонтируются до 30% парка электрических машин. Подавляющее большинство их после ремонта возвращается на предприятие и эксплуатируется до следующего выхода из строя. Машина может ремонтироваться 3-4 раза, а время наработки на отказ составляет 0,5... 1,5 года. Исследованы механизмы влияния факторов на эксплуатационную надежность и срок службы асинхронных двигателей. Основными из них являются следующие: качество активных и конструкционных материалов, используемых при изготовлении электрических машин; качество изготовления электрических машин; качество электроэнергии; несоответствие условий применения машин их исполнению, пусковым и рабочим характеристикам; отсутствие надлежащего обслуживания машин и низкое качество их ремонта.

2 Наиболее часто егрев обмоток АД возникает при заторможен роторе (заклинивании), обрыве фазы статора, отклонении напряжения сети от нормируемых значений, несимметрии питающего напряжения . В тех случаях, когда двигатель работает при неизменной тематуре изоляции, оценить скорость процесса старения изоляции или срок службы машины сравнительно несложно. Известны зависимости, связывающие срок службы изоляции данного класса с определенным постоянным уровнем тематуры в течение срока службы. Первые работы в этом направлении имели, главным образом, опытный характер и относились к изоляции класса А. В результате исследований было сформулировано правило «восьми градусов» (правило Монтзигера). В соответствии с этим правилом повышение тематуры на каждые 8 С сверх предельно допустимой сокращает срок службы вдвое . R = R = Δ b R e, (1) где R - срок службы при увеличенной тематуре; R x - срок службы при тематуре (определяется в зависимости от класса изоляции, например, 7 лет при =105 С); Δ - постоянное приращение тематуры (для применяемых классов изоляции находится в диапазоне 8-10 К), b коэффициент, определяемый классом изоляции. Значения Δ не могут быть названы точно, если недостаточен объем эксиментальных данных. Для изоляционных материалов класса А обычно принимают Δ=8 K. Термоактивная изоляция (класса В) повысила это значение до Δ=10 К. Логарифмический характер зависимости (1) диктует жесткие правила эксплуатации электрических машин. Согласно именно пиковые тематуры определяют практический срок службы машины. С этой точки зрения качество конструкции тем выше, чем меньше отношение пиковой тематуры к средней. Формула (1) является приближенной, но она позволяет верно произвести оценку конструкций электрических машин и режимов их эксплуатации, особенно при экоических расчетах. Более строгий подход к исследованию явления старения изоляции под влиянием тематуры связан с применением общих законов кинетики химических реакций. Существует следующая зависимость скорости протекания химических реакций от тематуры: B ln K = + A, () где абсолютная тематура (градусы Кельвина), K - постоянная скорости реакции. Коэффициенты А и В в уравнении () имеют определенный физический смысл и связаны с постоянными, характеризующими состав и структуру вещества, участвующего в реакции. B ln = G, (3)

3 где B = Ea R и G постоянные, характеризующие состав и структуру вещества , Ea - избыточное по сравнению со средней величиной количество энергии (энергия активации), которым должна обладать молекула вещества, чтобы оказаться способной к химическому взаимодействию; R =8,3 Дж/град моль универсальная газовая постоянная. На основании этого, зная срок службы изоляции R 1 при тематуре 1, можно определить ее срок службы R при тематуре из следующего уравнения: 1 1 R = R1 exp B (4) 1 Эксиментальное значение В для класса изоляции А согласно составляет 0, К, для класса В 1, К. Поскольку такой расчет учитывает лишь тепловое старение, а во время работы машины изоляция испытывает еще электрические и механические воздействия, то можно предположить, что в действительности ее разрушение вследствие пробоя произойдет значительно раньше. Представляет интерес определение влияния кратковременных егрузок на износ изоляции и сокращение срока ее службы. Согласно последним исследованиям, длительная работа двигателя с токовой егрузкой всего на 5% от инального сокращает срок его службы в 10 раз . Износ изоляции в единицу времени при постоянной тематуре, С, 1 1 b ξ = = e, (5) R R где Т продолжительность службы изоляции, С, b определенные коэффициенты. Размерность ξ - время -1, и при изменяющейся в течение времени тематуре ξ = 1 e b d R 0 Поскольку значительный интерес представляет относительное уменьшение срока службы изоляции, будем в дальнейшем характеризовать износ не величиной ξ, а безразмерной величиной ξ C = z. Пренебрегая теплоотдачей при кратковременных егрузках, находим износ за время нагрева 1 током I = ki согласно (6) (e 1) b e z нагр =, (7) где - тематура обмотки, обусловленная инальными потерями, выделяющимися в самой обмотке при иналь токе в ней, Δ - превышение тематуры обмоток над тематурой, - время егрузки. При работе до егрузки с инальным режимом превышение тематуры обмоток при егрузке может быть определено как

4 Δ = Δм (k. 1), (8) где Δ м. - составляющая превышения обмотки статора, определяемая потерями в обмотках статора, k кратность тока в обмотке по отношению к инальу, Т постоянная времени нагрева двигателя. Так как тематура обмоток двигателя после окончания егрузки не может сразу уменьшиться до установившегося значения, дополнительный износ изоляции происходит еще и во время охлаждения. Будем считать, что после окончания егрузки режим возвращается к исходу (инальу). В расчете принимается постоянная времени при охлаждении такая же, как и при нагревании, поскольку предполагается, что двигатель после егрузки продолжает работать с той же скоростью вращения, что и до егрузки. Незначительное или кратковременное снижение скорости за время егрузки оказывает незначительное влияние на постоянную времени нагрева. Отношение износов изоляции при охлаждении и при нагреве зависит от величины егрузки и значения постоянной времени при нагреве обмотки, причем при значениях Т > 300 с износ происходит практически только за время охлаждения . Износ изоляции за время охлаждения согласно b e = z охл e e (9) Суммарный износ за время одного цикла нагрева и охлаждения равен сумме частичных износов z = z нагр + z охл, b e Δ b = + + z 4e e 1 5, (10) Заменяя Δ из уравнения (8), получаем b. (k 1). (k 1) м м e z = 4e + e (1 +) 5. (11) м. (k 1) Из этого уравнения следует, что износ изоляции имеет при некотором значении постоянной времени нагрева минимальную величину. Отметим, что при значениях 300 с даже при небольших и относительно длительных егрузках износ происходит только за время охлаждения. Существенное влияние на срок службы АД оказывает качество питающего напряжения, регламентированное ГОСТ При несимметрии напряжений % срок службы АД сокращается на 10,8%. При несимметрии напряжений 4%, так же как и при уменьшении напряжения на 10% срок службы АД сокращается вдвое. Сопротивление обратной последовательности индукционных машин в 5-8 раз меньше сопротивления прямой. Т.о., двигатели обладают фильтрующими свойствами по отношению к токам обратной последовательности, поэтому даже незначительная несимметрия напряжений (1%) создает значительную несимметрию токов (7% - 9%) в обмотках.

