Плазменная закалка металла. Плазменная закалка деталей и инструмента (пз). Режим обработки с оплавлением поверхности


Владельцы патента RU 2313581:

Изобретение относится к области термической обработки. Для получения закаленной поверхности без оплавления с достаточной глубиной упрочнения поверхностную закалку осуществляют путем перемещения по поверхности закаливаемого изделия плазменной дуги прямого действия на обратной полярности, когда электрод является анодом, а изделие - катодом. 3 ил.

Изобретение относиться к машиностроению и предназначено для поверхностного упрочнения деталей.

Известно, что поверхностное упрочнение (закалку) деталей производят газовыми горелками, индукторами ТВЧ, лазерным лучом и др. источниками поверхностного нагрева. С 80 х годов распространение получила плазменная закалка дугой прямого действия, горит между электродом (плазматроном) и изделием. При этом используется дуга прямой полярности, когда неплавящейся электрод является катодом, а изделие - анодом. (Металловедение и термическая обработка металлов, 1988, №12, с.35 в статье "Упрочнение рабочих поверхностей чугунных деталей методом плазменного оплавления" авторов Н.С.Шепелева, М.В.Селиванова и др.).

Недостатком плазменной закалки на прямой полярности является то, что качество закалки в значительной степени зависит от скорости перемещения плазменной дуги по поверхности изделия. С ее увеличением глубина закалки резко уменьшается (Сварочное производство, 2003, №2, с.26 в статье "Поверхностное упрочнение стальных деталей сжатой электрической дугой" авторов А.Е.Михеева, С.С.Ивасева и др.). В еще большей степени на свойства закаленного слоя влияет длина дуги. Обычно для каждого режима подбирается оптимальная длина дуги, при которой дуга горит устойчиво. Ни один из авторов известных публикаций не пытался исследовать влияние длины дуги на свойства закалки. Это произошло потому, что проследить это чрезвычайно трудно. Обычно даже небольшое увеличение длины дуги от оптимального значения резко уменьшает глубину и твердость закалки, а укорочение дуги приводит к оплавлению поверхности, что часто является браковочным признаком.

Высокая чувствительность качества закалки к скорости перемещения и длине плазменной дуги обусловило, что плазменную закалку производят только на автоматических установках, где два вышеприведенных параметра поддаются точной настройке и точному поддержанию в процессе закалки. Ручная плазменная закалка до последнего времени не приводилась именно потому, что неизбежные в ручном процессе колебания длины дуги и скорости закалки дают оплавление поверхности или не обеспечивают ее упрочнения.

Задачей настоящего изобретения является уменьшение чувствительности качества закалки к длине дуги, скорости ее перемещения и, на основе этого, изыскания возможности выполнения плазменной закалки вручную без оплавления поверхности.

Поставленная задача решена путем применения для поверхностной закалки дуги обратной полярности, когда электрод является анодом, а изделие - катодом.

Производилась плазменная закалка на автоматической установке цилиндра из стали 40 диаметром ⊘60 мм со скоростью 43,6 м/час на токе 60 А. Было установлено, что и на прямой и на обратной полярности при длине дуги 9 мм (расстояние от среза сопла плазмотрона до поверхности детали) оплавление закаленной дорожки не происходит. На фиг.1 показаны темплеты, вырезанные из образца с плазменной закалкой, выполненной при длине дуги 3 мм. По ним видно, что при закалке на обратной полярность (поз.1.) поверхность закаленной дорожки не имеет оплавления, а при закалке на прямой полярности (поз.2.) по средине закаленных дорожек имеется оплавление, сформировавшее буртик высотой 0,12 мм. При увеличении длины дуги прямой полярности до 6 мм избежать оплавления не удалось, но высота буртика уменьшилась до 0,06 мм. Таким образом, дуга обратной полярности даже при существенном укорочении не вызывает оплавления закаливаемой поверхности, тогда как даже небольшое укорочение дуги прямой полярности приводит к оплавлению.

На фиг.2 представлено распределение микротвердости по глубине закалки, выполненной дугой прямой полярности. Из нее видно, что с увеличением длины дуги с 3 мм до 9 мм произошло уменьшение: микротвердости с Н 500 500 до Н 500 450; а глубины закалки с 0,9 мм до 0,7 мм.

На фиг.3 представлено аналогичное распределение микротвердости по глубине закалки, но выполненное дугой обратной полярности. В данном случае имеет место обратная закономерность: с увеличением длины дуги с 3 мм до 9 мм микротвердость и глубина закалки не уменьшились, а увеличились: микротвердость - с Н 500 480 до Н 500 640, а глубина закалки - с 0,7 мм до 1,1 мм. Отсюда можно сделать следующие выводы о преимуществах плазменной закалки на обратной полярности по сравнению с закалкой на прямой полярности.

1. При длине дуги 9 мм, когда в обоих случаях нет оплавления, на обратной полярности выше микротвердость (Н 500 640 вместо Н 500 430) и больше глубине закалки (1,1 мм вместо 0,7 мм).

2. Максимальные значения микротвердости и глубины закалки на обратной полярности получены на длинной (9 мм) дуге, которая более удобна, чем короткая, для ведения процесса вручную. Ибо при короткой дуге корпус плазматрона мешает наблюдению за ней, что создает трудности с направлением дуги в требуемое место.

