Переменный резистор с отводом. Радиосхемы схемы электрические принципиальные. Тонкомпесированный регулятор громкости на резисторе с дополнительными отводами

Как-то так получилось, что при всем большом количестве обзоров я практически ни разу не писал обзоры устройств, тем или иным образом относящихся к аудиотехнике. Хотя конечно у меня есть обзор блока питания для усилителя мощности, но на мой взгляд это уж совсем косвенное отношение. И вот решил я обратить внимание на усилители, ЦАПы и прочие аудиоустройства и начну с регулятора громкости.
Данный регулятор громкости выбирался скорее из эстетических соображений, так как функционально он очень прост и потому обзор будет сегодня не очень длинным.

Как вы уже поняли из предисловия, строить я буду некое подобие усилителя, скорее всего с ЦАП, но в данном случае это не особо принципиально. Раньше я много занимался подобной техникой, но прошли годы и одно просто забылось, вместо другого появилось много нового, потому отчасти я буду вспоминать, отчасти заниматься самообразованием потому возможны ошибки и неточности, за что заранее прощу извинить.

Тема аудиотехники была косвенно затронута в , где я показывал блок питания для усилителя мощности. Скорее всего этот БП будет и дальше принимать участие, вероятнее всего в качестве подопытного для понимания разницы между импульсным и обычным блоком питания, но это тема будущих обзоров, а пока перейду к теме сегодняшнего - регулятору громкости.

Понятно что сейчас громкость звука можно регулировать не только вмешательством в электрический тракт, а и программно прямо от источника, но лично мне не очень нравится подобный подход и я придерживаюсь «классических» решений в виде аналогового регулятора громкости.

Для начала стоит сказать, что регуляторы громкости бывают линейные и логарифмические, а также с тонкомпенсацией, касаться их я не вижу смысла так как это скорее дело вкуса, но объясню очень кратко:

1. Линейный или логарифмический.
Линейный изменяет коэффициент деления прямо пропорционально углу поворота вала регулятора.
Логарифмический (а если корректнее, то обратнологарифмический) больше подходит для человеческого слуха так как в самом начале регулировка происходит очень плавно, а к концу более резко. Человеческое ухо лучше отличает уровень громкости слабых звуков, потому в самом начале регулировка плавная. Когда же громкость большая, то разница менее заметна и там регулировка может быть грубой.

Существует три основные характеристики:
А (в импортном варианте В) - линейная, изменение сопротивления линейно зависит от угла поворота. Такие резисторы, например, удобно применять в узлах регулировки напряжения БП.
Б (в импортном варианте С) - логарифмическая, сопротивление сначала меняется резко, а ближе к середине более плавно.
В (в импортном варианте A) - обратно-логарифмическая, сопротивление сначала меняется плавно, ближе к середине более резко. Такие резисторы обычно применяют в регуляторах громкости.
Дополнительный тип - W, производится только в импортном варианте. S-образная характеристика регулировки, гибрид логарифмического и обратно-логарифмического. Если честно, то я не знаю где такие применяются.
Кому интересно, могут почитать подробнее.
Кстати мне попадались импортные переменные резисторы у которых буква регулировочной характеристики совпадала с нашей. Например современный импортный переменный резистор имеющий линейную характеристику и букву А в обозначении.

2. Тонкомпенсация.
При слабом уровне громкости человеческое ухо лучше слышит СЧ диапазон, но хуже НЧ и ВЧ, потому в некоторые регулятора добавляют принудительную коррекцию АЧХ в самом начале регулировки. Обычно тонкомпенсация отключаемая, так как далеко не всем она нравится и тогда есть возможность случать оригинальный звук. Простейшая тонкомпенсация это конденсатор небольшой емкости между входным сигнальным и подвижным контактом резистора. В более «продвинуты» резистор имеет один или несколько отводов, позволяющих настроить коррекцию более точно.

Для лучшего понимания были построены семейства кривых чувствительности человеческого уха – усредненные графики зависимости этой чувствительности для разных частот слышимых акустических колебаний.

На рисунке ниже показаны эти графики, получившие название кривых равной громкости, которые были приняты в качестве международного стандарта.

Вариант включения обычного переменного резистора для получения тонкомпенсации.

И включение специального резистора.

В моем случае по большей части можно было просто применить обычный переменный резистор. Ниже на фото пример простых переменных резисторов, слева подороже, справа попроще, но суть у них одна и та же, переменный резистор. Качественные переменные резисторы выпускает фирма Alps и стоят они весьма недешево.

Но куда более качественный вариант, это ступенчатый регулятор в виде набора переключаемых резисторов. Фактически это многоступенчатый аттенюатор, преимуществом которого является задание произвольных регулировочных характеристик, но что важнее - более точной подгонкой идентичности каналов.
Существуют обычные переменные резисторы с трещеткой, не путайте, это совсем другое, по сути там просто «эмуляция».

