Правила подключения сварочного трансформатора к сети. Сварочный аппарат постоянного тока своими руками: моя схема. Напряжение сети и количество фаз

Как правильно подключить кабели к сварочному инвертору

Сварочный аппарат - это оборудование, с помощью которого можно преобразовать ток и напряжение, которые необходимы для получения дуги между электродом и свариваемым металлом. В первую очередь, в процессе качественной работы сварочного аппарата, основным фактором является его мощность. Так, например, для сварки решеток или заборов, достаточно будет электрода до 4 мм, сварочный ток будет колебаться в пределах 180-220 ампер. Существенную роль играет и напряжение холостого хода (Ux.x.). Считается, чем выше напряжение, тем проще разжечь дугу. Зачастую напряжение холостого хода составляет 30-80 В. Так же сварочный аппарат, имеет рычаг регулировки тока, при помощи которого можно увеличить или уменьшить ток. В основном, сварочные аппараты рассчитаны на 220 или 380 В, и это необходимо учитывать при подключении сварочного аппарата. Если у вас однофазный сварочный аппарат, то сварочный кабель подключают к питающему автомату в следующем порядке - одну жилу на фазу, вторую на нейтраль, а третью на защитный ноль. Так же производится и подключение кабелей если у вас трехфазный сварочный инвертор, но с одним условием - используется 5-ти жильный кабель, 3 жилы которого подключаются к клеммам L1, L2 и L3.

Удлинить сварочный кабель на инверторе можно, учитывая потери напряжения и, соответственно, силу тока. Чем длинней кабель, тем больший ток нужно устанавливать на выходе. В техдокументации некоторых аппаратов указан категорический запрет на удлинение сварочного кабеля. При подключении кабелей к сварочному аппарату Ресанта нужно это иметь в виду. На практике же работы других аппаратов не заметно ухудшений при удлинении кабелей до 5-6 метров. Это связано с запасом мощности и ресурсом, заложенными производителями в сварочный аппарат. В любом случае, соединения на сварочном кабеле не допускаются. Короткий кабель заменяется более длинным отрезком с соответствующими заделками.

Как выбрать сварочное оборудование

На сегодняшний день, производители предлагают большой выбор сварочного оборудования. И что бы выбрать оптимальный вариант, необходимо, как минимум иметь понятие, какие аппараты бывают, на какие характеристики следует обратить внимание, и что необходимо знать, для правильного подключения приобретенного аппарата.

Ассортимент сварочных аппаратов огромен, но основной выбор состоит из:

Сварочных трансформаторов;
. сварочных выпрямителей;
. инверторов.

Бытует совсем неверное утверждение, что чем тяжелей и больше аппарат, тем лучше - габариты и вес не определяют его функциональных возможностей. Вес обычного трансформатора не превышает 30 кг, сварочного выпрямителя - 20 кг, а инвертора - 10 кг. Естественно и цены на аппараты будут разные.

Одно из основных условий, на которое необходимо обратить внимание, это параметры при сварочном токе, ПВР (процент времени работы) или ПВ (продолжительность включения). Для отсчета времени ориентируются на интервал 15 минут. Достаточно удобной опцией розжига дуги, обладает большее количество устройств. Что касается аппаратов с выпрямлением сварочного тока, то они производят весьма качественный шов, имеют функции пуска двигателя, заряд аккумулятора, нагревают и рихтуют металл с помощью угольного электрода.

Часто возникает вопрос, можно ли подключать сварочный аппарат через счетчик? Нужно учесть, что новые бытовые счетчики рассчитаны на ток в 40-50 ампер, а это равняется ~8 кВт активной мощности. Следовательно, необходимо подбирать сварочный аппарат, который будет потреблять ток менее указанного на счетчике и номинала вводного автоматического выключателя. Если номинальный ток сварочного аппарата будет выбран правильно, то электрический счетчик не пострадает.

Кабель для сварочного аппарата (кабель для сварки).

Для продуктивной работы сварочного аппарата, необходимо выбирать сварочный кабель, что бы его площадь сечения, длина и падение напряжения сварочного контура не превышало 2 Вт. Сварочный кабель КГ представляет собой изолированный гибкий токопроводник с одной или несколькими жилами, сплетенными из медных проволок различных диаметров (от 0,18 мм до 0,2 мм). Такой кабель выполняет функцию подвода тока от сварочного аппарата или источника напряжения к приспособлению, с помощью которого удерживается электрод.