Изложенное позволяет заключить, что на обратной полярности при ведении плазменной закалки вручную, когда происходят колебания длины дуги и скорости ее перемещения, все же возможно получение закаленной поверхности без оплавления с достаточной глубиной упрочнения.

Практическое применение нового способа

Штамп из стали 5ХНМ, массой 2200 кг используется для горячей штамповки титана ВТ-20. При изготовлении он упрочняется объемной закалкой с отпуском на НВ 340. После 1100 штамповок его осаживают для восстановления гравюры. По мере удаления от поверхности во время осадок твердость гравюры снижается и после 8 осадок она достигла НВ 300. Штамп подлежал утилизации, ибо его повторная объемная закалка была невозможна, т.к. потеряв в толщине, при объемной закалке он получил бы недопустимую деформацию. Тогда сложнопрофильную гравюру штампа вручную упрочнили плазменной закалкой на обратной полярности. Твердость поверхности увеличилась до НВ 540, а съем - до 1862 штамповок. Таким образом, ручная плазменная закалка не только продлила срок службы штампа, но и увеличила его стойкость во время компании в 1,7 раза (с 1100 шт. до 1862 шт.).

Штамп из стали 8Х3 используется для холодной вырубки заготовок из стали 30ХГСА толщиной 6,5 мм. Обычно на нем нарубают ˜5 тыс. заготовок, подвергают зачистке, дополнительно нарубают 10 тыс. шт. и утилизируют. Штамп по рабочим кромкам упрочнили вручную плазменной закалкой на обратной полярности; твердость кромок увеличилась с HRC 52 до HRC 60. С двумя зачистками штамп нарубил 40 тыс. заготовок, что в 2,6 раза больше, чем нарубает штамп без плазменной закалки (15 тыс. шт.).

Штамп из стали 5ХВ2С используется для горячей вырубки заготовок из стали 30ХГСА толщиной 10 мм. Обычно с периодическими зачистками он нарубает 8 тыс. заготовок. После ручной плазменной закалки по рабочим кромкам твердость увеличилась с HRC 54 до HRC 62, а наработка штампа возросла до 42,2 тыс. шт., т.е. в 5,3 раза.

Производилась плазменная закалка зубьев венца шестерни сталеразливочного крана. Затрудненный доступ к поверхности зубьев потребовал увеличения длины дуги до 20 мм. Это не отразилось на качестве закалки и срок службы зубчатых венцов увеличелся с 6 мес. до 17 мес., т.к. в 2,8 раза.

Способ поверхностной закалки изделий, включающий закалку путем перемещения по поверхности изделия плазменной дуги прямого действия, возбуждаемой между электродом и изделием, отличающийся тем, что для предупреждения оплавления закаливаемой поверхности с одновременным обеспечением достаточной глубины и твердости закаленного слоя плазменную закалку выполняют на обратной полярности, когда электрод является анодом, а изделие - катодом.

Похожие патенты:

Изобретение относится к способам упрочнения изделий и может быть использовано преимущественно в машиностроении при индукционной закалке изделий типа осей, валов, имеющих сложную конфигурацию упрочняемых участков в местах выхода шлиц, пазов, лысок и т.д.

СВАРКА. РЕНОВАЦИЯ. ТРИБОТЕХНИКА: тезисы докладов / Отв. ред. ; М-во образования и науки РФ; ФГАОУ ВПО “УрФУ им. первого Президента России Б.Н. Ельцина”, Нижнетагил. технол. ин-т (фил.). – Нижний Тагил: НТИ (филиал) УрФУ, 2013. – 76 с.

Сведения о плазменной закалке появились в 80-х годах XX века [ , ]. Наличие в промышленности различных плазменных аппаратов (для резки, сварки, напыления) подталкивало новаторов приспосабливать их для поверхностной закалки. Установку микроплазменной сварки использовали для поверхностной закалки деталей шахтного оборудования и автомобильных распределительных валов . Установку для напыления с мощной дугой косвенного действия применили для закалки прокатных валков .

Большую работу по адаптации сварочных аппаратов для поверхностной закалки провели в Нижнетагильском филиале Уральского политехнического института, ныне – Уральского федерального университета. Модернизация плазмотрона позволила использовать установку плазменной сварки УПС-501 для поверхностной закалки дугой прямого действия. Внедрение в производство было сделано на Нижнетагильском металлургическом комбинате (НТМК) в 1985 г. Успех был замечательный, стойкость бандажей рельсоправильных машин с плазменной закалкой увеличилась в 2-4 раза [ , ]. Впоследствии разработанная технология с усовершенствованиями стала применяться для поверхностной закалки ручьёв (калибров) валков горячей прокатки . Таким же образом для плазменной закалки была адаптирована установка плазменной резки УПР-404 . Она получила применение для упрочнения наплавленных роликов рольгангов, транспортирующих закалённые рельсы. За счёт её срок службы роликов увеличился более чем в три раза. Для исключения трещин установили оптимальное соотношение толщин закалённого и наплавленного слоёв, а для увеличения глубины закалки – способ сканировании дуги [ , ].

В отличие от плазменных установок, оборудование для сварки вольфрамовым (W) неплавящимся электродом в аргоне более распространённое. Поэтому была выполнена его адаптация к поверхностной закалке. Чтобы увеличить ширину закалённых полос к дуге подвели магнитное поле, которое придало ей веерообразную форму и равномерно распределило тепловую энергию на ширину до 15 мм [ , ]. Плазменные установки с дугой косвенного действия, адаптированные к закалке, применялись для упрочнения валков, железнодорожных колёс и прокатных валков [ , ].