Ступенчатые регуляторы чаще всего применяются в высококлассной аппаратуре, например я впервые его встретил в популярном усилителе Одиссей 010. Кстати, при желании и некотором терпении подобный регулятор можно изготовить самостоятельно из многопозиционного переключателя и подобранных резисторов.

Или даже так, по сути просто переключатель с кучей резисторов.

Если заменить переключатель на реле, то можно сделать более красивое решение, к тому же имеющее возможность дистанционного управления. В целях упрощения резисторы в этом случае управляются двоичным кодом. Путем коррекции номиналов резисторов можно также задавать логарифмическую характеристику.
Переключая коэфициент деления при помощи фиксированных резисторов можно получить относительно простым способом большой диапазон регулировки, 1 реле - 2 уровня, 2 реле - 4 уровня, 3 реле - 8 уровней.
Ниже на фото показан регулятор имеющий 256 ступеней регулировки. Управляется он от специальной микросхемы - которая преобразует аналоговый сигнал от переменного резистора в двоичный код. Переменный резистор при этом просто изменяет постоянное напряжения и никак не подключен в цепи сигнала.
Реле при этом надо применять специальные - сигнальные, а не силовые, так как при слабых напряжениях и токах силовые реле не могут обеспечить качественный контакт.
Но кроме того у подобного регулятора есть преимущество, его легко можно сделать многоканальным просто добавив параллельно еще одну плату с реле.

Снизу платы видны пары резисторов около каждого реле. Вообще изначально у меня была мысль купить именно такой регулятор, но потом я передумал и позже объясню, почему.

Примерно по такой же схеме собран и известный регулятор Никитина, его преимущество в том, что входное и выходное сопротивление всегда постоянно, что лучше сказывается на качестве работы и меньшем влиянии на параметры остальной схемы.

Как было написано выше, ступенчатые регуляторы позволяют реализовать дистанционное управление, но при желании можно купить и обычный регулятор «с моторчиком», управляемым специальным контроллером. Фактически так и есть, вал переменного резистора можно вращать как вручную, так и с пульта, тогда это будет делать небольшой двигатель с редуктором, при этом ручка регулировки также будет вращаться, а если добавить к ней какой нибудь светодиод индикации положения, то смотрится это довольно эффектно.

В общем думал я думал, какой регулятор применить и случайно натолкнулся на весьма любопытный вариант, который меня больше заинтересовал типом дисплея, но об этом чуть позже.
В комплект входит:
1. Плата регулятора
2. Плата управления с дисплеем
3. Пульт ИК ДУ
4. Светофильтр
5. Провода подключения питания и выхода
6. Шлейф для соединения плат, длина 280мм
7. Ручка регулятора.

Также отдельно можно докупить
1. Трансформатор питания 12 Вольт 5 Ватт - $2.22
2. Плата управления нагрузкой - $3.7
3. Доплатить за позолоченные RCA разъемы - $1.47

Я покупал в «базовой» комплектации так как трансформатор у меня есть, плату реле можно сделать самому, а в «позолоченные» разъемы за полтора бакса я мало верю. Волновался чтобы в пути не разбили дисплей, но все обошлось.

Комплект всяких мелочей ничего особенного из себя не представляет, синий светофильтр, дешевенькая ручка и пара проводков.
Защитную бумагу со светофильтра я пока снимать не буду так как мне его еще ставить в корпус и не хотелось бы поцарапать.

Пульт похоже от какого-то телевизора AOC, в меру удобный, но имеющий глянцевый корпус. Смотрится неплохо, хотя кнопок могло бы быть и меньше так как большая часть из них не нужна.
Входы можно переключать как кнопкой Input 1-2-3-4, так и кнопками Bright в любом направлении.

Основная плата, на ней расположены реле, регулятор и узел питания всего комплекта.

Не знаю что подразумевалось под «позолоченными» разъемами, за которые надо было доплатить отдельно, но я получил с такими как на фото. Плата умеет коммутировать сигналы от четырех источников, все входы вынесены на один большой блок разъемов.

Пайка местами на троечку, хотя общее качество изготовления понравилось, аккуратно, есть крепежные отверстия, маркировка.

Плата питается переменным напряжением 12 Вольт, хотя у меня она без проблем работала и от 9. На некоторых конденсаторах имеется маркировка фирмы Elna, хотя на мой взгляд в данном случае это не имеет значения, не говоря о том, что китайцы те еще затейники и верить таким маркировкам можно далеко не всегда.
Также судя по всему на плате есть и умножитель напряжения так как дисплею требуется заметно больше чем 12-15 Вольт. Но в умножителе нет ничего плохого, хуже было бы если разработчик поставил импульсный преобразователь напряжения.

