Плазмотрон на аргоне напыление алюминия. Плазменная металлизация. Технические характеристики плазмотронов для внутреннего напыления

Плазменная сварка алюминия и его сплавов по технологии очень напоминает аргоновую сварку. Ее суть заключается в расплавлении металла в нужном месте под воздействием потока плазмы – ионизированных атомов и молекул. Весь процесс осуществляется в защитном газовом облаке, которое предотвращает проникновение в сварочную ванну смеси газов, содержащихся в атмосфере. При этом плазменная сварка алюминия имеет свои специфические особенности:

  • В процессе работы образуется тугоплавкий оксид алюминия, имеющий температуру плавления 2050 С. Он имеет плотность, большую чем у алюминия, в связи с чем затрудняется оплавление кромок материала, а шов загрязняется частичками окиси.
  • Большая текучесть расплавленного алюминия препятствует равномерному распределению металла внутри сварочной ванны. Он просачивается через корень шва и разрушает твердый металл вокруг ванны. С помощью керамических, графитовых или стальных подкладок эта проблема частично решается .
  • В процессе сварки алюминия используется водород. Его применение обуславливает возникновение в сварном шве пористости , которая уменьшает пластичность и прочность заготовки. Для предотвращения этого необходимо тщательно обезжиривать свариваемые детали. Снижения пористости также можно достичь, предварительно разогревая материал до 150-240 градусов.
  • Алюминий обладает высоким коэффициентом температурного расширения и пониженной упругостью , что приводит к деформациям во время сварки . Данный недостаток минимизируется с помощью применения различных режимов сварки.
  • Применение дополнительных источников тепла и предварительный разогрев алюминия позволяют уменьшить коэффициент теплопотерь , который изначально высок у данного металла.

Видео

Плазменная сварка алюминия на обратной полярности

Данный вид сварки алюминиевых деталей применяют для борьбы с оксидной пленкой. Сжатая дуга переменного и постоянного тока обратной полярности разрушает оксид и следом происходит его удаление. С применением данного метода появляется целый ряд технологических преимуществ :

  1. Производительность работ повышается на 50-60%.
  2. Расход аргона снижается в 4 – 6 раз.
  3. Качество сварных соединений гораздо выше, нежели при использовании обычной дуговой сварки.
  4. КПД нагрева повышается до 60-70 процентов. При обычной аргонодуговой сварке КПД равен 40-45%.
  5. Снижается расход присадочной проволоки до 50%.
  6. Швы заметно уже , чем при классической сварке.
  7. Возможна сварка деталей без предварительного травления .

К сведению! Сварка на токе обратной полярности особенно широко применяется при работе с нагартованными поверхностями, и уплотненными термическим способом сплавами. Благодаря уменьшению общей подаваемой энергии, уменьшается процент некачественных участков шва и более глубокое проникновение струи плазмы в материал. Это позволяет сваривать толстые детали алюминия.

Особенности и премущества

  • Выбор технологии сваривания и параметров режима определяется маркой сплава, габаритами и формой изделия, типом швов, толщиной соединяемых элементов, пространственным положением и конфигурацией швов, их длиной, производственными условиями и некоторыми другими факторами.
  • Максимальной эффективности плазменного сваривания алюминиевых сплавов можно достигнуть при автоматическом сваривании стыковых швов и использовании форсированных технологий. Также высока эффективность применения ручной плазменной сварки алюминия при производстве и ремонтах габаритных конструкций в условиях цеха и монтажных ситуациях.
  • Плазменный сварочный процесс благодаря сжатой дуге позволяет сконцентрировать в пятне нагрева высокую энергию , благодаря чему этот вид сварки стал перспективным для соединения из алюминия и его сплавов.
  • Преимущественное достоинство плазменной сварки в высокой скорости , значительном уменьшении зоны термического воздействия и стабильности процесса , благодаря чему не обязательно четко контролировать и поддерживать постоянство длины дуги, чем облегчается выполнение ручной сварки.
  • алюминия обеспечивает глубокое проплавление , что резко увеличивает количество основного металла при формировании шва. При этом, однако, необходимо соблюдать качество сборки деталей для сварки и точность проводки горелки по стыку.
  • При помощи микроплазмы (слаботочной сжатой дуги) можно сваривать сплавы алюминия толщиной 0,2-1,5мм силой тока10-100А. При микроплазменном сваривании применяется чистый аргон (99,98%), в роли защитного газа применяется чистый гелий (99,95%). Гелий защищает сварочную ванну от атмосферных газов, затрудняет развитие ионизационного фронта в радиальном направлении и, сжимая дополнительно дугу, делает ее устойчивой в пространстве.