5 Токи обратной последовательности вызывают дополнительный нагрев, что приводит к существену снижению срока службы АД. В приведена формула для расчета тематуры обмоток АД в функции несиметрии напряжения ε u: [ + (ε %) ] = (1) 1 u где тематура обмоток при симметрич напряжении сети, εu - коэффициент несимметрии напряжений равный отношению напряжения обратной последовательности к инальу. Из этого выражения следует, что при ε u = 3,5% тематура обмоток двигателя повышается на 5%. Если АД длительное время работает при понижен напряжении, то из-за ускоренного износа срок службы его уменьшается. Приближенно срок службы изоляции Т можно определить по формуле: R R =, (13) K где R - срок службы изоляции двигателя при инальных напряжении и нагрузке, K - коэффициент, зависящий от значения и знака отклонения напряжения, а также от коэффициента загрузки двигателя: K (47 7,55 1) = δ δ + k, при -0,< з δ <0 (14) k з K =, при 0, δ >0, где δ - отклонение напряжения, kз - коэффициент загрузки АД. Поэтому с точки зрения нагрева АД более опасны в рассматриваемых пределах отрицательные отклонения напряжения. Несинусоидальность напряжений приводит к увеличению активного сопротивления токам высших гармоник, что вызывает а АД значительные потери активной мощности, повышенный егрев и, как следствие, - сокращение срока службы. В выводится упрощенная формула для определения егрева обмоток вследствие несинусоидальности и несимметрии питающего напряжения: Δ = 80 ε + ν 1,55 1,39 (15) u b ν= ν ν где - отношение напряжения ν-й гармоники к инальу напряжению, ν ν ер гармоники, Δ =. Запишем относительное значение продолжительности жизни изоляции АД в виде z = exp() и, подставляя в него формулу (15), получим: = ε + ν z exp 80 1,55 1,39. (16) u ν= ν ν В предложена формула для расчета установившейся тематуры обмотки, учитывающая потери в электродвигателе и изменение параметров материала проводника:

6 a + k Δ = Δ, (17) 1+ a αδ(k 1) ΔРс. н. где a = - коэффициент инальных потерь в электродвигателе, ΔРм. н. α=0,0043 1/ С тематурный коэффициент сопротивления меди, I k = - кратность рабочего тока по отношению к инальу. Здесь под I инальным понимается ток, вызывающий инальный нагрев обмотки АД. В этом случае процесс нагрева описывается выражением: I a + I Δ = Δ e 1 + Δначe, (18) I а 1+ αδ I 1 где Δ нач - начальное превышение тематуры. Далее рассчитывается срок службы по формуле (1). На рис. 1 представлены эксиментальная кривая (1) изменения ресурса электродвигателя и различные оценочные кривые (, 3, 4). Точное построение реальной кривой невозможно, но ее можно заменить прямой, построенной по двум полученным эксиментально точкам: вая - начальный ресурс изоляции (определен, например, эксиментальным методом), вторая - пробой изоляции. Кривая построена с учетом фактора егрузок по току с использованием формулы (11). Кривая 3 построена с использованием формул (1), (18), в которых отражено влияние таких факторов, как тематура обмоток и коэффициент загрузки АД в течение срока службы. Кривая 4 построена с учетом дополнительно фактора качества питающего напряжения. Рис.1

7 Таким образом, из всех вариантов расчета наиболее достоверным является расчет с учетом факторов питающего напряжения, коэффициента загрузки, тематуры обмотки и окружающей среды. Вывод. Одной из главных составляющих энергетической эффективности АД является наиболее длительный срок службы. В работе рассмотрены три метода оценки срока службы АД. Первый учитывает фактор егрузки, второй - тематуру обмотки, третий - качество питающего напряжения. Предложенный метод реализует комплексный подход с учетом основных влияющих факторов - питающего напряжения, коэффициента загрузки, тематуры обмотки и окружающей среды. Метод обеспечивает наибольшую точность определения срока службы АД. Литература 1.Бешта А.С., Желдак Т.А. Определение потерь в стали асинхронного двигателя по методике холостого хода // Сб. Статей «Проблемы создания новых машин и технологий», в.1. Кременчуг, Слоним Н.М. Испытания асинхронных двигателей. М., Энергия, Котеленец Н.Ф., Кузнецов Н.Л. Испытания и надежность электрических машин. М., Высшая школа, Воробьев В.Е., Кучер В.Я., Прогнозирование срока службы электрических машин: Письменные лекции. СПб.: СЗТУ, с. 5. Ковалев А.П., Шевченко О.А., Якимшина В.В., Пинчук О.Г. Оценка пожарной опасности электродвигателей, эксплуатирующихся на промышленных предприятиях Украины / Вісник Кременчугського держ. політехн. Університета, 004, вип /004 (5). 64 с. 6. Филиппов И.Ф. Теплообмен в электрических машинах. Л.: Энергоатомиздат, Данилов И. А., Иванов П. М. Общая электротехника с основами электроники. Москва: Высшая школа, Сыромятников И.А. Режимы работы асинхронных и синхронных двигателей/ Под ред. Л.Г. Мамиконянца 4-е изд., ераб и доп. М.: Энергоатомиздат, с., ил. 9. Повышение качества энергии в электрических сетях / Шидловский А.К., Кузнецов В.Г. Киев: Наук. думка, с. 10. Овчаров В.В. Эксплуатационные режимы работы и непрерывная диагностика электрических машин в сельскохозяйствен производстве. / Киев: Изд-во УСХА, с.