Также здесь установлены четыре стабилизатора напряжения, два (78L05 и 79L05) питают регулятор, один 7805 питает реле, второй отвечает за плату управления.

А вот и регулятор с четырехканальным коммутатором.

Регулировкой уровня сигнала занимается специализированный чип производства Cirrus logic. В начале обзора не были указаны характеристики регулятора, но так как фактически они зависят от данного чипа, то корректнее привести их именно в таком виде. Хотя корректность это понятие относительное, так как они относятся к оригинальному чипу, а какой стоит здесь, я сказать не могу.

Выше я не зря писал о ступенчатых регуляторах сигнала. Дело в том, что данный регулятор также ступенчатый. На блок схеме красным выделен узел аттенюатора, т.е. делителя, а зеленым - регулируемый усилитель.
В отличии от обычного переменного резистора регулятор умет работать в двух режимах, ослабления (-95.5 дБ - 0) и усиления (0-31.5 дБ), за ослабление отвечает аттенюатор, а за усиление - усилитель с изменяемым коэффициентом усиления.

Схема включения регулятора предельно проста, потому собственно и определяются характеристики набора именно характеристиками чипа, хотя некоторые параметры можно при желании испортить неправильной трассировкой.
Изначально регулятор двухканальный, но судя по даташиту он допускает каскадирование и его можно применять и в многоканальных системах, нужен просто еще один или несколько таких чипов.

На плате находится разъем для подключения панели управления, а также неизвестный мне чип со стертой маркировкой.

Как было указано выше, плата может управлять включением дополнительной нагрузки. Для этого на плате имеются контакты подключения реле. На этих контактах появляется 5 Вольт при включении регулятора в рабочий режим, коммутация по минусу.
Данный выход можно использовать для управления подачей питания на усилитель мощности.

1. Чип регулятора CS3310
2. Транзисторная сборка ULN2003 для управления реле, она же управляет и дополнительным выходом.
3. Сигнальные реле на напряжение 5 Вольт. Где-то дома должны быть такие же реле, только фирменные, может сравню позже.
4. Неизвестный мне чип, зачем стерли маркировку - загадка.

Снизу платы пусто, большая часть полигонов используется как экран от помех.

Так как чип регулятора имеет цифровое управление, то в комплекте идет плата управления и индикации.

Управление соответственно может быть как от энкодера, так и от пульта, для этого на плате установлен фотоприемник, по понятным причинам светофильтр должен захватывать и его.

А это то, из-за чего я отчасти остановил свой выбор именно на данной модели регулятора, VFD дисплей, или по нашему ВЛИ (Вакуумно Люминесцентный Индикатор).
Собственно из-за этого данную плату можно назвать «теплой и ламповой», так как ВЛИ это и есть самая настоящая радиолампа, правда не имеющая никакого отношения к звуку. Дисплей правда здесь самый обычный, подобные применяются в калькуляторах и подобных устройствах где достаточно 9 знакомест.

Скажу честно, мне действительно нравятся подобные вещи и я бы не отказался от подобных дисплеев, но в виде аналогов обычным 1602, 2004 и т.п., но стоят они обычно , правда и смотрятся красиво.

Контроллер управления и прочие элементы вынесены на обратную сторону платы, а сама плата выполнена в том же дизайне что и плата регулятора. Правда есть замечание, плата не совсем ровная, она немного выгнута в сторону от передней панели.

Контроллер управления регулятором и драйвер дисплея.

На плате имеются контакты для подключения внешней клавиатуры и месте для перемычек.
1. Зеленый - клавиатура - выключение звука, выбор входа, регулировка громкости. В отличии от энкодера здесь есть функция выключения звука, но нет кнопки выключения.
2. Красный - режим работы полный (аттенюатор + усилитель) или только аттенюатор.
3. Желтый - отключение функции запоминания настроек.

1. Микроконтроллер управления - 12C5A60S2
2. Драйвер дисплея -
3. EEPROM, предположительно для хранения настроек.
4. Пайка фотоприемника. сначала решил что все плохо, но позже выяснилось что такой вид только снизу, сверху пайка отличная.

Чтобы проверить регулятор, подключил трансформатор питания 9 Вольт, соединил шлейфом платы и… все, можно включать.

Со вспышкой, да без светофильтра пытаться что либо разглядеть на дисплее нереально, хотя здесь я даже подкорректировал изображение в фотошопе.

Без вспышки или с каким нибудь светофильтром все заметно лучше, сам по себе индикатор весьма яркий.

На странице товара есть примеры применения данного регулятора, а точнее - оформления передней панели с ним, хотя в некоторых вариантах применен явно другой светофильтр, заметно более длинный.