Режимы плазменной сварки алюминия

Сварка алюминиевых изделий имеет свои особенности. Решить многие проблемные моменты сварки алюминиевых сплавов и повысить производительность при сохранении высокого качества сварных соединений изделий позволяет плазменная сварка алюминия постоянным напряжением с обратной полярностью.

Сварка с помощью плавящегося электрода

Процесс происходит в оболочке, состоящей из защитного газа, которым обычно является аргон, гелий или их смесь. Детали свариваются с помощью специальных плавящихся вольфрамовых электродов с применением присадочной проволоки диаметром до 2,5 мм током обратной полярности.

Скорость работ при таком режиме может достигать 40 м/час. Если защитное облако состоит из смеси аргона и гелия, толщина свариваемых деталей и ширина шва увеличивается, что рационально при работе с толстыми изделиями.

Автоматическая дуговая сварка

Процесс выполняется с помощью полуоткрытой плазменной дуги по флюсу, или же с закрытой дугой, тогда под флюсом . Здесь также применяется плавящийся расщепленный электрод и флюс АН-А1 для сварочных работ по техническому алюминию, и АН-А4 для соединения алюминиево-магниевых сплавов.

Работа производится по слою флюса во избежание возникновения шунтирования и нарушения технологического процесса. Размеры слоя флюса зависят от толщины свариваемых изделий и составляют 20-45 мм по ширине и 7-15 мм в толщину.

Ручная дуговая

Используется для соединения деталей из чистого алюминия, алюминиево-кремниевых сплавов, сплавов с магнием и цинком. При этом толщина изделий должна быть не менее 4 мм. Сварочные работы осуществляются с помощью постоянного тока с обратной полярностью с высокой скоростью . Боковое смещение отсутствует. Если толщина кромок более 1 см, необходимо произвести разделку кромок. В таком режиме применяется только стыковый метод , поскольку при нахлестном типе соединения много шлаков может попасть в шов и привести к коррозии. Работы при таком типе производятся только после прогрева деталей до 400 С .

Видео

Пример ручной сварки аппаратом :

Электронно – лучевая

Производится в вакуумной среде. При таком типе происходит разрушение оксидов алюминия действием на них парами металлов, в результате чего окись разлагается в вакууме. Вакуум также ускоряет вывод водорода из сварочного шва. В результате работы получаются ровные, качественные швы , металл практически не теряет своей структуры в месте стыка, деформация заготовки сводится к минимуму.

Оборудование для плазменной сварки алюминия

Аппарат для плазменной сварки алюминия состоит из источника переменного или постоянного тока обратной величины и плазмотрона – специальной для генерации плазменного разряда.

Плазмотрон для сварки алюминия Горыныч. Фото с сайта производителя as-pp.ru/gorynych

Источники питания могут иметь разную продолжительность нагрузки, величину силы тока, напряжение холостого хода и, соответственно, разную потребляемую мощность.

Имеет специальные подводы для плазмообразующего и защитного газов, а также для жидкостного или воздушного охлаждения стенок сопла. для горелки изготавливается из тугоплавкого вольфрама, гафния или меди.

На рынке присутствуют аппараты для плазменной сварки алюминия различных производителей:

Собственно говоря , для алюминия подойдут практические любые , все они предназначены для работы с разными металлами.

Плазменная сварка алюминия и его сплавов

Кроме чистого алюминия плазменная сварка используется для его сплавов. Основные их виды:

  1. Термоупрочняемые . Такие сплавы являются трудносвариваемыми, поэтому изготовление из них сварных изделий возможно только при термической обработке изделия. К ним относятся:
    • Алюминиево-медно магниевые (Д1, Д16, Д18 и др.).
    • Алюминиево-магниево-цинковые (В92, В92Ц и др.).
    • Алюминиево-магниево-кремниевые и алюминиево-магниево-кремниево-медные сплавы (АК6 и АК6-1).
    • Алюминиево-медно-марганцевые сплавы.
    • И другие 5-ти и более компонентные сплавы.
  2. Нетермоупрочняемые сплавы. Наиболее распространены и отлично подходят для сварочных работ. Это технический алюминий, алюминиево-марганцевые и алюминиево-магниевые сплавы.

Микроплазменная сварка алюминия

Данный тип применяется для сварочных работ по алюминию, толщиной 0,2 – 1,5 мм. В качестве источника питания используется переменный источник напряжения с силой тока 10-100 А. Дежурная дуга получает ток от отдельного источника постоянного тока. В качестве источника плазмы выступает аргон, а защитные газы – гелий и аргон.