Несмотря на перечисленные успехи, плазменная закалка в 90-х гг. не обрела самостоятельной жизни. Её промышленное применение в основном поддерживалось разработчиками технологий. Плазменные установки для поверхностной закалки как самостоятельный вид товара не выпускались.

Установка ручной плазменной закалки УДГЗ-200

Разработанные технологии плазменной закалки имели существенный недостаток – их ручное применение было не возможно или затруднительно. Дуга косвенного действия работает при напряжениях более 250 В, которые не допустимы в ручном процессе. Дуга прямого действия чувствительна к настройке режима. Отклонения от оптимального, которые неизбежны при ручной закалке, сопровождаются или оплавлением закаливаемой поверхности, или исчезновением закалённого слоя. Поэтому выше описанные технологии плазменной закалки применялись только в автоматическом режиме, когда параметры настройки легко поддерживаются неизменными.

В современный век роботов и “безлюдных” производств разработка ручной технологии может показаться ошибочной. Однако ручные технологии, благодаря универсальности, демонстрируют живучесть. В мире основной объём сварки (более 80%) выполняются электродами или полуавтоматами, то есть вручную. По аналогии ожидалось, что с разработкой ручного способа плазменной закалки объёмы её применения возрастут, и произойдёт это за счёт изделий, которые ранее по тем или иным причинам закалить было не возможно.

При ручной закалке плазменная дуга должна обеспечивать равномерный прогрев независимо от естественных и неизбежных при этом колебаний длины дуги и скорости её перемещения. Критерием оценки служит отсутствие внезапных оплавлений поверхности и исчезновений закалённого слоя. Направление в исследованиях было выбрано с учётом работы . В ней установлено, что обжатие сварочной дуги возможно не только в сопле, но и за счёт газового потока, истекающего через контролируемый зазор между соплом и электродом. В результате был разработан способ ручной плазменной закалки, горелка для его осуществления и на их основе – закалочная установка УДГЗ-200 () [ , , ]. Закалка выполняется горелкой, небольшие размеры которой делают её удобной для ручного манипулирования, позволяют добираться ею до труднодоступных мест и упрочнять то, что ранее было невозможно .

Рисунок 1 – Установка УДГЗ-200

При закалке сварщик перемещает дугу () по поверхности со скоростью, обеспечивающей легкое “вспотевание” металла под дугой. Это состояние контролируется не труднее, чем плавление при сварке, но оно позволяет поддерживать необходимый для закалки нагрев и одновременно не допускает грубого повреждения поверхности. Дуга оставляет на поверхности закалённые полосы шириной 8-12 мм, которые сварщик располагает с некоторым перекрытием. Они окрашены “цветами побежалости”, то есть покрыты тонкой плёнкой окислов, которые не оказывают существенного влияния на шероховатость поверхности (). Плазменная закалка не даёт деформаций, благодаря чему закалённым деталям не требуются финишная шлифовка.

Рисунок 2 – Плазменная дуга во время закалки

Рисунок 3 – Пальцы ковша экскаватора с плазменной закалкой

Закалка происходит за счёт отвода тепла в тело детали без подачи воды на место нагрева. Поэтому установка УДГЗ-200 применяется на ремонтных площадках, по месту механообработки и эксплуатации деталей, а не только в термических цехах и на специализированных участках.

Твёрдый (HRC 45-65) слой закалки (0,5-1,5 мм) многократно увеличивает срок службы крановых рельс и колёс, зубчатых и шлицевых соединений, канатных блоков, вырубных, формовочных, вытяжных штампов и других ответственных деталей. Наличие установки УДГЗ-200 восполняет отсутствие печей для закалки, цементации, установок ТВЧ; делает закалку экологически чистой. Работу на ней легко осваивают сварщики 2-3 разрядов. Закалка установкой УДГЗ-200 может быть механизирована, автоматизирована и роботизирована. Благодаря установке УДГЗ-200 увеличена номенклатура закаливаемых изделий и решён ряд важных проблем на ведущих предприятиях Урала: ОАО “ЧМК”, ОАО “НТМК”, ОАО “ВСМПО-АВИСМА”, ОАО “ЧТПЗ”, ОАО “КГОК” и других. Через пять лет после разработки установка УДГЗ-200 прошла сертификацию, и по ТУ 3862-001-47681378-2007 было начато её промышленное производство. К концу 2012 г. выпущено более 40 установок, которые поставлены на предприятия России, Украины, Казахстана.