В заключение нужно отметить, чтобы ваше сварочное оборудование работало бесперебойно и оправдало свой эксплуатационный срок, необходимо выбирать сварочный кабель в соответствии с техническими характеристиками сварочного аппарата.

Предполагается, что при стремлении к максимальной экономии, в самодельных конструкциях сварочных трансформаторов могут использоваться нестандартные решения построения обмоток, старые, бывшие в употреблении провода и материалы, несвойственные для промышленного сварочного оборудования.

Учитывая высокую мощность, для обмоток сварочного трансформатора понадобится провод относительно большого сечения. Развивая в режиме сварки значительный ток, трансформатор постепенно нагревается. Скорость нагрева зависит от ряда факторов, важнейшим из которых является диаметр или площадь поперечного сечения провода его обмоток. Чем толще провод, тем лучше он пропускает ток, тем меньше нагревается и, наконец, тем лучше он рассеивает тепло. Основной характеристикой здесь является плотность тока (А/мм 2), чем выше значение плотности тока в проводах, тем интенсивнее будет происходить разогрев трансформатора. Наиболее распространенным материалом для провода является медь, хотя обмоточный провод может быть и алюминиевым. Обмотки из медного провода получаются компактнее, так как медь позволяет использовать в 1,6 раз большую плотность тока, нежели алюминиевый провод. Зато алюминиевый провод дешевле, а обмотки из него получаются легче.

В промышленных трансформаторах плотность тока не превышает значения 5 А/мм 2 для медного провода. Но для самодельных трансформаторов удовлетворительным результатом можно считать для меди даже 10 А/мм 2 . С увеличением плотности тока резко ускоряется нагрев трансформатора. Нередки случаи, когда в самоделках для первичной обмотки используются провода, выдерживающие токи более высокой плотности - до 20 А/мм 2 . Но в этом случае трансформатор нагреется до температуры порядка 60 градусов уже после использования подряд 2-3 электродов, потом придется ждать, пока обмотки остынут. Время перерыва на охлаждение будет сильно зависеть от конструкции аппарата: как у него организовано охлаждение и насколько хорош теплоотвод из катушек. Если варить предполагается немного, а лучших материалов все равно не предвидится, то можно намотать проводом и с сильной перегрузкой. Хотя это, конечно, неизбежно уменьшит надежность сварочного трансформатора. Оптимальным для самодельных трансформаторов можно считать плотность тока до 7 А/мм 2 .

Кроме сечения и металла, другой важной характеристикой провода является способ его изоляции. Провод может быть просто покрыт лаком, умотан в один или два слоя нитки или ткани, которые в свою очередь могут быть пропитаны или нет лаком. От типа изоляции сильно зависит надежность обмотки, ее максимальная температура перегрева, влагостойкость, изоляционные качества. Наилучшим вариантом является изоляция из стеклоткани, пропитанной теплостойким лаком.

Наименее желательным, но самым доступным материалом для самоделок являются обычные провода ПЭЛ, ПЭВ 1,6-2,4 мм в простой лаковой изоляции. Такой провод легче всего достать, он наиболее распространен: его можно снять с катушек дросселей и трансформаторов отслужившего свой век оборудования. Осторожно снимая старые провода с катушек, необходимо следить за состоянием их покрытия и слегка поврежденные участки дополнительно изолировать. Хуже, когда катушки с проводом были дополнительно пропитаны лаком или закрашены, их витки между собой склеились и, при попытке рассоединения, затвердевшая пропитка часто срывает и собственное лаковое покрытие провода, оголяя металл. В редких случаях, при отсутствии других материалов, мотают обмотки даже монтажным проводом в хлорвиниловой изоляции. Их недостатки: лишний объем изоляции и плохой теплоотвод.

ПЭВ, ПЭМ - провода, эмалированные высокопрочным лаком (соответственно, винифлекс и металвин), выпускаются с тонким (ПЭВ-1, ПЭМ-1) и усиленным изоляционными слоями (ПЭВ-2, ПЭМ-2); ПЭЛ - провод, эмалированный лаком на масляной основе; ПЭЛР-1, ПЭЛР-2 - провода, эмалированные высокопрочным полиамидным лаком, соответственно с тонким и усиленным слоями изоляции; ПЭЛБО, ПЭВЛО - провода на основе проводов типа ПЭЛ и ПЭВ с одним слоем, соответственно, хлопчатобумажной пряжи или лавсана; ПЭВТЛ-1, ПЭВТЛ-2 - провод, эмалированный высокопрочной полиуретановой эмалью, теплостойкой, с тонким и усиленным слоями изоляции; ПЛД - провод, изолированный двумя слоями лавсана; ПЭТВ - провод, эмалированный теплостойким высокопрочным полиэфирным лаком; провода типа ПСД- с изоляцией из бесщелочного стекловолокна, наложенного двумя слоями с подклейкой и пропиткой теплостойким лаком (в обозначениях марок: Т - утонённая изоляция, Л - с поверхностным лаковым слоем, К - с подклейкой и пропиткой кремнийорганическим лаком); ПЭТКСОТ - провод, изолированный теплостойкой эмалью и стекловолокном; ПНЭТ-имид - провод изолированный высокопрочной эмалью на полиимидной основе. Под толщиной изоляции в таблице принимается разность между максимальным диаметром провода и номинальным диаметром по меди.