Данный вид сварочных работ отличается высокой скоростью, доходящей до 60 м/ч при механизированном способе и 15 м/ч при ручном. Качество работ также высокое. Прочность получаемых швов — 0,9.
Основное преимущество микроплазменной сварки от аргонодуговой – снижение деформаций материала на 25-30%.

Оставить свой отзыв

Производство металлических изделий модернизируется по мере развития передовых технологий. Металл в большей степени подвержен воздействию влаги, поэтому для обеспечения высокого срока эксплуатации и придания деталям, рабочим механизмам и поверхностям требуемых свойств, в современной промышленности широко используют напыление металлов. Технология порошковой обработки заключается в нанесении на базовую металлическую основу защитного слоя, обеспечивающего высокие антикоррозийные характеристики напыляемых изделий.

Металлическая поверхность после порошковой обработки приобретает важные защитные свойства. В зависимости от назначения и области применения, металлическим деталям придают огнеупорные, антикоррозийные, износостойкие характеристики.

Основная цель напыления базовой основы из металла – обеспечить продолжительный эксплуатационный ресурс деталей и механизмов в результате воздействия вибрационных процессов, высоких температур, знакопеременных нагрузок, влияния агрессивных сред.

Процессы напыления металлов выполняют несколькими способами:

  • Вакуумная обработка – материал при сильном нагревании в вакуумной среде преобразуется в пар, который в процессе конденсации осаживается на обрабатываемой поверхности.
  • Плазменное или газоплазменное напыление металла – в основу метода обработки положено использование электродуги, образующейся между парой электродов с нагнетанием инертного газа и ионизацией.
  • Газодинамический способ обработки – защитное покрытие образуется при контакте и взаимодействии микрочастиц холодного металла, скорость которых увеличена ультразвуковой струей газа, с подложкой.
  • Напыление лазерным лучом – генерация процесса происходит с использованием оптико-квантового оборудования. Локальное лазерное излучение позволяет проводить обработку сложных деталей.
  • Магнетронное напыление – выполняется при воздействии катодного распыления в плазменной среде для нанесения на поверхность тонких пленок. В технологии магнетронных способов обработки используются магнетроны.
  • Защита металлических поверхностей ионно-плазменным способом – основана на распылении материалов в вакуумной среде с образованием конденсата и осаждением его на обрабатываемой основе. Вакуумный метод не дает металлам нагреваться и деформироваться.

Технологический метод напыления деталей, механизмов, поверхностей из металла подбирают, в зависимости от характеристик, которые нужно придать напыляемой основе. Поскольку метод объемного легирования экономически затратный, в промышленных масштабах широко используют передовые технологии лазерной, плазменной, вакуумной металлизации.

Напыление в магнетронных установках

Металлизация поверхностей по технологии магнетронного напыления основана на расплавлении металла, из которого выполнена мишень магнетрона. Обработка происходит в процессе ударного действия ионами рабочей газовой среды, сформированными в плазме разряда. Особенности использования магнетронных установок:

  • Основными элементами рабочей системы являются катод, анод, магнитная среда, которая способствует локализации плазменной струи у поверхности распыляемой мишени.
  • Действие магнитной системы активизирует использование магнитов постоянного поля (самарий-кобальт, неодим), установленных на основании из магнитомягких материалов.
  • При подаче напряжения от источника электропитания на катод ионной установки происходит распыление мишени, причем силу тока нужно поддерживать на стабильно высоком уровне.
  • Магнетронный процесс основан на использовании рабочей среды, которой выступает соединение инертных и реакционных газов высокой чистоты, подающихся в камеру вакуумного оборудования под давлением.

Преимущества магнетронного напыления позволяют применять данную технологию обработки для получения тонких пленок металлов. Например, алюминиевые, медные, золотые, серебряные изделия. Происходит формирование пленок полупроводников – кремний, германий, карбид кремния, арсенид галлия, а также образование покрытий диэлектриков.

Главное достоинство магнетронного метода – высокая скорость распыления мишени, осаждения частиц, точность воспроизведения химического состава, отсутствие перегрева обрабатываемой детали, равномерность нанесенного покрытия.

Использование при напылении магнетронного оборудования дает возможность обрабатывать металлы и полупроводники с высокой скоростью осаждения частиц, создавать на напыляемой поверхности тонкие пленки с плотной кристаллической структурой, высокими адгезивными свойствами. К основному перечню работ по магнетронной металлизации относятся хромирование, никелирование, реактивное напыление оксидов, карбо- и оксинитридов, сверхскоростная наплавка меди.

Технология ионно-плазменной наплавки

Чтобы получать многомикронные покрытия на изделиях из металла, широко используют метод ионно-плазменного напыления. Он основан на использовании вакуумной среды и физико-химических свойств материалов испаряться и распыляться в безвоздушном пространстве.