Я же пока временно ограничился кусочком зеленого светофильтра, который нашел дома и ниже расскажу о режимах работы.
1. Выключено, на дисплее светится только точка правого разряда.
2. После короткого нажатия на энкодер регулятор переходит в основной режим работы, при этом на дисплей вылазит надпись Hello, которая затем пропадает. Выше я писал что у платы есть выход включения дополнительной нагрузки, на нем питание появляется сразу после нажатия на энкодер. При подаче питания на плату, она кратковременно щелкает релюшкой, в дежурном режиме все реле отключены. Для перевода платы в дежурный режим надо удерживать энкодер нажатым примерно пару секунд.
3. На дисплей выводится номер включенного канала и уровень ослабления/усиления сигнала.
4. Если на время замкнуть контакты Mute, то в поле уровня выводятся прочерки, повторное замыкание контактов опять включает звук.
5, 6. Минимально может быть -96 дБ, максимально +31.5 дБ. В даташите был указан диапазон -95.5 - +31.5 дБ.

И вот в последнем показанном пункте и кроется небольшая засада, полный диапазон регулировки составляет 256 уровней, а так как энкодер имеет 20 положений на один оборот, то для перехода от минимума до максимума надо сделать почти 13 полных оборотов. Я конечно люблю плавную регулировку, но всему есть свои пределы… На мой взгляд достаточно 30 ступеней регулировки, ну если хочется плавности, то 60-65, но 256…

Немного улучшить ситуацию позволяет отключение встроенного усилителя, это дает два положительных момента:
1. Усилитель меньше вносит искажений в сигнал (предположительно)
2. Вместо 256 ступеней будет «всего» 192 или 9.5 оборотов энкодера.

Еще увеличить удобство можно заменой энкодера на вариант с 24 положениями, тогда будет уже только 8 оборотов.

Если удалить перемычку Р5, то встроенный усилитель отключится, а максимально на дисплее будет уже 00.0, а не 31.5. Также на фото видны разные варианты включенных входов, 1 и 4. Входы переключатся коротким нажатием на энкодер.
Память режимов есть, но после полного снятия питания регулятор включится в режим который был перед корректным отключением, раздельной памяти на каждый вход нет, уровень громкости один на все входы. Если запаять перемычку блокировки памяти, то при каждом включении будет активирован первый вход и уровень сигнала -46.0 дБ.

Из-за того, что дисплей включен всегда, то потребление от режима работы почти не меняется, 187 мА в дежурном и 236 мА в рабочем режиме. Потребление указано по переменному току, мощность около 1.7 и 2.2 соответственно.

Естественно была проведена небольшая проверка, но по большей части я скорее уперся в возможности моих измерительных приборов и в частности - осциллографа. Для регулятора громкости ключевым является обычно линейность регулировки, вносимые искажения и разделение каналов, но я как-то даже не знаю как проверить все это при помощи одного генератора и простенького осциллографа. При входном напряжении 2.65 Вольта и уровне -70 дБ вольтметр показывает на выходе около 1мВ.

Для теста использовался полностью аналоговый генератор 10 Гц - 100 кГц и осциллограф DS203.
Сначала проверил как выглядит картинка на частоте 10 Гц.
1. Входной сигнал

3. Выходной сигнал на уровне +8.5 дБ
4. На уровне +9.0 дБ началось ограничение, но оно определяется размахом входного сигнала.
5. Уровень -45 дБ
6. Уровень -30 дБ

Частота 20 кГц.
1. Входной сигнал
2. Выходной сигнал на уровне 0 дБ.
3. Выходной сигнал на уровне +12 дБ
4. Так как размах входного сигнала здесь меньше, то ограничение началось на уровне +12,5 дБ, при дальнейшем увеличении усиления сигнал постепенно превращается в прямоугольник.
5. Уровень -45 дБ
6. Уровень -30 дБ

Максимум что умеет мой генератор - 100 кГц, на этой частоте я также решил проверить.
1. Входной сигнал
2. Выходной сигнал на уровне 0 дБ.
3. Выходной сигнал на уровне +11,5 дБ
4. Выходной сигнал на уровне 12.5 дБ, при 12.0 дБ ограничение было почти незаметно потому я выбрал 12.5 для наглядности.

Так как усилители мощности пока не готовы, ЦАП вообще еще не приехал, то пробовал немного с этим усилителем, работает нормально, по крайней мере единственный исправный канал:)
Собственно говоря именно этот усилитель я и буду переделывать, понимаю, явно не Одиссей, но что имеем. Хотя если учитывать что от него по сути останется только корпус, ну возможно еще трансформатор и радиатор, то не думаю что это важно, хотя у того же Одиссея вид и конструкция куда как более солидная.