УДК: 621.31 Ю.Г. Качан, д-р техн. наук, А.В. Николенко, канд. техн. наук, В.В. Кузнецов (Украина, Днепропетровск, Национальная металлургическая академия Украины) О ВЛИЯНИИ ГАРМОНИЧЕСКОГО СОСТАВА ПИТАЮЩЕГО

А.Н. Бурковский, О.А. Федюк, О.А. Рыбалко, Л.К. Шихова, Л.Д. Ильюшенкова ПОВЫШЕНИЕ ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ДОПУСТИМОЙ МОЩНОСТИ ЗАКРЫТОГО АСИНХРОННОГО ДВИГАТЕЛЯ В КРАТКОВРЕМЕННОМ РЕЖИМЕ ПРИ ПЕРЕМЕННОЙ НАГРУЗКЕ

АНАЛИЗ РАБОТЫ АСИНХРОННОГО ДВИГАТЕЛЯ ПРИ ПОНИЖЕННОЙ ЧАСТОТЕ ПИТАЮЩЕЙ СЕТИ УДК 621.313 С.П. Голиков Рассмотрена оптимизация работы автономных дизель-генераторных установок с целью экономии топлива и связанное

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГБОУ ВО "СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ" А-ЗРДжендубаев МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ ПО ЭЛЕКТРОПРИВОДУ Для студентов

Тема 0. Основы электропривода Вопросы темы. Электропривод: определение, состав, классификация.. Номинальные параметры электрических машин. 3. Режимы работы электродвигателей. 4. Выбор типа и мощности электродвигателя..

***** ИЗВЕСТИЯ ***** (6), 0 АГРОПРОМЫШЛЕННАЯ ИНЖЕНЕРИЯ УДК 6.34.:6.36.95.4 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ХАРАКТЕРИСТИКИ НАГРЕВА ЭЛЕКТРОДВИГАТЕЛЕЙ И ТЕПЛОВЫХ РЕЛЕ С.В. Волобуев, старший преподаватель И.Я.

Рабочие режимы ТГ и ГГ Под рабочими режимами работы генератора подразумевают такие режимы, в которых он может работать длительное время. К ним относятся режимы работы машин с различными нагрузками от минимально

Http://www.jurnal.org/articles/8/elect7.htm Page of 5 3.6. Анализ влияния высших гармонических составляющих на безотказность электроизоляционных покрытий Шпиганович Александр Николаевич доктор технических

УДК 629.423.31 Мальцев А.В. Повышение надежности изоляционных конструкций тяговых двигателей электровозов/а.в. Мальцев//Проблемы трансферта современных технологий в экономику Забайкалья и железнодорожный

УДК 621.313.333.018.782.3 Е.А. Вареник, М.М. Федоров, В.Е. Михайлов ТЕПЛОВЫЕ ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕМЕНТАХ КОНСТРУКЦИИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ ПРИ НЕПОДВИЖНОМ РОТОРЕ Постановка проблемы. В различных режимах

УДК 621.317.785.088.001.5 Майер B. Я. ИССЛЕДОВАНИЕ ВЛИЯНИЯ НЕСИНУСОИДАЛЬНЫХ ОТКЛОНЕНИЙ НАПРЯЖЕНИЯ НА ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ Согласно ГОСТ 13109-87 отклонение напряжений

УДК 62.33.333 Бурковский А.Н. Рыбалко О.А. Кустовая Е.Ю. Мельник А.А. Ильюшенкова Л.Д. Особенности теплового расчета закрытых обдуваемых асинхронных двигателей в режимах S5 S7. Основные положения методики

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ МЕЖВИТКОВЫХ КОРОТКИХ ЗАМЫКАНИЙ И НЕСИММЕТРИИ НАПРЯЖЕНИЯ В АСИНХРОННЫХ ЭЛЕКТРИЧЕСКИХ МАШИНАХ Реферат переходная модель для асинхронных электрических машин со статорной обмоткой, которая

УДК 621. 313. 323 Проектирование тяговых частотно-регулируемых двигателей В.Я. Беспалов 1, А.Б. Красовский 2, М.В. Панихин 2, В.Г. Фисенко 1 1 НИУ МЭИ, Москва 111250, Россия 2 МГТУ им. Н.Э. Баумана, Москва

Выбор сечения кабеля и провода Сечение проводов и кабелей определяют, исходя из допустимого нагрева с учетом нормального и аварийного режимов, а также неравномерного распределения токов между отдельными

ОЦЕНКА ПАРАМЕТРОВ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ ОТКАЗОВ ОБМОТОК СТАТОРОВ ПРИ ЭКСПЛУАТАЦИИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ В ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ С.А. Смолярчук, А.Л. Федянин Томский политехнический университет Введение

УДК 61.311 СНИЖЕНИЕ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ А.С. Енин., К.Б. Корнеев, Т.И. Узикова Новая редакция Федерального закона 61-ФЗ от 3 ноября 009 года «Об энергосбережении и о повышении

В гл. 8 был оценен экономический ущерб от повышенного потребления реактивной мощности асинхронными двигателями (АД), составляющие которого приведены на рис. 5. Чтобы получить более полное представление

Выбор сечения проводов и кабелей Общее положение по расчету электрической сети. Конечной целью расчета электрической сети жилого дома, как и всякого другого здания, является выбор сечений проводов и аппаратов

Вариант 1. 1. Назначение, классификация и устройство трансформатора. 2. Абсолютная и относительная погрешности измерения. Класс точности измерительного прибора. 3. При увеличении частоты вращения генератора

ЗАДАНИЕ Для электромеханической системы электропривода, трехфазного асинхронного двигателя с короткозамкнутым ротором и механической передачи:. Рассчитать и построить механическую характеристику двигателя

200 УДК 621.313 К. В. ХАЦЕВСКИЙ Ю. Н. ДЕМЕНТЬЕВ А. Д. УМУРЗАКОВА Омский государственный технический университет Томский политехнический университет МОДЕЛЬ АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ ДЛЯ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ

Введение Домашнее контрольное задание Технические данные асинхронных двигателей 4 Методика расчетов значений параметров и характеристик асинхронных двигателей по каталожным данным Расчет активных и индуктивных

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2009. 4(58). 65 70 УДК 62.3 ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ СИЛОВЫХ ТРАНСФОРМАТОРОВ В РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ 6 35 кв НЕФТЕПРОМЫСЛОВ В.М. ЛЕВИН, Д.В. КУЗЬМИНА Дана оценка состояния

Глава 2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ И РЕГУЛИРОВОЧНЫЕ СВОЙСТВА ЭЛЕКТРОПРИВОДОВ ПОСТОЯННОГО ТОКА 2.1. Механические характеристики электродвигателей и рабочих механизмов Механической характеристикой электродвигателя

Реферат Выпускная квалификационная работа 114 стр., 18 рисунков, 15 таблиц, 17 источников, 7 л. графического материала. Ключевые слова: асинхронный, ротор, пусковая характеристика, рабочая характеристика.