Технологически сложный процесс позволяет решать важные технические задачи по металлизации изделий благодаря использованию установки ионно-плазменного напыления:

  • Увеличение параметров износоустойчивости, исключение спекания при эксплуатации изделий в условиях высоких температур.
  • Повышение коррозийной устойчивости металлов при эксплуатации в агрессивных водных, химических средах.
  • Придание электромагнитных свойств и характеристик, эксплуатация в границах инфракрасного и оптического диапазона.
  • Получение высококачественных гальванических покрытий, придание изделиям декоративно-защитных свойств, обработки деталей и механизмов, используемых в разных отраслях промышленности.

Процесс ионно-плазменного напыления базируется на использовании вакуумной среды. После поджига катода формируются пятна первого и второго уровня, которые перемещаются с высокой скоростью и образуют плазменную струю в ионном слое. Полученная в результате эродирования катодов струя проходит через вакуумную среду и вступает во взаимодействие с конденсируемыми поверхностями, осаживаясь плотнокристаллическим покрытием.

Использование ионно-плазменного напыления позволяет наносить защитные покрытия при температуре поджига катода до 100°C, отличается достаточно простой схемой получения слоев толщиной до 20 мкм.

С помощью ионно-плазменного напыления на металл удается придавать требуемые свойства конструктивно сложным изделиям нестандартной геометрической формы. После обработки металлическую поверхность не требуется покрывать финишным слоем.

Особенности плазменной металлизации

Наряду с ионно-плазменным напылением и магнетронными способами обработки металлов применяют еще один метод – плазменная металлизация. Главная задача технологии – защита изделий от окислительных процессов в агрессивных средах, повышение эксплуатационных качеств, упрочнение обрабатываемой поверхности, усиление сопротивляемости механическим нагрузкам.

Плазменное напыление алюминия и других металлов основано на высокоскоростном разгоне металлического порошка в потоке плазмы с осаждением микрочастиц в виде покрывающего слоя.

Особенности и преимущества технологии плазменного напыления на металл:

  • Высокотемпературный метод нанесения защитного слоя на обрабатываемую поверхность (порядка 5000-6000 °C) происходит за доли секунд.
  • Используя методы регулирования газового состава, можно получать комбинированное насыщение металлической поверхности атомами порошковых покрытий.
  • Благодаря равномерности потока плазменной струи удается получать одинаково пористое, качественное покрытие. Конечная продукция превосходит результаты традиционных способов металлизации.
  • Длительность процесса напыления невысока, что помогает достичь стопроцентной экономической эффективности использования плазменного оборудования в разных производственных масштабах.

Основные компоненты рабочей установки – высокочастотный генератор, камера герметизации, резервуар газовой среды, насосная установка для подачи давления, система управления. Использовать технологию плазменного напыления на металл допускается в домашних условиях при наличии необходимого оборудования с вакуумной камерой – воздействие кислорода приводит к окислению горячих металлических поверхностей и мишени.

На видео: восстановление деталей напылением.

Процесс лазерной обработки

Наплавка металлов лазерным методом позволяет восстанавливать детали и механизмы потоками света, генерируемыми от оптико-квантового оборудования. Вакуумное напыление лазером является одним из наиболее перспективных методов получения наноструктурированных пленок. В основу процесса положено распыление мишени световым лучом с последующим осаждением частиц на подложке.

Преимущества технологии: простота реализации металлизации, равномерное испарение химических элементов, получение пленочных покрытий с заданным стехиометрическим составом. Благодаря узкой направленности лазерного потока в месте его сосредоточения удается получить наплавку изделия любыми металлами.

Механизмы формирования жидкокапельных фаз:

  • Крупные капли частиц расплавленной мишени образуются путем воздействия гидродинамического механизма. При этом диаметр крупных капель варьируется в диапазоне 1-100 мкм.
  • Капли среднего размера формируются вследствие процессов объемного парообразования. Размер капель колеблется в диапазоне 0,01-1 мкм.
  • При воздействии на мишень коротких и частых импульсов лазерного луча в эрозийном факеле образуются частицы мишени небольшой величины – 40-60 нм.

Если в лазерной установке при наплавке металлов на мишень одновременно действуют все три механизма рабочего процесса (гидродинамика, парообразование, высокочастотный импульс), приобретение изделием требуемых характеристик зависит от величины влияния конкретного механизма наплавки.

Одно из условий качественной лазерной обработки – воздействие на мишень таким режимом облучения, чтобы на выходе получить лазерные факелы с наименьшим включением жидкокапельных частиц.