Пока вкратце могу сказать, что все работает, в этом плане нареканий у меня нет. Звук регулируется, пульт работает, дисплей отображает всю необходимую информацию, искажений звука не замечено. Отмечу отсутствие импульсных преобразователей для питания дисплея, хотя индикация все равно динамическая, но в данном случае это ограничение самого дисплея.
Но есть и недостаток, слишком плавная регулировка сигнала, потому я скорее всего заменю энкодер и отключу встроенный усилитель.
Кроме того хотелось бы иметь раздельную регулировку уровня громкости для каждого входа, но это уже скорее к разряду «хотелок», потому как обычно такое не используется.

Общее качество изготовления неплохое, откровенных косяков не наблюдаю. Оригинальность чипа регулятора проверить не могу, увы.

Спонсором данного обзора выступил посредник , который взял на себя оплату доставки.
Стоимость комплекта вместе с доставкой к посреднику выходит $30.66, стоимость доставки от посредника зависит от разных факторов. Весит набор 364 грамма, информация со страницы заказа у посредника.

На этом у меня пока все, как обычно жду вопросы, советы, пожелания и тому подобное, надеюсь что обзор был полезен.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +31 Добавить в избранное Обзор понравился +88 +128

ТОНКОМПЕНСИРОВАННЫЙ РЕГУЛЯТОР ГРОМКОСТИ

го порядка, обеспечивающим крутизну подъема АЧХ регулятора в низко* частотной области 12 дБ на октаву. Высокочастотная коррекция достигнута введением фильтра верхних частот (ФВЧ) второго порядка C2R5R6C5R7 н традиционной цепи R1CI

Подавляющее большинство тон- компенсированных регуляторов громкости построены по схеме, приведенной на рис. I. Сам регулятор представляет собой переменный резистор с двумя отводами, к движку которого подключена цепь высокочастотной коррекции (RICI). а к отводам - низкочастотной (R3C2 и R4C3).

Основной недостаток таких регуляторов громкости - небольшая глубина тоикомлснсацин в области низших авуковых частот. Так. в ||] отмечается, что все тонкомпенсированныс регуляторы громкости с использованием переменных резисторов с одним или несколькими отводами не позволяют получить требуемые характеристики, поскольку при таком способе регулировки уменьшение громкости вызывает прогрессирующее ослабление составляющих средних и высших звуковых частот, которое по мере перемещения движка регулятора вниз (по схеме) захватывает все более широкий участок спектра воспроизводимого усилителем сигнала. В подтверждение сказанному на рис. 2 приведены АЧХ цепей тбн- компенсации регулятора громкости с использованием переменного резистора с двумя отводами (сплошные линии) и кривые равной громкости (штриховые линии). Сравнение этих кривых показывает, что отклонение фактических АЧХ тонкомпенсацин от кривых равной громкости особенно велико в низкочастотной области при малом уровне громкости.

Для радиолюбителей, ие имеющих возможности приобрести переменные резисторы с отводами, сше в 60-х годах была предложена (4) схема гон- компенсированного регулятора громкости на обычном резисторе группы В без отводов (рис. 3). Высокочастотная коррекция осуществляется здесь целью RICI, низкочастотная - Т-образным фильтром R2C2R3. выделяющим низкочастотные составляющие сигнала и передающим их на выход с ослабленном, зависящим от положения движка резистора R4. АЧХ тонкомпенсацин этого регулятора примерно такие же. как и устройств с использованием переменного резистора с двумя отводами.

Улучшения тонкомпенсацин можно достигнуть подключением дополнительных R&uencA (см. рис. 4). В этом случае функции низкочастотного корректора будет выполнять не только Т-образный фильтр R2C3R3, но и введенная дополнительно цель R7C4. Фактически мы уже имеем дело с фильтром нижних частот (ФНЧ) второ-

Слсдует отметить, что в данном регуляторе тонкомпенсация в области высших частот несколько превышает необходимую. Сделано это преднамеренно, так как субъективные испытания ■ домашних условиях пока* эали целесообразность большего подъема АЧХ на высших частотах при малом уровне громкости по сравнению с рекомендуемой в (3) величиной. Если необходимо, тонкомпснсацию а области высших частот нетрудно довести до стандартной: для этого достаточно

исключить элементы С2. R5, R6. С5.

А. ШИХАТОВ, г. Москва
Радио, 2000 год, №10

Известно, что при снижении уровня громкости человек хуже воспринимает низкочастотные и высокочастотные составляющие звукового сигнала. По этой причине в современные звуковоспроизводящие устройства устанавливают частотно-зависимые (тонкомпенсированные ) регуляторы громкости, обеспечивающие подъем высоких и низких частот при малом уровне громкости в соответствии с кривыми равной громкости. Таким образом они улучшают субъективное восприятие звуковой картины. В публикуемой статье рассказывается о наиболее распространенных тонкомпенсированных регуляторах громкости.