УДК 621.313.181 В.В. НАНИЙ, канд. техн. наук, доц., НТУ "ХПИ", Харьков А.Г. МИРОШНИЧЕНКО, канд. техн. наук, доц., НТУ "ХПИ", Харьков В.Д. ЮХИМЧУК, канд. техн. наук, проф., НТУ "ХПИ", Харьков А.А. ДУНЕВ,

Тема 3. Статическая устойчивость генераторов возобновляемых источников энергии (2 часа) Основные понятия и определения статической устойчивости Деление режимов электрической системы на установившиеся и

Институт электротехники Направление подготовки Магистерская программа 13.4.2 Электроэнергетика и электротехника Электропривод и автоматика Банк заданий по профильной части вступительного испытания в магистратуру

УДК 621.31 МЕТОДИКА ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОПРОВОДКИ ЗДАНИЙ Никольский О.К. Гончаренко Г.А. Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Россия Большинство

11 ИНТЕГРАЛЬНЫЕ ПОКАЗАТЕЛИ ПЕРЕХОДНЫХ ПРОЦЕССОВ 11.1 Общие положения После расчета нагрузочных диаграмм переходных процессов по любому из трех путей (по аналитическим выражениям, анализом ЛАЧХ, интегрированием

УДК 621.316.577 ФИЛЬТРОВАЯ ЗАЩИТА ПОТРЕБИТЕЛЬСКИХ ЭЛЕКТРОУСТАНОВОК Канд. техн. наук, доц. ПОЛУЯНОВ М. И., СЧАСТНАЯ Е. С. Белорусский национальный технический университет Одна из важнейших задач в области

Аннотация рабочей программы дисциплины направление подготовки: 23.05.05 Системы обеспечения движения поездов направленность: Телекоммуникационные системы и сети железнодорожного транспорта Дисциплина:

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НИЗКОТЕМПЕРАТУРНЫХ И ПИЩЕВЫХ ТЕХНОЛОГИЙ

3. Копылов Ю.В. «Расчёт магнитной цепи постоянного тока». Учебное пособие. Томск. Изд. ТПИ, 1985 4. Буль Б. К. Основы теории и расчёта магнитных цепей. М.-Л., издательство Энергия, 1964 5. Чунихин А. А.

ПУСКОВЫЕ КОНДЕНСАТОРЫ CBB60. отечественный аналог К78-22, К78-25, К78-36, К78-43. Конденсаторы предназначены для запуска асинхронных электродвигателей и создания фазосдвигающей цепи после выхода на рабочий

Тема 3. Пуск трехфазных асинхронних двигателей с короткозамкнутым и фазным роторами. План 1. Пусковые свойства и пусковой ток асинхронных двигателей. 2. Пуск двигателей с фазным ротором: схема пуска, выбор

3 ЛАБОРАТОРНАЯ РАБОТА 1 ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА 1. Цель работы Изучение основных эксплуатационных особенностей генератора постоянного тока (ГПТ) в зависимости от способа его

ISSN 2219-7869. НАУЧНЫЙ ВЕСТНИК ДГМА. 1 (11Е), 2013. 164 ОСОБЕННОСТИ ТЕПЛОВОГО СОСТОЯНИЯ АСИНХРОННЫХ ДВИГАТЕЛЕЙ ПРИ НЕСИММЕТРИИ ПИТАЮЩЕГО НАПРЯЖЕНИЯ Федоров М. М., Ивченков Н. В., Ткаченко А. А. Выполнен

УДК 61.31 СОСТОЯНИЯ ИЗОЛЯЦИИ ОБМОТОК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ Г. В. Суханкин В статье рассматривается модель измерения диагностического показателя изоляции электрической машины, в частности, асинхронного

1 В самом начале работы пользователю необходимо зарегистрироваться. При регистрации пользователю присваивается определённая роль. Роль определяет возможности пользователя. Самая простая роль это «Потребитель»

УДК 6.33.333 АНАЛИТИЧЕСКИЙ СПОСОБ РАСЧЕТА ПУСКОВОГО РЕОСТАТА ДЛЯ АСИНХРОННОГО ДВИГАТЕЛЯ С ФАЗНЫМ РОТОРОМ С УЧЕТОМ НЕЛИНЕЙНОСТИ ЕГО МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК А.Ю. Соколов Пусковые свойства электродвигателя

Отчет 479/07-2014 Электродвигатель привода насоса P27220 Исполнители работ Инженер-электрик отдела технического сервиса ООО «Практическая Механика» Попов В.Н. тел.: +7 812 332-3474 моб.: +7 911 988-8739

УДК 61.315 Галеева Р.У., ст. преподаватель Казанский Государственный Энергетический Университет Россия, г.казань Альмиева Д.С., магистр Казанский Государственный Энергетический Университет Россия, г.казань

ОЦЕНКА СОСТОЯНИЯ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ПРЕДПРИЯТИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКОГО КОМПЛЕКСА УКРАИНЫ Ю.А. Папаика, А.Г. Лысенко, Национальный горный университет, Украина Приведены

Тема 2.5 Электромагнитный момент асинхронного двигателя. План 1. Потери и коэффициент полезного действия асинхронного двигателя. 2. Электромагнитный момент асинхронного двигателя. 3. Влияние напряжения

УДК 621.313.333.018 О.Г. ПИНЧУК (канд.техн.наук) Донецкий национальный технический университет И.П. КУТКОВОЙ Донбасская государственная машиностроительная академия [email protected] ОЦЕНКА ТЕПЛОВОГО

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

4.2 Работа 9 Статические характеристики синхронного двигателя при питании от преобразователя частоты Цель работы Изучение режимов работы двигателя (двигательного, рекуперации), экспериментальное исследование

Контрольное задание Трехфазный асинхронный двигатель Основным параметром, характеризующим режим работы асинхронного двигателя, является скольжение s относительная разность частоты вращения ротора двигателя

Измерительные трансформаторы тока и напряжения Основные стандарты на измерительные трансформаторы ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия»; ГОСТ 7746-2001 «Трансформаторы тока.