Перечень ссылок

  1. Селиванов М.В., Шепелев Н.С. Применение плазмы для упрочнения за рубежом. – М.: ЦНИИ информ. и техн.-эконом. исслед. чёрной металлургии, 1985. – Вып. 2. – 23 с.
  2. Поверхностное упрочнение сталей плазменной закалкой / В.А. Линник, А.К. Онегина, А.И. Андреев и др. // МиТОМ, 1983. – № 4. – С. 2-4.
  3. Использование микроплазменного нагрева в процессах упрочняющей технологии / Кобяков О.С., Гринзбург Е.Г. // Автоматическая сварка, 1985. – № 5. – С. 65-67.
  4. Структура и свойства сталей, упрочнённых плазменной струёй / Л.К. Лещинский, И.И. Пирч, С.С. Самотугин и др. // Сварочное производство, 1985. – № 11. – С. 20-22.
  5. Плазменная закалка деталей технологического оборудования / А.А. Бердников, М.А. Филиппов, Р.И. Силин, И.Н. Веселов // Тез. докл. научн.-технич. конф. “Прогрессивные технологии упрочнения”. – Пенза: ПДН-ТП, 1986. – С. 69-70.
  6. Коротков В.А., Бердников А.А., Толстов И.А. Восстановление и упрочнение деталей и инструмента плазменными технологиями. – Челябинск: Металла, 1993. – 144 с.
  7. Упрочнение чугунных валков методом плазменной закалки / А.А. Бердников, В.С. Демин, Е.Л. Серебрякова и др. // Сталь, 1995. – № 1. – С. 56-59.
  8. Восстановление и упрочнение роликов рольгангов / В.А. Коротков, Л.В. Баскаков, И.А. Толстов, А.А. Бердников // Сварочное производство, 1991. – № 3. – С. 31-33.
  9. Способ восстановления стальных деталей. А.с. 1671706 (СССР). – Бюл. 31, 1991.
  10. Плазменная закалка сканируемой дугой без оплавления / В.А. Коротков, О.В. Трошин, А.А. Бердников // Физика и химия обработки материалов, 1995. – № 2. – С. 106-111.
  11. Сафонов Е.Н., Журавлев В.И. Поверхностное упрочнение железоуглеродистых сплавов дуговой закалкой // Сварочное производство, 1997. – № 10. – С. 30-32.
Термическое упрочнение стальных деталей является одним из наиболее эффективных и действенных способов увеличения ресурса работы нагруженных элементов машин и механизмов, а также снижения их материалоемкости. Во многих случаях технически и экономически оправдана локальная термообработка. При этом упрочняют только наиболее нагруженную рабочую поверхность детали, оставляя нетронутой сердцевину. Для поверхностного упрочнения деталей в промышленности широко применяют термическую высокочастотную и газопламенную обработки.

Дальнейший прогресс в повышении качества термообработки рабочих поверхностей деталей связывают с применением концентрированных источников энергии: электронного и лазерного луча, плазменной струи. При этом достигаются более высокие эксплуатационные свойства и качество упрочнения. Из всех способов термообработки высококонцентрированными источниками нагрева наиболее экономичным и производительным является плазменный. Он характеризуется меньшей стоимостью, доступностью технологического оборудования и большими размерами упрочненной зоны.

Особенности плазменной поверхностной закалки - кратковременность процесса нагрева и возможность создания условий охлаждения, обеспечивающих высокую интенсивность, - оказывают существенное влияние на структуру закаленного слоя. Эффект скорости охлаждения при металлографическом исследовании прежде всего заметен в диспергировании структуры. Скорость нагрева оказывает существенное влияние на размер рекристаллизованного зерна, так как с ее увеличением число центров рекристаллизации растет быстрее, чем скорость роста центров. Это приводит к измельчению зерна. Кратковременное пребывание стали в области закалочных температур и протекание фазовых превращений при температурах, превышающих равновесные, приводят к получению механических свойств, отличающихся от свойств стали, закаленной с нагревом от традиционных источников теплоты. В доэвтектоидной стали при быстром нагреве, когда структурно свободный феррит претерпевает перекристаллизацию без влияния атомов углерода, аустенитное зерно всегда несколько мельче того, которое обычно получается при медленном нагреве до температуры аустенизации. Такое изменение блочной структуры аустенита приводит к уменьшению размеров когерентных областей и увеличению значений микронапряжений и искажений в закаленной стали. В условиях поверхностной закалки это становится причиной повышения твердости закаленного слоя. В предварительно сорбитизированных структурах выравнивание концентрации углерода в аустените протекает быстрее, поэтому при нагреве стали с такой структурой размер зерна аустенита может быть еще более мелким - 14-16 баллов. Соответственно и игольчатость мартенсита имеет более тонкое строение, приближающееся к структуре, характеризующейся как безигольчатый мартенсит. Измельчение структуры мартенсита приводит к увеличению ударной вязкости.

Применение быстрого нагрева, способствующего получению более мелкой структуры закаленной стали, дает возможность получить более благоприятное сочетание свойств прочности и вязкости.

Повышение уровня эксплуатационных свойств упрочняемой детали достигается за счет совершенствования технологии упрочнения, что, в конечном счете, сводится к обеспечению оптимального термического цикла (нагрева-охлаждения) исходя из закономерностей структурных, фазовых и полиморфных превращений упрочняемого материала.

Нагрев под закалку по технологии НПП "ТОПАС" осуществляют высокоэн-тальпийной плазменной струей, стелящейся вдоль нагреваемой поверхности. Нагретая зона охлаждается сразу при выходе из плазмы, в основном, за счет отвода теплоты в тело массивной стальной детали, кондуктивного и радиационного теплоотвода с поверхности в атмосферу.