Совпадение кривых тонкомпенсации с кривыми равной громкости даже у идеально спроектированного тонкомпенсированного регулятора громкости (ТРГ) возможно только при строго определенном коэффициенте передачи всего звукового тракта, начиная от источника сигнала и кончая громкоговорителем. Иными словами, уровень громкости, при котором производилась тембровая балансировка в процессе записи, должен достигаться при одном и том же положении регулятора громкости для любого источника сигнала. Отклонение коэффициента передачи от расчетного приводит к нарушению тонального баланса.

В комбинированной звуковоспроизводящей аппаратуре со встроенными АС все звенья звукового тракта согласованы по уровню сигнала, и данное условие, хотя и с некоторыми оговорками, выполняется. Усилителям же блочных устройств приходится работать с источниками сигнала с достаточно большим диапазоном выходных напряжений (0.25... 1,5 В) и с АС неизвестной заранее чувствительности (84...94 дБ/Вт/м). поэтому во многих высококачественных усилителях совместно с ТРГ используются регулятор максимальной громкости или регуляторы чувствительности входов, а в последнее время - регуляторы глубины тонкомпенсации.

Тонкомпенсация обычно реализуется частотно-зависимыми делителями (реже фильтрами), связанными с регулятором громкости. Принципиальный недостаток большинства известных регуляторов на переменных резисторах с отводами - недостаточная степень коррекции АЧХ в области низших частот при малой громкости. Для приближения АЧХ к кривым равной громкости необходимо использовать переменные резисторы с несколькими отводами или регуляторы с распределенной частотной коррекцией . Однако такие регулирующие устройства весьма сложны в реализации и поэтому применяются довольно редко.

Наибольшее применение как в промышленных, так и в любительских конструкциях получили ТРГ на резисторе с одним отводом, схема которого приведена на рис. 1 (на этом и всех последующих рисунках рядом со схемой ТРГ показаны его регулировочные характеристики). Отвод обычно делается от 1/10 части общего сопротивления переменного резистора (считая от нижнего по схеме вывода), что соответствует приблизительно 1/4... 1/3 угла поворота движка регулятора. Подключение к отводу RC-цепи превращает регулятор в частотно-зависимый делитель. Цепь R1C1 обеспечивает подьем АЧХ на высших частотах звукового диапазона, a R2C2 - на низших. Однако подобным регуляторам свойственны существенные недостатки. Так обеспечиваемая ими степень коррекции АЧХ в области низших частот явно недостаточна (не более 8... 10 дБ на частоте 50 Гц), а в процессе регулировки заметен ступенчатый характер коррекции. По мере снижения громкости после прохождения отвода степень коррекции уже не меняется, тогда как именно при малой громкости она должна быть максимальной. Попытки увеличить степень коррекции уменьшением сопротивления резистора R2 приводят к появлению характерного провала АЧХ на средних частотах в момент прохождения отвода. И все-таки, несмотря на указанные недостатки, многие конструкторы усилителей 3Ч выбирают именно такой ТРГ из-за его простоты. Указанные на рис. 1 номиналы элементов типичны для большинства конструкций. Иногда резистор R1 может отсутствовать. В этом случае емкость конденсатора С1 должна быть примерно в два раза меньше.

Несколько большую степень коррекции АЧХ в области низших частот обеспечивает регулятор, схема которого приведена на рис. 2. Его прототип применялся в 50-е годы в радиоприемниках фирмы Philips . Примеры использования таких регуляторов в современных промышленных конструкциях автору неизвестны. Цепь R2C2R3 образует ФНЧ, сигнал с выхода которого подается на отвод регулятора. Этому ТРГ свойственны те же недостатки, что и предыдущему, хотя и в меньшей мере.

Недостаточная степень подьема АЧХ на низших частотах у регуляторов, о которых шла речь, объясняется применением корректирующих цепей первого порядка. В ТРГ (рис. 3) глубина коррекции при малой громкости увеличена за счет введения цепи R4C3, образующей совместно с участком переменного резистора от движка до отвода второй частотно-зависимый делитель. Применение двухступенчатой коррекции позволяет довести подъем АЧХ при минимальной громкости до 20...26 дБ на частоте 50 Гц. Оборотная сторона этого достоинства - сужение диапазона регулирования громкости до 45...50 дБ, что, впрочем, чаще всего оказывается вполне достаточным.

В некоторых случаях использование переменных резисторов с отводами нежелательно. На рис. 4 показана схема ТРГ на переменном резисторе без отводов, использующего фильтровый способ коррекции АЧХ. Фильтр R2R3R4C1C2. подавляющий средние частоты сигнала, начинает работать при малых уровнях громкости, благодаря чему происходит подъем низших и высших частот звукового диапазона. Варианты подобного регулятора широко используются в любительских разработках. Степень подъема его АЧХ на низших частотах при минимальной громкости можно увеличить добавлением корректирующей цепи, аналогичной, показанной на рис. 3.