УДК 62-83 Зюзев А.М., Метельков В. П. ОЦЕНКА ТЕПЛОВОГО РЕСУРСА ЭЛЕКТРОДВИГАТЕЛЯ ШТАНГОВОЙ ГЛУБИННОЙ НАСОСНОЙ УСТАНОВКИ Уральский федеральный университет им. первого Президента России Б.Н.Ельцина В данном

Лекция 4. Основные количественные показатели надежности технических систем Цель: Рассмотреть основные количественные показатель надежности Время: 4 часа. Вопросы: 1. Показатели оценки свойств технических

ХАРАКТЕРИСТИКИ АСИНХРОННЫХ МАШИН С КОРОТКОЗАМКНУТЫМ РОТОРОМ В РЕЖИМАХ ДВИГАТЕЛЯ И ГЕНЕРАТОРА Галиновский А.М., к.т.н., доцент, Дубчак Е.М., ст. преподаватель, Могелюк С.О., студент КПИ им. Игоря Сикорского,

МЕХАНИЗМЫ СОБСТВЕННЫХ НУЖД ТЭС. ОБЩАЯ ХАРАКТЕРИСТИКА. САМОЗАПУСК ДВИГАТЕЛЕЙ С.Н. БЕЛОГЛАЗОВ АЛЕКСЕЙ ВЛАДИМИРОВИЧ, к.т.н., доцент кафедры электрических станций (ЭлСт), ФЭН, II- (кафедра) Лекции 9- Новосибирск,

44 УДК 681.54: 621.313 (045) УПРАВЛЕНИЕ ДИНАМИЧЕСКИМИ РЕЖИМАМИ АСИНХРОННОГО ЭЛЕКТРОПРИВОДА С ПОВЫШЕННЫМ ПУСКОВЫМ МОМЕНТОМ Национальный авиационный университет Красношапка Н. Д., к.т.н. Рассмотрены вопросы

050202. Двигатель постоянного тока с параллельным возбуждением Цель работы: Ознакомиться с устройством, принципом действия двигателя постоянного тока с параллельным возбуждением. Снять его основные характеристики.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Глава первая ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЭЛЕКТРООБОРУДОВАНИЯ 1.1. СИСТЕМЫ ЭКСПЛУАТАЦИОНИОГО КОНТРОЛЯ Основные понятия. Надежность оборудования определяется его конструкцией и качеством изготовления. Однако

Отчет 204/10-2013 Электродвигатель насоса 1 Исполнители работ Инженер-электрик отдела технического сервиса ООО «Практическая Механика» Попов В.Н. тел.: +7 812 332-3474 моб.: +7 911 988-8739 e-mail: [email protected]

6. ТРАНСФОРМАТОРЫ Трансформатором называется статический электромагнитный аппарат, служащий для преобразования электрической энергии переменного тока с одними параметрами в электрическую энергию с другими

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ

Распределительные трансформаторы 6(10)кВ. Проблема качества электрической энергии в сетях 0,4 кв. Исследование несимметричной работы трансформаторов. Силовой трансформатор является одним из важнейших элементов

Math-Net.Ru Общероссийский математический портал В. Г. Гольдштейн, А. Ю. Хренников, Причины повреждения обмоток силовых трансформаторов и расчет токов короткого замыкания, Матем. моделирование и краев.

УДК 621.313.333.001. СРАВНИТЕЛЬНАЯ ОЦЕНКА ПЕРЕХОДНЫХ ПРОЦЕССОВ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙС РАЗЛИЧНЫМИ РОТОРАМИ Мартынов В.Н., Олейников А.М. Представлены результаты экспериментального исследования переходных

Новной модуль который будет базироваться на основе частотного преобразователя, и его компонентами будут служить самые разнообразные модули, начиная с того что возможно создать совершенно разные модули

ЭЛЕКТРОТЕХНИКА И ЭНЕРГЕТИКА УДК 61.3.018.3 ПОЛУЧЕНИЕ ЗАВИСИМОСТЕЙ СОПРОТИВЛЕНИЙ ИЗОЛЯЦИИ КАБЕЛЯ АВбБШв (4 70) ОТ ЧАСТОТЫ ПИТАЮЩЕГО НАПРЯЖЕНИЯ ПРИ СХЕМЕ ПОДКЛЮЧЕНИЯ «ФАЗА ОПЛЕТКА» И «ФАЗА ФАЗА» А. А. АЛФЕРОВ,

ГОСТ 12049-75 Двигатели постоянного тока для машин напольного безрельсового электрифицированного транспорта. Общие технические условия Дата введения 1977-01-01 * ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного

4. Школа для электрика - Использование сервоприводов при автоматизации оборудования, URL: http://electricalschool.info/main/drugoe/226- ispolzovanie-servoprivodov-pri.html (дата обращения 07.09.17). Научный

УДК 621.313.13 А.В. ТАРНЕЦКАЯ, аспирант (КузГТУ) И.Ю. СЕМЫКИНА, д.т.н., доцент (КузГТУ) г. Кемерово ПРОБЛЕМЫ МОДЕЛИРОВАНИЯ ПУСКА СИНХРОННЫХ ДВИГАТЕЛЕЙ С ПОСТОЯННЫМИ МАГНИТАМИ Многие научно-практические

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ЧЕЛЯБИНСКАЯ ГОСУДАРСТВЕННАЯ АГРОИНЖЕНЕРНАЯ

Кацман электрические машины решебник >>> Кацман электрические машины решебник Кацман электрические машины решебник Режимы работы и устройство асинхронной машины 137. Трехобмоточные трансформаторы и автотрансформаторы

Направление подготовки 13.03.02 «Электроэнергетика и электротехника» Профиль подготовки «Электропривод и автоматика промышленных установок и технологических комплексов» Изменения и дополнения к РПД Б1.В.ДВ.7.1

УДК 621.311 ДИАГНОСТИКА И ПРОГНОЗИРОВАНИЕ ОСТАТОЧНОГО РЕСУРСА ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРОПРИВОДА НАСОСНО- КОМПРЕССОРНОГО ОБОРУДОВАНИЯ НЕФТЕХИМИЧЕСКИХ ПРОИЗВОДСТВ А.В. Самородов Филиал Государственного образовательного

«Вечный двигатель» или 10 советов, как продлить его срок службы

Искать ответ на вопрос как долго вам прослужит электродвигатель нужно не в ходе его эксплуатации, а намного раньше. Правильный выбор машины с учетом условий и регулярности ее применения — верный залог того, что она будет работать долго, надежно и эффективно. При этом, конечно, не стоит забывать о соблюдении рекомендаций по эксплуатации, грамотном монтаже и профессиональном обслуживании машины. Именно эти параметры будут определяющими в продолжительности ее жизни.