Нагрев каждого участка поверхности происходит с нарастающей плотностью теплового потока в соответствии с изменением теплофизических параметров плазмы по мере приближения к устью струи. Эти параметры в свою очередь можно регулировать в широком диапазоне. Особенностью такого процесса является "мягкий" прогрев с относительно небольшой скоростью нарастания температуры до начала аустенитизации стали. При этом параметры греющей среды, время взаимодействия с учетом температуропроводности материала согласуются так, чтобы обеспечить наибольшую глубину прогрева. "Мягкий" прогрев плавно переходит в "жесткий" с высокой скоростью нарастания температуры в поверхностном слое для более полной аустенитизации, гомогенизации и растворения карбидов.

Рассматриваемая схема процесса поверхностного плазменного нагрева под закалку характеризуется высоким КПД (60-80%) и согласованностью темпов нарастания плотности теплового потока греющей среды с теплофизическими свойствами стали.

Научно-производственное предприятие "ТОПАС" разработало новые технологию и оборудование для высокоскоростной плазменной поверхностной закалки.

Для высокотемпературной поверхностной закалки применяют установку УВПЗ-2М. В ее состав входят: источник электропитания; пульт управления с цифровой системой индикации параметров, оптимизации процесса и неразрушающего контроля; электродуговые горелки с кабель-шланговыми пакетами; специальные формирующие насадки со шланговыми пакетами; пакет монтажных соединений и ЗИП.

Техническая характеристика:

Рабочий ток, А... 150-250
Рабочее напряжение, В.... 180-250
Расход сжатого воздуха при давлении в сети 0,5-0,6 МПа, м3/ч.......... 5-8
Расход горючего газа, м3/ч:
метана... 0,5
пропан-бутана.... 0,2
Расход воды для охлаждения при давлении в подводящей сети 0.3 МПа, м3/ч... 1,5
Продолжительность включения ПВ,%...100
Глубина закаленной зоны, мм.... 0,5-3,5
Ширина закаленной зоны, мм... 5-35

Технология поверхностной закалки НПП "ТОПАС" характеризуется новыми возможностями повышения контактно-усталостной прочности металла и, как следствие, увеличением надежности тяжелонагруженных деталей. Она основана на использовании многокомпонентной химически активной высокотемпературной (6000-7000 К) струи продуктов сгорания углеводородного газа (метана, пропан-бутана) с воздухом. Такая высокотемпературная среда характеризуется комбинацией уникальных транспортных и теплофизических свойств. Она более энергоемка, чем любые двухатомные газы при тех же условиях. Теплоотдача от высокотемпературных продуктов сгорания к нагреваемому изделию повышается как за счет высокого температурного уровня, так и благодаря изменению транспортных свойств диссоциированных продуктов сгорания (вследствие их последующей рекомбинации). С технологической точки зрения - это легкость регулирования окислительно-восстановительного потенциала, способность эффективно прогревать материалы, управлять параметрами стабилизированного электродугового разряда и др.

Многократное (5-10 раз) повышение плотности теплового потока может быть достигнуто при закалке с малых дистанций в пределах начального участка струи за счет образования несамостоятельного диффузного разряда между соплом-анодом электродуговой горелки и деталью от отдельного маломощного источника электропитания. Формирование такого разряда в высокотемпературных продуктах сгорания облегчается по сравнению с воздухом и инертными газами. Происходит это благодаря качественному изменению характера приэлектродных процессов на аноде горелки и повышению разности потенциала высокотемпературной струи по отношению к аноду в продуктах сгорания. Доступность и невысокая стоимость используемых рабочих газов делают особенно предпочтительным их применение с увеличением мощности установок, соответственно производительности процессов, когда рабочие параметры смещаются в область повышенных расходов газа.

Среди упрочняющих технологий плазменная является относительно новой, интенсивно развивающейся в последние годы. Широкое распространение получил процесс плазменного поверхностного упрочнения гребней колесных пар без выкатки их из-под локомотива, а также с использованием автоматических линий. Стимулом развития технологии явились участившиеся случаи катастрофического изнашивания колесных пар тягового и подвижного состава на всех железных дорогах бывшего Советского Союза. Среди множества принимаемых мер плазменное поверхностное упрочнение явилось наиболее эффективным.

Технология плазменной поверхностной закалки НПП "ТОПАС" обеспечивает увеличение надежности и долговечности колесных пар тягового и подвижного состава. Интенсивность изнашивания гребней колесных пар с плазменным упрочнением значительно ниже, чем у серийных (в 2,5-3 раза). Разработанная технология закалки колесных пар обеспечивает две отличительные особенности, способствующие улучшению механических свойств (в т. ч. снижению коэффициента трения в контакте гребня с боковой поверхностью рельса) и повышению трещиностойкости материала колеса в зоне плазменного упрочнения:
локальное (в зоне наибольшего износа) поверхностное упрочнение гребня колеса на глубину 2,5-3 мм и ширину 35 мм с твердостью 280 НВ (в исходном материале) до твердости 450 НВ, что обеспечивает оптимальное соотношение твердости контактирующих поверхностей колеса и рельса;
изменение структуры упрочненной зоны колеса - с феррито-перлитной смеси с размером исходных зерен 30-40 мкм до смеси мелкоигольчатого мартенсита с розеточным трооститом 50:50%.