Однако все рассмотренные ТРГ обеспечивают только фиксированную и отнюдь не идеальную коррекцию АЧХ и в ряде случаев требуют применения регуляторов тембра для подстройки тонального баланса. Попытки создания ТРГ с регулируемой коррекцией или совмещения ТРГ с регуляторами тембра предпринимались еще в 50-х годах. Вероятно, одной из первых реализаций этой идеи был регулятор громкости приемника немецкой фирмы Kontinental . В нем наряду с пассивным ТРГ на резисторе с двумя отводами использовалась регулируемая частотно-зависимая ООС, напряжение которой подавалось на регулятор с выходного трансформатора усилителя.

Оригинальная схема комбинированного пассивного узла регулировок громкости и тембра в транзисторном усилителе приведена на рис. 5 . Здесь переменный резистор R3 совместно с цепями R1C1. R2C2, R4C4 образуют цепь регулировки коррекции на высших частотах. Цепь C5R5, подключенная к отводу регулятора громкости R7, обеспечивает низкочастотную коррекцию. Незначительный подъем АЧХ на низших частотах в положении минимальной громкости создается резистором R2. Регулируется глубина НЧ-коррекции резистором R6.

Широкие пределы регулировки АЧХ в настоящее время представляются излишними, поэтому имеет смысл исключить конденсатор С2, заменить перемычкой конденсатор С1 и резистор R1. а сопротивление переменного резистора R6 уменьшить до 100 кОм. После такой доработки устраняется спад АЧХ в области высших частот, а диапазон регулировки АЧХ на низших частотах сужается до 10 дБ.

Схема разработанного автором простого ТРГ с регулируемой коррекцией на основе резистора с отводом приведена на рис. 6. Регулировка глубины коррекции одновременно по низшим и высшим звуковым частотам производится переменным резистором R1. Если регулировка в области высших частот не требуется, можно исключить конденсатор С2, а сопротивление резистора R3 уменьшить до 10 кОм. Недостаток такого ТРГ (как, впрочем, и всех других с цепями первого порядка) - недостаточная коррекция низших частот при самой малой громкости. Как уже отмечалось, добавлением корректирующей цепи аналогичной, показанной на рис. 4, степень подъема АЧХ на низших частотах можно увеличить. Используя предложенный принцип, несложно ввести регулятор тонкомпенсации в звуковоспроизводящую аппаратуру промышленного изготовления.

В следующей схеме ТРГ (рис. 7), также разработанной автором, используется одновременно и корректирующий фильтр C3R6R7, и частотно-зависимый делитель R2R3C2. благодаря чему достигается широкий диапазон коррекции. Переменный резистор R2 - регулятор громкости, R1 - регулятор низкочастотной коррекции, R4 - высокочастотной.

ЛИТЕРАТУРА
1. Иванов А. Тонкомпенсировамный регулятор громкости. - Радио. 1993. № 12 , с. 21.
2. Зуев П. Регулятор громкости с распределенной частотной коррекцией - Радио. 1986. N9 8 . с. 49-51.
3. Давыдов М. Акустические системы радиовещательных приемников. - Радио, 1956, № 4. с. 52-54.
4. Боздех Й. Конструирование дополнительных устройств к магнитофонам. - М. Энергоиздат, 1981. с. 174. 188.



При небольших уровнях громкости звучание звукоусилительной аппаратуры невысокого класса не обеспечивает, как правило, качественного воспроизведения. Это связано с тем, что при небольшой громкости ухо человека становится менее чувствительным к частотам нижнего и верхнего спектра. Для устранения этого недостатка в высококачественной аппаратуре предусмотрены различные схемы компенсации амплитудно-частотной характеристики (АЧХ) при малых громкостях звучания, то есть верхние и нижние частоты дополнительно усиливаются, в результате АЧХ выравнивается и качество звучания не изменяется на слух при любом уровне громкости. Самым простым способом можно достичь этого эффекта, применив регуляторы громкости с тонкомпенсацией. Схемы довольно просты и не требуют применения дефицитных деталей и какой-либо настройки.

Подавляющее большинство таких схем ранее строилось на основе специальных переменных резисторов с дополнительными отводами, как показано на рис.1. Основной недостаток таких схем – применение специальных резисторов и небольшая глубина тонкомпенсации. Для них, также, характерна определенная нелинейность, ступенчатость воспроизведения верхних и особенно нижних частот при определенных положениях движка переменного резистора с одним или двумя отводами.