Теперь рассмотрим каждый из них подробнее и дадим еще несколько советов, на что стоит обратить внимание при эксплуатации электродвигателя, чтобы срок его службы был максимально долгим.

1. Покупайте правильный электродвигатель

Чтобы не приобрести очередную «головную боль» (в виде электродвигателя) на свой объект, посоветуйтесь со своими механиками. Именно эти люди будут сутки напролет обхаживать и заботиться о двигателях, чтобы машина не подвела в самый неподходящий момент. Они профессионалы и подберут то, что необходимо, а не то, что дешево или выгодно. Они умеют правильно, и главное — технически грамотно:

  • определить производителя и серию двигателя;
  • указать необходимую мощность и обороты;
  • уточнить вопрос по рабочему напряжению, способу монтажа, климатическому исполнению;
  • обратить внимание на значения КПД и cos φ;
  • указать дополнительные требования к машине.

В том случае, если вы живете по правилу — доверяй, но поверяй — можете совершенно бесплатно получить необходимые рекомендации у наших специалистов.

2. Установите прямую связь со специалистами завода-изготовителя

Это позволит вам напрямую с разработчиками электродвигателя технически грамотно и быстро решать все вопросы, связанные с обслуживанием и ремонтом. Предоставляя обратную связь производителю, вы, хотите того сами или нет, делаете неоценимый вклад в повышения уровня качества производимой производителями продукции.

3. Соблюдайте технику безопасности при проведении монтажных работ и советы по эксплуатации

Установка электродвигателя производится, как правило, с помощью кранов или ручных лебедок, а также талей и других устройств, расположенных над местом его эксплуатации. Обязательно проверяйте возможности их нагрузки!

Также не забывайте, что центровка электродвигателей с технологической машиной, проверка воздушных зазоров, замена смазки в подшипниках, подгонка и регулировка щеток у электродвигателя с фазным ротором, проверка сопротивления изоляции обмоток должны происходить только при отключенном рубильнике, вынутых плавких вставках предохранителей на питающей линии с вывешиванием запрещающего плаката на рубильнике.

При монтаже необходимо обратить особое внимание на состояние электродвигателя и не допускать использования инструмента, имеющего дефекты.

4. Своевременно выполняйте регламентные работы

В первую очередь, проводите регулярный внешний осмотр во время работы двигателя. Эта мера носит профилактический характер, но очень важна. Она позволит предупредить возникновение неисправностей и, как следствие, предотвратить сбой в работе. Во время проведения осмотра очищается поверхность электродвигателя, производится затяжка болтовых соединений и крепления заземлений.

Не менее важно проведение работ по контролю основных параметров электрической машины. Сюда входят замер токов и проверка их на соответствие заводским параметрам. Перегрузка двигателя значительно сокращает срок его службы. Также необходимо убедиться в отсутствии посторонних шумов и вибрации, в том, что двигатель смазан, а его температура не превышает допустимые нормы (подробнее п. 7, 10).

5. Выбирайте энергоэффективные двигатели

Основным показателем энергоэффективности электродвигателя является его коэффициент полезного действия (далее КПД), который рассчитывается по формуле:

η=P2/P1=1 – ΔP/P1,

где Р2 — полезная мощность на валу электродвигателя,

Р1 — активная мощность, потребляемая электродвигателем из сети,

ΔP — суммарные потери, возникающие в электродвигателе.

Как мы видим, чем выше КПД (и соответственно ниже потери), тем меньше энергии потребляет электродвигатель из сети для создания полезной мощности.

Согласно эмпирическому закону срок службы изоляции уменьшается в два раза при увеличении температуры на 100 °C. Таким образом, срок службы двигателя с повышенной энергоэффективностью несколько больше, так как потери и нагрев меньше.

6. Применяйте электродвигатели с преобразователями частоты

Преобразователи частоты позволяют регулировать скорость вращения электродвигателя за счет изменения входной частоты. Это позволяет сэкономить как минимум 30% электроэнергии по сравнению с традиционными способами управления двигателями. Например, если снизить рабочую частоту всего на 20% (с 50 до 40 Гц), то потребление электроэнергии уменьшится вдвое!

Помимо энергосбережения преобразователи частоты увеличивают срок службы электродвигателя, повышают надежность всей системы, не требуют технического обслуживания.

7. Контролируйте температуру двигателя

Нормативный срок службы электродвигателя определяется допустимой температурой нагрева его изоляции. В современных двигателях применяется несколько классов изоляции, допустимая температура нагрева которых составляет:

  • Класс В — 130 °C,
  • Класс F — 155 °C,
  • Класс H — 180 °C.

Превышение допустимой температуры ведет к преждевременному разрушению изоляции и существенному сокращению срока его службы.

8. Следите за обмоткой электродвигателя

Здесь есть два варианта развития событий:

  • обрыв обмотки в треугольнике,
  • обрыв обмотки в звезде.

Рассмотрим каждый из них.

Обрыв обмотки в «треугольнике». Из практики известно, что оборванная обмотка никак не мешает нормальной работе электродвигателя. Оставшиеся две обмотки берут на себя всю мощность через подсоединение к сети по топологии «открытый треугольник». В результате двигатель набирает обороты, держит нагрузку, но происходит чрезмерный нагрев двух подключенных фаз. При относительно долгой эксплуатации асинхронного силового агрегата под нагрузкой на валу в таком неверном режиме включения происходит неминуемое выгорание задействованных обмоток статора.

Обрыв обмотки в «звезде». Обрыв обмотки статора в трехфазном электродвигателе, включенном в сеть по топологии «звезда», приводит к тому, что машина отказывается запускаться, если ее остановить. Двигатель греется, издает неприятный гул, вибрирует ротором, но не запускается. Обрыв обмотки приводит к тому, что не образуется вращающееся магнитное поле. Безусловно, двигатель можно запустить, но для этого необходимо предварительно раскрутить вал ротора. Естественно, возрастает электропотребление, шум, а также общий износ двигателя.

Единственно верное решение проблемы обрыва обмотки — это нахождение дефектной обмотки и ее перемотка. Любая скрутка, спайка внутри обмотки неприемлема. Лучше и надежнее перемотать всю обмотку, сохраняя число витков, а также сечение обмоточной проволоки.

9. Особое внимание — аварийный режим!