Плазменная поверхностная закалка лезвия почвообрабатывающего инструмента дает существенные преимущества перед традиционными (объемная закалка, наплавка) процессами упрочнения, Инструмент самозатачивается при работе, а сравнительные испытания на трех машиноиспытательных станциях с различными грунтами показали примерно двухкратное увеличение стойкости. Учитывая высокую производительность закалки (2 см/с), легкость полной автоматизации процесса, простоту обслуживания оборудования, низкие текущие затраты и высокую эффективность, лазменное упрочнение лезвий почвообрабатывающего инструмента можно реализовать в условиях ремонтных предприятий.

Плазменную поверхностную обработку можно эффективно применять для повышения стойкости шестерен и металлообрабатывающего инструмента. Проблема дефицита и высокой стоимости инструментальных сталей может быть существенно снижена для машиностроительных предприятий благодаря повышению работоспособности металлообрабатывающего инструмента (резцов, сверл, фрез). Плазменная поверхностная обработка позволяет повысить стойкость данного инструмента в 2-2,5 раза.

Закалка металла представляет собой нагрев до некоторой критической температуры (более 750 градусов) и последующее быстрое охлаждение, в результате чего твердость стали и чугуна увеличивается в 2-3 раза, с HRC 20...25 до HRC 50...65. Благодаря этому изнашивание деталей замедляется. Снижение износа может составлять десятки и даже сотни раз.

Закалка увеличивает срок службы машин, но не всегда доступна. Поэтому значительное число рабочих поверхностей эксплуатируется без упрочнения, быстро изнашивается и становится причиной частых ремонтов. Это положение может исправить установка плазменной закалки УДГЗ-200, разработанная в 2002г и удостоенная в 2008г медали Женевского салона изобретений и инноваций. Сварщик горелкой (как маляр кистью) закаливает поверхность полосами 7…14мм с некоторым перекрытием. Твердый слой закалки HRC45-65 (в зависимости от марки стали) толщиной 0,5…1,5мм обеспечивает хорошую работоспособность в различных условиях эксплуатации, в том числе крановых рельс и колес, зубчатых и шлицевых соединений, футеровочных плит, штампов и др. Закалка происходит без подачи воды на деталь (за счет теплоотвода в её тело), поэтому применяется не только в специализированных цехах, но и на ремонтных площадках. Закалка, оставляя на поверхности цвета побежалости, не ухудшает шероховатость в диапазоне Rz4…40 и не дает деформаций, благодаря чему детали могут эксплуатироваться без последующей механообработки (шлифовки). Упрочняются не только конструкционные, но и низкоуглеродистые стали типа 20ГЛ, 35Л, традиционно считающиеся не закаливающимися: посадочные места в корпусах и станинах различных машин и оборудования. Работу на УДГЗ-200 легко осваивают сварщики 2…3 разрядов. Процесс закалки может быть автоматизирован. Установка УДГЗ-200 состоит из источника питания, блока водяного охлаждения закалочной горелки и самой горелки с кабелем-рукавом. Снабжается паспортом, сертификатом, руководством по эксплуатации и техинструкцией по ведению закалки для сварщика.

В нашей компании "РусСтанКом" вы можете купить высокотехнологичную установку УДГЗ 200 по выгодной цене, мы предлагаем только запатентованное и сертифицированное оборудование.

УДГЗ-200 география поставок

Плазменная закалка: техническая информация

Плазменная закалка представляет собой локальный нагрев детали до температуры более 750 С и последующем быстром охлаждении. В результате этой процедуры твердость и износостойкость металла увеличиваются в несколько раз. Эта технология остается наиболее распространенным способом упрочнения деталей на производствах. Такой процедуре подвергаются, например, пружины, режущие инструменты, крановые рельсы и т.д.

Основное удобство установки УДГЗ 200 заключается в том, что закалку деталей можно осуществлять без их предварительного демонтажа. Упрочнению можно подвергать следующие металлы:

  • сталь
  • чугун
  • низкоуглеродистая сталь
  • инструментальная сталь

Перед обработкой сначала проводится предварительная зачистка поверхности и обезжиривание, а затем осуществляется сама плазменная закалка - плазматрон перемещают над изделием полосами с небольшим перекрытием.

Технические характеристики станка УДГЗ 200:

  • Твердость слоя (HRC): до 65.
  • Производительность (см2/мин): до 110.
  • Рабочий газ: аргон (15л/мин).

С таким оборудованием плазменная закалка становится высокоэффективным процессом. Технология и установка запатентованы и много лет применяются на практике.

Установка плазменной закалки УДГЗ 200: технология

Мощная и функциональная установка плазменной закалки УДГЗ 200 позволяет сделать процесс упрочнения автоматизированным. Технология проста и легко осваивается сварщиками любых разрядов.

Закалка с помощью установки УДГЗ-200 избавляет от необходимости использования печей. Процесс осуществляется без подачи воды на деталь, за счет теплоотвода в её тело, что дает возможность использовать станок на ремонтных площадках.

Также эта установка за счет высоких скоростей нагрева, обеспечивающих сохранение концентрации углерода структуре, способна на упрочнение низкоуглеродистой стали. После обработки на поверхности не образуются какие-либо деформации, благодаря чему деталь далее можно использовать без финишной шлифовки.

Цены на плазменную закалку

Устанавливаемая на УДГЗ 200 цена вполне удовлетворяет наших клиентов, реализовано уже более 100 установок на территории Российской федерации, Украины, Казахстана, Азербайджана, Киргизии. Мы являемся эксклюзивными поставщиками данной установки, что позволяет держать доступную цену.