Оборудование для холодного напыления

Существует два варианта защиты металлов от негативного воздействия внешних и рабочих факторов – легирование и напыление с вакуумным оборудованием. То есть, в сплав добавляют атомы химических элементов, придающих изделиям требуемые характеристики, или наносят на базовую поверхность защитное покрытие.

Чаще всего в отрасли металлизации используют технологию нанесения гальванических покрытий, применяют методы погружения деталей в расплав, задействуют в процессах обработки вакуумную среду, пользуются магнетронным оборудованием.

Иногда используют детонационно-газовое напыление, которое разгоняет частицы до невероятных скоростей. Широко применяют плазмотроны, электродуговую металлизацию, газопламенную обработку, ионное напыление. Задачи промышленности диктуют свои условия, и перед инженерами возникла необходимость создать недорогое, простое в обращении оборудование, для которого можно использовать свойства нагретого сжатого воздуха.

Появилось понятие порошковой металлизации с добавлением в металлический порошок мелкодисперсионной керамики либо частиц твердого металла. Используется для работы с алюминием, никелем, медью.

Результат экспериментов превзошел ожидания, позволив решить следующие задачи:

  • Нагревание сжатого воздуха в камере приводит к повышению давления, что вызывает увеличение скорости вытекания наплава из сопла в установках.
  • При наборе металлическими частицами в газовой среде высокой скорости они ударяются о подложку, размягчаются и прикипают к ней. А керамические частицы уплотняют образовавшийся слой.
  • Использование порошковой технологии подходит для металлизации пластичных металлов – медь, алюминий, никель, цинк. После напыления изделия можно поддавать механической обработке.

Благодаря успешной работе инженеров удалось создать переносной аппарат, позволяющий выполнять металлизацию покрытий на всех промышленных предприятиях и в домашних условиях. Требования для успешной работы оборудования – наличие компрессорной установки (или воздушной сети) с давлением сжатого воздуха в пять-шесть атмосфер и электропитание.

В таблице ниже приведены данные для хромирования алюминия в домашних условиях. Перед нанесением гальванического покрытия требуется «положить» на деталь промежуточный металлический слой, а потом выполнять напыление алюминия.

Таблица 1. Хромирование алюминия

Использование передового оборудования для металлизации изделий позволяет решить технические вопросы, связанные с повышением антикоррозийных, прочностных, эксплуатационных характеристик, а также приданием машинам, деталям и механизмам требуемых свойств для работы в сложных эксплуатационных условиях.

Лазерная сварка (2 видео)

Процесс напыления и рабочие установки (24 фото)




















Плазменное напыление является одним из способов газотермического нанесения покрытий. В основе этого процесса лежит нагрев напыляемого материала до жидкого или пластического состояния, перенос его высокотемпературной плазменной струей к подложке с последующим образованием слоя покрытия.

При плазменном напылении в качестве напыляющих материалов применяют порошки, проволоки, прутки. Наиболее широко распространено напыление порошками. Схема плазменного напыления с использованием порошковых материалов показана на рис. 1. В плазмотроне, состоящем из водоохлаждаемого катодного узла (катод 2 и корпус 3) и анодного узла, с помощью источника 9 постоянного сварочного тока возбуждается плазменная дуга 8, которая стабилизируется стенками канала сопла и плазмообразуюшим газом, поступающим через подвод 1. Порошок подают из порошкового питателя 6 с помощью газа, который поступает по подводу 7.

Температура плазменной струи достигает 5000-55000 °С, а скорость истечения - 1000-3000 м/с. В плазменной струе частицы порошка расплавляются и приобретают скорость 50-500 м/с. Скорость полета частиц порошка зависит от их размера, плотности материала, силы сварочного тока дуги, природы и расхода плазмообразующего газа, конструкции плазмотрона. Порошок вводят в плазменную струю ниже среза сопла, на срез сопла или непосредственно в сопло. Нагрев напыляемых деталей не превышает 100-200 °С.

Рис. 1. Схема плазменного напыления порошком:

1 - подвод плазмообразующего газа; 2 - катод плазмотрона; 3 - корпус катода; 4 - изолятор; 5 - корпус анода; 6 - порошковый питатель; 7 - подвод газа, транспортирующего порошок; 8 - плазменная дуга; 9 - источник питания.

К преимуществам способа плазменного напыления относят возможность получения покрытий из большинства материалов, плавящихся без разложения и ограничения по температуре плавления. Производительность плазменного напыления достаточно высока: 3-20 кг/ч для плазмотронов с мощностью 30-40 кВт и 50-80 кг/ч для плазмотронов мощностью 150-200 кВт.