Многолетний опыт эксплуатации электродвигателей показал, что большинство существующих защит не обеспечивают безаварийную работу электродвигателя. Например, тепловые реле рассчитывают на длительную перегрузку 25-30% от номинальной. Но чаще всего они срабатывают при обрыве одной фазы при нагрузке 60% от номинальной. При меньшей нагрузке реле не срабатывает, электродвигатель продолжает работать на двух фазах и выходит из строя в результате перегрева изоляции обмоток.

Правильный выбор защитного устройства — это важный фактор в обеспечении безопасной эксплуатации электродвигателя. Приборы защиты электродвигателя от аварийных режимов можно разделить на несколько видов:

  • тепловые защитные устройства — тепловые реле, расцепители;
  • защитные устройства от сверхтоков — плавкие предохранители, автоматы;
  • термочувствительные защитные устройства — термисторы, термостаты;
  • защита от аварий в электросети — реле напряжения и контроля фаз, мониторы сети;
  • приборы МТЗ (максимальной токовой защиты), электронные токовые реле;
  • комбинированные устройства защиты.

При выборе релейной защиты проконсультируйтесь со специалистом.

10. Обращайте внимание на вибрацию и шум

Обращайте самое пристальное внимание на такие параметры электрической машины как вибрация и шум. Если они не в пределах нормы, то свидетельствуют о механической неисправности. Очень важно вовремя уловить данные изменения в работе машины, определить причины возникновения, и конечно же устранить их.

Если самостоятельно решить данный вопрос не получается, рекомендуем обращаться напрямую к производителям, обладающим необходимым оборудованием, и специалистам, регулярно решающими подобного рода задачи. Это сэкономит вам время и деньги!

Сегодня в каждом доме имеется электрооборудование, в техническую конструкцию которого входит электродвигатель. Это и стиральные машины , и различные обрабатывающие станки, и электронасосы , и электроинструмент , и т.д. Как и всё в этом мире, электродвигатели недолговечны. Я постараюсь рассказать вам о некоторых моментах, которые смогут помочь вам продлить срок службы электрических двигателей . Электродвигатели подразделяются на щёточные и роторные. Щёточные электродвигатели состоят из якоря с коллектором, статора с полюсными катушками и щёткодержателей с графитовыми (бывают другие) щётками. Роторные электрические двигатели состоят из ротора (набор железа) и статора с фазными катушками.
Как продлить срок службы щёточным электродвигателям 1. Необходим контроль и уход за щётками. Не допускайте полного износа щёток, пусть у вас всегда в наличие имеется ремкомплект. При разобранном электродвигателе, не забудьте проверить щётки, они должны быть не сильно стёрты (изношены) и свободно двигаться в щёткодержателях. По мере стирания щётки об пластины коллектора, необходимо растягивать пружину, которая прижимает её к коллектору якоря.
2. Не допускайте сильного износа подшипников на якоре. Небольшой люфт - это уже повод для их замены. Подшипники должны быть постоянно в смазке.
3. Не зачищайте коллекторные пластины наждачной бумагой или мелким надфилем (очень часто слышу такие советы). Это только навредит вашему электромотору. Коллектор можно только "продорожить" - т.е. не допускать соединения между собой коллекторных пластин. Как продлить жизнь роторному электродвигателю 1. Здесь главное - это подшипники на роторе. Следите за состоянием смазки, при малейшем износе подшипника (люфт) замените его. Люфт в подшипнике приводит к тому, что ротор начинает соприкасаться (трение) с железом статора. Это приводит к повышению нагрузки на электродвигатель, провода в обмотке статора начинают нагреваться, изоляция на них повреждается и это приводит либо к межвитковому замыканию, либо к замыканию на корпус двигателя. 2. Некоторые электродвигатели напряжением 220 В имеют в своей цепи питания конденсаторы. Конденсаторы так же имеют определённый срок службы, т.е. их необходимо заменять на новые по истечении долгого срока эксплуатации.
3. При использовании электродвигателя на 380 В необходимо следить за напряжением между фазами и между фазами и нулём. У вас не должно возникнуть "перекоса" фаз (разное напряжение) - это приведёт к поломке электродвигателя. Собл юдайте эти советы и ваш электродвигатель будет жить долго !
Внимание, только СЕГОДНЯ!

  Надежность - отличительная черта наших электродвигателей.

  Помимо основных параметров асинхронного двигателя - мощности и скорости вращения, не менее важными параметрами являются надежность и ресурс.

  В асинхронном двигателе две главные причины отказов - межвитковые замыкания статорной обмотки и дефекты или износ подшипникового узла.

  Влага - главный враг обмотки. Работа асинхронного двигателя приводит к нагреву обмоток, особенно в лобовой части и, следовательно, к растрескиванию эмали. Когда же асинхронный двигатель остывает, то рассеянная в воздухе вода оседает на эмали и при многократном повторении вода попадает в трещины и полости обмотки, из которых уже не уходит. В дальнейших циклах вода разрушает эмаль, а затем и закорачивает витки обмотки.

  Дополнительная пропитка обмоток асинхронного двигателя термостойким гидрофобным компаундом с противогрибковым действием исключает попадание воды в обмотку через микротрещины эмали провода. Микротрещины эмали - следствие вредных факторов /перепады температур, плесень, влажность, абразивы в полости двигателя в виде пыли из оксидов материала корпуса и системы ротор статор/. Препятствуя образованию и развитию микротрещин, пропитка поднимает и уровень допустимой рабочей температуры асинхронного двигателя, повышая тем самым коэффициент его использования по мощности, и надежнее защищает асинхронный двигатель от перегрузок. Та же влага, оседая на поверхности статора и ротора, способствует образованию абразивной пыли внутри корпуса, поэтому необходимо наносить защитную эмаль и на внутренние поверхности статора и ротора.

  Второй враг - перегрев. Перегрев асинхронного двигателя приводит к увеличению токов по причине уменьшения магнитной проницаемости железа, уменьшению противо э.д.с., непроизводительной потере электроэнергии в обмотках и сокращению ресурса асинхронного двигателя, т.к. старение изоляции и ухудшение свойств смазки при этом резко прогрессируют. Защита асинхронного двигателя от тепловых перегрузок обеспечивается своевременным обесточиванием обмоток при их перегреве или включением дополнительной вентиляции.

  Обесточивание обмоток асинхронного двигателя осуществляется срабатыванием НЗ (нормально замкнутого) или НР (нормально разомкнутого) термодатчика с мембранным типом срабатывания, который может быть установлен в тепловом контакте с обмоткой как одной, так и трех фаз по отдельности, тем самым, обеспечивая более надежную защиту. Термодатчик при своем срабатывании обесточит катушку магнитного пускателя или включит другую схему управления асинхронным двигателем.