Подробно ознакомиться с ценами вы можете в прайс-листе, размещённом на нашем сайте. При закупке нескольких единиц возможно предоставление скидок.

Покупка у нас очень удобна:

  • техника отгружается со склада.
  • оборудование всегда в наличии.

Гарантированные преимущества покупки

Ознакомьтесь со следующими преимуществами приобретения установки УДГЗ 200:

  1. Повышение износостойкости поверхности.
  2. Увеличение безремонтной эксплуатации оборудования.
  3. Сокращение затрат на проведение ремонтов.
  4. Снижение простоев оборудования.
  5. Восполняет отсутствие дорогостоящих печей на предприятии.

Как следствие – повышение производительности и эффективности предприятия в целом.

Благодаря установке плазменной закалки УДГЗ 200, вы сэкономите время и средства. На все модели цены в нашей компании невысоки, предоставляется заводская гарантия. Поэтому сделать заказ предлагаем уже сейчас!

Термическое упрочнение стальных деталей является одним из наиболее эффективных и действенных способов увеличения ресурса работы нагруженных элементов машин и механизмов, а также снижения их материалоемкости. Во многих случаях технически и экономически оправдана локальная термообработка. При этом упрочняют только наиболее нагруженную рабочую поверхность детали, оставляя нетронутой сердцевину. Для поверхностного упрочнения деталей в промышленности широко применяют термическую высокочастотную и газопламенную обработки. Дальнейший прогресс в повышении качества термообработки рабочих поверхностей деталей связывают с применением концентрированных источников энергии: электронного и лазерного луча, плазменной струи. При этом достигаются более высокие эксплуатационные свойства и качество упрочнения. Из всех способов термообработки высококонцентрированными источниками нагрева наиболее экономичным и производительным является плазменный. Он характеризуется меньшей стоимостью, доступностью технологического оборудования и большими размерами упрочненной зоны.
Особенности плазменной поверхностной закалки - кратковременность процесса нагрева и возможность создания условий охлаждения, обеспечивающих высокую интенсивность, - оказывают существенное влияние на структуру закаленного слоя. Эффект скорости охлаждения при металлографическом исследовании прежде всего заметен в диспергировании структуры. Скорость нагрева оказывает существенное влияние на размер рекристаллизованного зерна, так как с ее увеличением число центров рекристаллизации растет быстрее, чем скорость роста центров. Это приводит к измельчению зерна. Кратковременное пребывание стали в области закалочных температур и протекание фазовых превращений при температурах, превышающих равновесные, приводят к получению механических свойств, отличающихся от свойств стали, закаленной с нагревом от традиционных источников теплоты. В доэвтектоидной стали при быстром нагреве, когда структурно свободный феррит претерпевает перекристаллизацию без влияния атомов углерода, аустенитное зерно всегда несколько мельче того, которое обычно получается при медленном нагреве до температуры аустенизации. Такое изменение блочной структуры аустенита приводит к уменьшению размеров когерентных областей и увеличению значений микронапряжений и искажений в закаленной стали. В условиях поверхностной закалки это становится причиной повышения твердости закаленного слоя. В предварительно сорбитизированных структурах выравнивание концентрации углерода в аустените протекает быстрее, поэтому при нагреве стали с такой структурой размер зерна аустенита может быть еще более мелким - 14-16 баллов. Соответственно и игольчатость мартенсита имеет более тонкое строение, приближающееся к структуре, характеризующейся как безигольчатый мартенсит. Измельчение структуры мартенсита приводит к увеличению ударной вязкости. Применение быстрого нагрева, способствующего получению более мелкой структуры закаленной стали, дает возможность получить более благоприятное сочетание свойств прочности и вязкости.
Повышение уровня эксплуатационных свойств упрочняемой детали достигается за счет совершенствования технологии упрочнения, что, в конечном счете, сводится к обеспечению оптимального термического цикла (нагрева-охлаждения) исходя из закономерностей структурных, фазовых и полиморфных превращений упрочняемого материала.
Нагрев под закалку по технологии НПП "ТОПАС " осуществляют высокоэн-тальпийной плазменной струей, стелящейся вдоль нагреваемой поверхности. Нагретая зона охлаждается сразу при выходе из плазмы, в основном, за счет отвода теплоты в тело массивной стальной детали, кондуктивного и радиационного теплоотвода с поверхности в атмосферу.
Нагрев каждого участка поверхности происходит с нарастающей плотностью теплового потока в соответствии с изменением теплофизических параметров плазмы по мере приближения к устью струи. Эти параметры в свою очередь можно регулировать в широком диапазоне. Особенностью такого процесса является "мягкий" прогрев с относительно небольшой скоростью нарастания температуры до начала аустенитизации стали. При этом параметры греющей среды, время взаимодействия с учетом температуропроводности материала согласуются так, чтобы обеспечить наибольшую глубину прогрева. "Мягкий" прогрев плавно переходит в "жесткий" с высокой скоростью нарастания температуры в поверхностном слое для более полной аустенитизации, гомогенизации и растворения карбидов. Рассматриваемая схема процесса поверхностного плазменного нагрева под закалку характеризуется высоким КПД (60-80%) и согласованностью темпов нарастания плотности теплового потока греющей среды с теплофизическими свойствами стали.
Научно-производственное предприятие "ТОПАС" разработало новые технологию и оборудование для высокоскоростной плазменной поверхностной закалки.
Для высокотемпературной поверхностной закалки применяют установку УВПЗ-2М. В ее состав входят: источник электропитания; пульт управления с цифровой системой индикации параметров, оптимизации процесса и неразрушающего контроля; электродуговые горелки с кабель-шланговыми пакетами; специальные формирующие насадки со шланговыми пакетами; пакет монтажных соединений и ЗИП.