Плазменным напылением наносят покрытия как на плоские поверхности, так и на тела вращения и криволинейные поверхности. Для покрытия характерна слоистая структура с высокой неоднородностью физических и механических свойств (рис. 2). Тип связей между покрытием и деталью (подложкой), а также между частицами покрытия обычно смешанный - механическое сцепление, сила физического и химического взаимодействий. Прочность сцепления покрытия с подложкой обычно составляет 10-50 МПа при испытаниях на нормальный отрыв.

Физические особенности формирования покрытий обуславливают появление открытой и закрытой пористостей. По мере увеличения толщины наносимого слоя открытые поры перекрываются, и пористость покрытия снижается. Поэтому плотность плазменных покрытий отличается от плотности материала и колеблется в пределах 80-97%. Обычно пористость плазменных покрытий составляет 10-15%.

Толщина покрытия практически не ограничена возможностями самого способа. Однако в силу физических особенностей процесса образования покрытий с увеличением толщины наносимого слоя в нем возрастают внутренние напряжения, которые стремятся оторвать покрытие от подложки. Поэтому обычно толщина покрытия не превышает 1 мм. Конструктивную нагрузку несет материал детали, а материал покрытия придает поверхности детали такие свойства, как твердость, износостойкость и т. п.

В качестве плазмообразующих газов применяют аргон, азот высокой чистоты, водород, гелий, а также смеси этих и других газов. В последние десятилетия успешно развиваются процессы плазменного напыления с использованием в качестве плазмообразующего газа смеси воздуха с горючим углеводородным газом (метаном, пропан-бутаном).

Рис. 2. Схема структуры плазменного покрытия:

1 - граница между частицами напыленного материала;

2 - граница между слоями;

3 - граница между покрытием и деталью;

4 - частица напыленного материала;

5 - поверхность детали.

Рис. 3. Микрофотография плазменного покрытия.

Для генерирования плазмы используют различные плазмотроны. Реализуемые в конкретной конструкции диапазон и уровень удельных мощностей характеризуют эффективность преобразования электрической энергии дуги в тепловую плазменной струи, а также технологические возможности плазмотрона.

Задача разработки технологического плазмотрона всегда сводится к созданию относительно простой, ремонтопригодной конструкции, обеспечивающей стабильную длительную работу в широком диапазоне изменения сварочного тока дуги, расхода и состава плазмообразующего газа, а также генерирование плазменной струи с воспроизводимыми параметрами, что позволяет эффективно обрабатывать материалы с различными свойствами.

В практике напыления применяют как однородные порошки различных материалов (металлов, сплавов, оксидов, бескислородных тугоплавких соединений), так и композиционные, а также механические смеси указанных материалов.

Наиболее распространены следующие порошковые материалы:

металлы - Ni, Al, Mo, Ti, Cr, Cu;

сплавы - легированные стали , чугун , никелевые , медные , кобальтовые , титановые , в том числе самофлюсующиеся сплавы (Ni-Cr-B-Si, Ni-B-Si, Co-Ni-Cr-B-Si, Ni-Cu-B-Si);

оксиды Al , Ti , Cr , Zr и других металлов и их композиции;

бескислородные тугоплавкие соединения и твердые сплавы - карбиды Cr , Ti , W и др. и их композиции с Со и Ni ;

композиционные плакированные порошки - Ni -графит, Ni -А l и др.;

композиционные конгломерированные порошки- Ni - Al , NiCrBSi - Al
и др.;

механические смеси - Cr 3 C 2 + NiCr , NiCrBSi + Cr 3 C 2 и др.

В случае применения композиционных порошков в технологии газотермического напыления преследуют следующие цели:

использование экзотермического эффекта взаимодействия компонентов (Ni - Al , Ni - Ti и т. п.);

равномерное распределение компонентов в объеме покрытия, например, типа керметов (Ni - Al 2 0 3 и т. п.);

защита материала ядра частицы от окисления или разложения при напылении (Co - WC , Ni - TiC и т. п.):

формирование покрытия с участием материала, самостоятельно не образующего покрытия при газотермическом напылении (Ni -графит и т. п.);

улучшение условий формирования покрытий за счет увеличения средней плотности частиц, введение компонентов с высокой энтальпией.

Применяемые для напыления порошки не должны разлагаться или возгоняться в процессе напыления, а должны иметь достаточную разницу между температурами плавления и кипения (не менее 200 °С).

При выборе порошковых материалов для получения различных плазменных покрытий необходимо учитывать следующие положения.

Гранулометрический состав применяемых порошковых материалов имеет первостепенное значение, так как от него зависят производительность и коэффициент использования, а также свойства покрытий. Размер частиц порошка выбирают в зависимости от характеристик источника тепловой энергии, теплофизических свойств напыляемого материала и его плотности.