  Дефекты подшипникового узла устраняются установкой наружного кольца подшипника на термокомпенсированный эпоксидный компаунд определенной вязкости, который устраняет вибрации асинхронного двигателя от наличия зазора в сопряжении подшипник корпус и не дает прогрессировать вибрации по причине разбивания исходных неровностей механообработки сопрягаемых поверхностей зазоров самим кольцом.

Для увеличения ресурса подшипников обязательна смазка . Смазка обеспечивает “эффект проскальзывания” пары качения: шарик и кольцо. Если проскальзывания нет, то соприкосновение двух металлов в присутствии воды вызывает питинг - “выкрашивание” до рожки качения. Смазка защищает контакт металлов от проникновения воды.

Скорому износу подшипников способствуют т.н. “блуждающие токи” . Откуда они берутся? В статоре возбуждается магнитное поле, которое проходит по железу и замыкается через железо ротора. В беличьей клетке ротора наводятся индукционные токи, которые взаимодействуют с полем статора, что и является причиной вращения.

Но магнитное поле проходит также и через подшипник (поле рассеяния) и это поле вызывает эрозию. Вода, водяные поры и смазка - это электролит, подшипник - это металл. Магнитное поле индуцирует блуждающие токи через “электролит” и приводит к отложению солей на дорожках качения подшипника. Для исключения этого, используются специальные смазки, которые обладают тем свойством, что в месте трения качения выделяется графит, образующий карбидные пленки на шариках и на до рожках качения. Карбидные пленки обладают свойством диэлектрика и не проводят электрический ток, и поле рассеяние не приводит к эрозии.

При правильной эксплуатации вышеперечисленные мероприятия повышают ресурс асинхронного двигателя в 2-4 раза, а может быть в 10 раз , в зависимости от условий использования.

Электродвигатели бывают переменного и постоянного тока. Первые делятся на синхронные и асинхронные , их конструкция надежнее, эксплуатация проще, что допускает использование в производстве бытовой техники для дома, лебедок, компрессоров, насосов, станков, вентиляторов для промышленности. О сроке службы необходимо думать на этапе выбора модели. Если параметры двигателя соответствуют регулярности применения и условиям эксплуатации, он служит долго при условии, что соблюдаются правила эксплуатации.

Сравнение синхронных и асинхронных электродвигателей

Оба вида этого оборудования работают от переменного тока. Скорость синхронных двигателей постоянная, частота вращения магнитного поля равна частоте вращения ротора .


Отличительные особенности:

  • коэффициент мощности до 0,9;
  • КПД на 1-3% выше, чем у асинхронного оборудования;
  • высокая прочность благодаря сравнительно большому воздушному зазору;
  • низкая чувствительность к скачкам напряжения с электросети;
  • возможно использование для повышения коэффициента мощности на производстве.

Важно! К недостаткам можно отнести сравнительно высокую стоимость и сложность аппаратуры, используемой для пуска.


Уязвимые узлы:

  • графитные щетки и подшипники (быстро снашиваются);
  • относительно слабая пружина для прижимания щеток к коллектору;
  • тонкосъемное кольцо, склонное к скоплению налета из грязи.

Повышенного внимания требуют щетки. Если графит полностью стирается, повреждается токосъемное кольцо. При его выходе из строя двигатель перестает функционировать.


В асинхронных двигателях частота вращения магнитного поля отличается от частоты вращения ротора. Конструкция простая, эксплуатация более надежная. При отсутствии перегрузок это оборудование служит долго.


Преимущества асинхронной конструкции:

  • простота производства;
  • сравнительно низкая стоимость;
  • минимум затрат на эксплуатацию;
  • подключение к сети без преобразователей (если отсутствует необходимость регулировать скорость).

При выборе необходимо учесть минусы:

  • низкий коэффициент мощности и КПД (по сравнению с синхронными моделями);
  • повышенная зависимость от напряжения в электросети;
  • большая величина пускового тока и незначительный пусковой момент;
  • невозможность регулировать скорость, если подключать прямо к сети.

Внимание! Самое уязвимое место – подшипники, но их замена проблем не создает.

Как продлить срок службы двигателей переменного тока

Чтобы этот вид оборудования служил долго, необходимо:

  • верно выбрать модель;
  • правильно установить;
  • соблюдать советы производителя по эксплуатации;
  • своевременно проводить техническое обслуживание;
  • контролировать температуру во время работы;
  • следить за состоянием обмотки;
  • мгновенно реагировать на посторонний шум и повышенную вибрацию.

При выборе электродвигателя следует учесть:

  • требуемые обороты и мощность;
  • способ монтажа и напряжение;
  • величину КПД и коэффициента мощности;
  • дополнительные требования, связанные с условиями эксплуатации.

При монтаже используется лебедка, таль или кран. Перед началом работы следует проверить допустимую нагрузку подъемного устройства. При установке можно использовать только инструменты, не имеющие дефектов. При центровке, замене смазки, проверке зазоров, регулировке щеток обязательно отключение рубильника.


Предотвратить сбои помогает регулярный осмотр во время работы. Необходимо периодически затягивать крепления и болты, очищать поверхность. Не менее важен контроль за соответствием показателей тока заводским параметрам.


Срок службы электродвигателя напрямую зависит от срока службы изоляции . Для каждого класса установлен допустимый уровень температуры. Его превышение способствует разрушению изоляционного материала.


Внимание! Если оборвалась обмотка, единственное верное решение – перемотать. Скручивать или спаивать ее нельзя. В процессе перемотки важно соблюдать параметры сечения и количество витков.


Важно правильно выбрать оборудование, обеспечивающее аварийное отключение. Самыми эффективными считаются приборы максимальной токовой защиты (МТЗ).


Во время работы следите, чтобы вибрации и шум не превышали допустимый уровень. Отклонения свидетельствуют о неисправности механизма , которую необходимо найти и устранить немедленно.


Выбор электродвигателя осуществляется с учетом конструкции, режима работы, мощности, условиям пуска. Если самостоятельно рассчитать параметры не получается, желательно посоветоваться с опытным механиком или консультантом магазина. Любая ошибка при покупке может обернуться выходом из строя машины, для которой электродвигатель предназначен, и дополнительными финансовыми затратами.