Технические характеристики:
Рабочий ток, А... 150-250
Рабочее напряжение, В.... 180-250
Расход сжатого воздуха при давлении в сети 0,5-0,6 МПа, м3/ч.......... 5-8
Расход горючего газа, м3/ч:
метана... 0,5
пропан-бутана.... 0,2
Расход воды для охлаждения при давлении в подводящей сети 0.3 МПа, м3/ч... 1,5
Продолжительность включения ПВ,%...100
Глубина закаленной зоны, мм.... 0,5-3,5
Ширина закаленной зоны, мм... 5-35

Технология поверхностной закалки НПП "ТОПАС" характеризуется новыми возможностями повышения контактно-усталостной прочности металла и, как следствие, увеличением надежности тяжелонагруженных деталей. Она основана на использовании многокомпонентной химически активной высокотемпературной (6000-7000 К) струи продуктов сгорания углеводородного газа (метана, пропан-бутана) с воздухом. Такая высокотемпературная среда характеризуется комбинацией уникальных транспортных и теплофизических свойств. Она более энергоемка, чем любые двухатомные газы при тех же условиях. Теплоотдача от высокотемпературных продуктов сгорания к нагреваемому изделию повышается как за счет высокого температурного уровня, так и благодаря изменению транспортных свойств диссоциированных продуктов сгорания (вследствие их последующей рекомбинации). С технологической точки зрения - это легкость регулирования окислительно-восстановительного потенциала, способность эффективно прогревать материалы, управлять параметрами стабилизированного электродугового разряда и др.
Многократное (5-10 раз) повышение плотности теплового потока может быть достигнуто при закалке с малых дистанций в пределах начального участка струи за счет образования несамостоятельного диффузного разряда между соплом-анодом электродуговой горелки и деталью от отдельного маломощного источника электропитания. Формирование такого разряда в высокотемпературных продуктах сгорания облегчается по сравнению с воздухом и инертными газами. Происходит это благодаря качественному изменению характера приэлектродных процессов на аноде горелки и повышению разности потенциала высокотемпературной струи по отношению к аноду в продуктах сгорания. Доступность и невысокая стоимость используемых рабочих газов делают особенно предпочтительным их применение с увеличением мощности установок, соответственно производительности процессов, когда рабочие параметры смещаются в область повышенных расходов газа.
Среди упрочняющих технологий плазменная является относительно новой, интенсивно развивающейся в последние годы. Широкое распространение получил процесс плазменного поверхностного упрочнения гребней колесных пар без выкатки их из-под локомотива, а также с использованием автоматических линий. Стимулом развития технологии явились участившиеся случаи катастрофического изнашивания колесных пар тягового и подвижного состава на всех железных дорогах бывшего Советского Союза. Среди множества принимаемых мер плазменное поверхностное упрочнение явилось наиболее эффективным. Технология плазменной поверхностной закалки НПП "ТОПАС" обеспечивает увеличение надежности и долговечности колесных пар тягового и подвижного состава. Интенсивность изнашивания гребней колесных пар с плазменным упрочнением значительно ниже, чем у серийных (в 2,5-3 раза). Разработанная технология закалки колесных пар обеспечивает две отличительные особенности, способствующие улучшению механических свойств (в т. ч. снижению коэффициента трения в контакте гребня с боковой поверхностью рельса) и повышению трещиностойкости материала колеса в зоне плазменного упрочнения:
локальное (в зоне наибольшего износа) поверхностное упрочнение гребня колеса на глубину 2,5-3 мм и ширину 35 мм с твердостью 280 НВ (в исходном материале) до твердости 450 НВ, что обеспечивает оптимальное соотношение твердости контактирующих поверхностей колеса и рельса;
изменение структуры упрочненной зоны колеса - с феррито-перлитной смеси с размером исходных зерен 30-40 мкм до смеси мелкоигольчатого мартенсита с розеточным трооститом 50:50%.
Плазменная поверхностная закалка лезвия почвообрабатывающего инструмента дает существенные преимущества перед традиционными (объемная закалка, наплавка) процессами упрочнения, Инструмент самозатачивается при работе, а сравнительные испытания на трех машиноиспытательных станциях с различными грунтами показали примерно двухкратное увеличение стойкости. Учитывая высокую производительность закалки (2 см/с), легкость полной автоматизации процесса, простоту обслуживания оборудования, низкие текущие затраты и высокую эффективность, лазменное упрочнение лезвий почвообрабатывающего инструмента можно реализовать в условиях ремонтных предприятий.
Плазменную поверхностную обработку можно эффективно применять для повышения стойкости шестерен и металлообрабатывающего инструмента. Проблема дефицита и высокой стоимости инструментальных сталей может быть существенно снижена для машиностроительных предприятий благодаря повышению работоспособности металлообрабатывающего инструмента (резцов, сверл, фрез). Плазменная поверхностная обработка позволяет повысить стойкость данного инструмента в 2-2,5 раза.