Обычно при напылении мелкодисперсного порошка получают более плотное покрытие, хотя в нем содержится большое количество оксидов, возникающих в результате нагрева частиц и их взаимодействия с высокотемпературным потоком плазмы. Чрезмерно крупные частицы не успевают прогреться, поэтому не образуют достаточно прочной связи с поверхностью и между собой или просто отскакивают при ударе. При напылении порошка, состоящего из смеси частиц разных диаметров, более мелкие частицы расплавляются в непосредственной близости от места их подачи в сопло, заплавляют отверстие и образуют наплывы, которые время от времени отрываются и в виде больших капель попадают на напыляемое покрытие, ухудшая его качество. Поэтому напыление предпочтительно следует производить порошками одной фракции, а все порошки перед напылением подвергать рассеиванию (классификации).

Для керамических материалов оптимальный размер частиц порошка 50-70 мкм, а для металлов - около 100 мкм. Порошки, предназначенные для напыления, должны иметь сферическую форму. Они обладают хорошей сыпучестью, что облегчает их транспортировку к плазмотрону.

Почти все порошки гигроскопичны и могут окисляться, поэтому их хранят в закрытой таре. Порошки, находившиеся некоторое время в открытой таре, перед напылением прокаливают в сушильном шкафу из нержавеющей стали слоем 5-10 мм при температуре 120-130 °С в течение 1,5-2 ч.

Порошок для напыления выбирают с учетом условий эксплуатации напыляемых деталей.

Возможными дефектами плазменно-дугового способа нанесения покрытий является отслоение напыленного слоя, растрескивание покрытия, появление на поверхности крупных капель материала покрытия, капель меди, а также разнотолщинность покрытия (выше допустимой).

С целью повышения адгезионной и когезионной прочностей и других качественных характеристик плазменные покрытия подвергают дополнительной обработке различными способами: обкатка роликами под током, очистка напыляемых поверхностей от окалины и удаление слабо сцепленных с основой или с предыдущим слоем частиц металлическими щетками в процессе самого напыления, струйно-абразивная и ультразвуковая обработка и др.

Одним из наиболее распространенных способов улучшения качества покрытий из самофлюсующихся сплавов является их оплавление. Для оплавления используют индукционный или печной нагрев, нагрев в расплавах солей или металлов, плазменный, газопламенный, лазерный и др. В большинстве случаев предпочтение отдают нагреву в индукторах токами высокой частоты (ТВЧ). Напыленные покрытия системы Ni - Cr - B - Si - C подвергают оплавлению при 920-1200 0 С с целью уменьшения исходной пористости, повышения твердости и прочности сцепления с металлом - основой.

Технологический процесс плазменного напыления состоит из предварительной очистки (любым известным методом), активационной обработки (например, абразивно-струйной) и непосредственно нанесения покрытия путем перемещения изделия относительно плазмотрона или наоборот.

Литература:

Лащенко Г.И. Плазменное упрочнение и напыление. – К.: «Екотехнолог i я», 2003 – 64 с.

Несущая поверхность детали иногда требует доработки: изменения структуры или свойств механических и физических параметров. Провести такое преобразование можно, используя плазменное напыление. Процесс является одним из видов диффузии, при которой происходит металлизация внешнего слоя изделия. Для осуществления такой обработки применяют специальное оборудование, способное превращать металлические частички в плазму и с высокой точностью переносить ее на объект.

Свойство покрытий, полученных путем , отличается высоким качеством. Они имеют хорошую адгезию к основанию и практически составляют с последним единое целое. Универсальность метода заключается в том, что нанести можно абсолютно любые металлы, а также другие материалы, например полимеры.

Получить напыление способом плазменного переноса частиц можно только в условиях производственных цехов на заводах и фабриках.

Суть процесса плазменного напыления заключается в том, что в струю из плазмы, которая имеет сверхвысокие температуры и направлена на обрабатываемый объект, подают дозированное количество частиц металла. Последние расплавляются и, увлекаемые струей, оседают на поверхности детали. К плазменному напылению прибегают в следующих случаях:

  1. Создание защитного слоя на изделии. Это может быть механическое усиление, когда на менее прочное основание наносят более прочный металл. С помощью диффузионной металлизации также можно увеличить сопротивляемость детали коррозионному воздействию, если наносить пленку из оксидов или металлов, мало подверженных окислению.
  2. Восстановление изношенных деталей. В этом случае за счет нового слоя покрытия можно убрать дефекты разрушения поверхности, чтобы придать изделию первоначальное состояние. В качестве материала напыления здесь используют металл, идентичный материалу основания.