Ниже приводятся схемы тонкомпенсированных регуляторов громкости на резисторах группы «В» без отводов (обычные переменные резисторы, широко применяемые в различной радиоаппаратуре. Группа резистора определяет зависимость вводимого сопротивления при повороте движка и обозначается буквой, например, «А», «В», «С» в его маркировке, перед или после обозначения его номинального сопротивления)

На рис.2 показана схема, где высокочастотная (ВЧ) коррекция осуществляется цепью R1C1 , а низкочастотная (НЧ) – Т-образным фильтром R2C2R3. АЧХ тонкомпенсации этого регулятора примерно такая же, как и у устройств с применением регулятора с двумя отводами. Недостатком такой схемы является небольшая крутизна подъема АЧХ в областях низших и высших частот, а также применение переменного резистора большого сопротивления (2 МОм), которые не очень просто найти в настоящее время.

Улучшения тонкомпенсации можно достигнуть подключением дополнительных RC-цепей, как на рис.3. К тому же здесь применен переменный резистор широко распространенного номинала (можно поставить 47 … 68 кОм). В этом случае функцию низкочастотного корректора будет выполнять не только Т-образный фильтр R2C3R3, но и введенная дополнительная цепь R7C4. Фактически это будет уже фильтр нижних частот (ФНЧ) второго порядка, обеспечивающий крутизну подъема АЧХ регулятора в низкочастотной области 12 дБ на октаву. ВЧ-коррекция достигнута введением фильтра верхних частот C2R5R6C5R7 в дополнение к традиционной цепи R1C1.

Следует отметить, что в данной схеме тонкомпенсация в области высших частот несколько превышает необходимую. Сделано это преднамеренно и обусловлено чисто субъективным восприятием музыкальных фонограмм в домашних условиях. Небольшой провал АЧХ на частоте 3,5 кГц в нижнем положении движка резистора R4 обусловлен фазовым сдвигом между сигналами этой частоты, прошедшими через ФВЧ и резистор R4. При исключении элементов C2, R5, R6, C5 этот провал исчезает, исчезает и дополнительный подъем АЧХ на высших частотах, что приводит параметры корректора к стандартным, рекомендованным для таких тонкомпенсаторов в различной технической литературе по акустике. Поэтому эти элементы можно исключить, все зависит от конкретных особенностей аппаратуры и личного слухового восприятия.

К незначительным недостаткам данной схемы можно отнести небольшое уменьшение (до 48 дБ) диапазона регулирования громкости, что обусловлено присутствием резистора R7 в цепи регулирования. Но на практике такое небольшое уменьшение диапазона регулировки, как правило, некритично.

Схему такой тонкомненсации можно применить при разработке и изготовлении новой звукоусилительной аппаратуры, а также для доработки уже имеющихся усилителей, магнитол, приемников. Если в таких устройствах применяются обычные регуляторы громкости, то есть просто переменный резистор соответствующего сопротивления, не включенный в цепи обратной связи усилительных узлов, то можно вместо него включить данную схему. Но при этом нужно учитывать выходное сопротивление предшествующего каскада (до регулятора громкости) – оно должно быть значительно меньше сопротивления резистора R5, и входное сопротивление следующего за регулятором каскада, которое должно быть больше сопротивления резистора R3. Чем больше будет разница этих сопротивлений, тем лучше будет обеспечиваться согласование нагрузок и аппаратура в целом будет работать лучше. В крайнем случае можно перед регулятором и после него включить дополнительные согласующие каскады на транзисторах или микросхемах и тем самым еще и компенсировать возможное небольшое снижение максимальной громкости всего звукового тракта. В моей личной практике такой необходимости не возникало, но ниже приведу пару схем таких дополнительных каскадов согласования (рис.4).

Схемы представляют собой дополнительные каскады усиления на микросхеме К157УД2 (два усилителя в одном корпусе, показано расположение выводов обоих каналов) и транзисторе. В качестве DA1 можно применить любой операционный усилитель, например К140УД6, УД7, К153 УД1, УД2 и другие с учетом цоколевки их выводов и корректирующих цепей (здесь это конденсаторы С2). От величины резистора R2 зависит коэффициент обратной связи. Чем меньше номинал этого резистора, тем меньше коэффициент усиления каскада и меньше нелинейные искажения. Поэтому резистор следует ставить как можно меньшего сопротивления!

Транзистор во второй схеме можно заменить на КТ315, КТ342, КТ306. Сопротивление резистора R2 здесь зависит от питающего напряжения (чем меньше напряжение питания, тем меньше сопротивление), а резистором R1 задается режим работы транзистора по постоянному току. Подбором этого резистора нужно в режиме покоя (без входного сигнала) установить на выходе (коллекторе транзистора) напряжение, равное половине напряжения питания.

Прилагаю рисунки печатных плат (скачать):

– pl1 – плата согласующего каскада на транзисторе;

– pl2 – плата согласующего каскада на МС К157УД2 (два канала);

– pl3 – плата тонкомпенсированного регулятора громкости по схеме рис.3.