Плазменное напыление отличается от других видов напыления рядом особенностей:

  1. Благодаря тому что плазма воздействует на исходное основание при помощи сверхвысоких температур (5000–6000 градусов по Цельсию), процесс протекает в ускоренном режиме. Иногда достаточно долей секунд, чтобы получить заданную толщину напыления.
  2. Диффузионная металлизация позволяет наносить как монослой на поверхность, так и делать комбинированное напыление. При помощи плазменной струи можно дополнять диффундируемый металл элементами газа, необходимыми для насыщения слоя элементарными частицами нужных химических элементов.
  3. При плазменном напылении практически отсутствует эффект дополнительного окисления основного металла. Это связано с тем, что реакция протекает в среде инертных газов без привлечения кислорода.
  4. Финальное покрытие обладает высоким качеством за счет идеальной однородности и равномерности проникновения атомов напыляемого металла в слой основания.

Методом диффузионной металлизации плазменного типа можно получать слои толщиной от нескольких миллиметров до микрон.

Технология и процесс напыления

При газоплазменном напылении металлов основой рабочей газовой среды являются инертные газы азот или аргон. Дополнительно по необходимости технологического процесса к основным газам может быть добавлен водород. Между катодом, в качестве которого выступает электрод в виде остроконечного стержня внутри горелки, и анодом, коим является подвергаемое водяному охлаждению сопло из меди, в процессе работы возникает дуга. Она прогревает до необходимой температуры рабочий газ, который обретает состояние плазменной струи.

Одновременно в сопло подается металлический материал в виде порошка. Этот металл под воздействием плазмы превращается в субстанцию с высокой способностью к проникновению в поверхностный слой обрабатываемого изделия. Распыляемый под давлением расплавочный материал оседает на основании.

Современные плазменные горелки имеют КПД в пределах 50–70 %. Они позволяют работать с любыми металлами, в том числе и тугоплавкими сплавами. Плазменное напыление – полностью управляемый процесс, позволяющий регулировать скорость подачи плазмы, мощность и форму струи.

В случае восстановления формы детали путем плазменного напыления технологический процесс имеет следующие этапы:

  1. Подготовка напыляемого материала. Суть процесса заключается в сушке порошка в специальных шкафах при температуре 150–200 градусов по Цельсию. При необходимости порошок также просеивают через сито для получения однородных по размеру гранул.
  2. Подготовка подложки или основания. На этом этапе с поверхности детали удаляют все посторонние включения. Это могут быть окислы либо различные загрязнения масляными веществами. Для лучшего сцепления основание может быть подвергнуто дополнительному процессу образования шероховатости. Если на изделии имеются участки, которые не следует подвергать напылению, их закрывают специальными экранами.
  3. и операции по заключительной обработке полученной поверхности.

К подложке напыляемый материал может доходить в твердом состоянии, в пластичной форме либо в жидком виде. Это определяется режимом технологического процесса.

Применяемое оборудование

Стандартный комплект установки плазменного напыления включает в себя:

  1. Источник электрического питания. Его назначение – питать схему формирования высоковольтного разряда и всех систем.
  2. Блок формирования разряда. В зависимости от устройства схемы может генерировать искровые разряды, импульсные высокочастотные напряжения либо сплошную электрическую дугу.
  3. Резервуары хранения газа – это чаще всего обычные газовые баллоны.
  4. Камеру, где непосредственно происходит напыление. Внутрь такого герметичного резервуара помещают обрабатываемую заготовку и плазмотрон.
  5. Установку вакуумного типа с насосом. В задачи этого агрегата входит создание требуемого разряжения в камере и образование тягового потока для подачи рабочей среды.
  6. Плазмотрон – устройство, которое снабжено соплом для подачи рабочей среды и системой приводов для перемещения сопла в пространстве.
  7. Систему дозирования напыляемого порошка. Служит для точной подачи необходимого количества напыляемого материала в единицу времени.
  8. Охлаждающую систему. В задачу этого элемента входит отвод лишнего тепла от области сопла, через которое проходит раскаленная плазма.
  9. Аппаратную часть. Она включает в себя компьютер, который управляет всем процессом плазменного напыления.
  10. Систему вентиляции. Она служит для отвода отработанных газов из рабочей камеры.

Современные установки диффузионной металлизации имеют специальное программное обеспечение, позволяющее путем введения заданных параметров проводить полностью автономную операцию обработки изделия. В задачи оператора входит установка детали в камеру и задание точных условий проведения процесса.

Уважаемые посетители сайта: специалисты и технологи по плазменному напылению! Поддержите тему статьи в комментариях. Будем благодарны за конструктивные замечания и дополнения, которые расширят обсуждаемый вопрос.