Качеству укладки первичной обмотки сварочного трансформатора всегда следует уделять наибольше внимание. Первичная обмотка содержит большее количество витков, чем вторичная, плотность ее намотки выше, чаще всего она больше греется. Первичная обмотка находится под высоким напряжением, при ее межвитковом замыкании или пробое изоляции, скажем, через попавшую влагу, вся катушка быстро "сгорает". Как правило, восстановить ее без разборки всей конструкции невозможно.

Провод обмотки может состоять и из кусков, даже метров по десять, если получилось достать только такой. В этом случае он наматывается частями, а концы соединяются между собой. Для этого пролуженные кончики соединяются (не скручивая) и скрепляются несколькими витками тонкой медной жилы без изоляции, потом окончательно пропаиваются и изолируются. Такое соединение не дает трещин в проводе и не занимает большого объема.

Вторичная обмотка, требующая очень толстый провод, мотается единым или многожильным проводом, сечение которого обеспечивает необходимую плотность тока. Существует несколько способов решения этой проблемы. Во-первых, можно использовать монолитный провод сечением 10-24 мм 2 из меди или алюминия. Такие провода прямоугольного сечения (обычно называемые шиной) используются для промышленных трансформаторов. Монолитным проводом удобно мотать на отдельном каркасе катушки, куда после завершения укладки обмотки набивается пакет трансформаторной стали. Однако во многих самодельных конструкциях с неразборным магнитопроводом, провод обмоток приходится много раз протягивать через узкие окна. Попробуйте себе представить, как это проделать примерно 60 раз с твердым медным проводом сечением, скажем, 16 мм 2 . В этом случае лучше отдать предпочтение алюминиевым проводам - они намного мягче, да и стоят дешевле. Второй способ - намотать вторичную обмотку многожильным проводом подходящего сечения в обычной хлорвиниловой изоляции. Он мягкий, легко укладывается, надежно изолирован. Правда, слой синтетики занимает лишний объем в окнах и препятствует охлаждению. Иногда для этих целей используют старые многожильные провода в толстой резиновой изоляции. Резину легко удалить, а вместо нее провод наматывается слоем какого-нибудь тонкого изоляционного материала, например тканевой изолентой. Третьим способом можно изготовить вторичную обмотку из нескольких одножильных проводов - примерно таких, которыми моталась первичная обмотка. Для этого 2-5 проводов диаметром 1,6-3 мм аккуратно стягиваются вместе, скажем, тканевой изолентой и используются как один многожильный. Такая шина из нескольких проводов занимает небольшой объем и обладает достаточной гибкостью, что облегчает ее укладку. Если же с проводом уж очень туго, то вторичную обмотку можно изготовить и из тонких, наиболее распространенных проводов ПЭВ, ПЭЛ диаметром 0,8-1,2 мм.

Для начала нужно выбрать ровное прямое пространство, где жестко устанавливаются два колышка или крючка, с расстоянием между ними, равным длине провода вторичной обмотки - 20-30 м. Потом между ними протягивается без прогиба несколько десятков жил тонкого провода - получается один вытянутый пучок. Далее один из концов пучка отсоединяется от опоры и зажимается в патрон электродрели. На небольших оборотах весь пучок, в слегка натянутом состоянии, за несколько приемов закручивается в единый провод. В процессе закручивания пучок проводов необходимо периодически встряхивать, держась за один конец, дабы закрутка равномерно разошлась по всей длине провода. После скручивания длина немного уменьшится. На концах получившегося многожильного провода нужно будет аккуратно обжечь лак и зачистить кончики каждого проводка отдельно, а потом их залудить и надежно спаять все вместе. После всего провод желательно изолировать, обмотав его по всей длине, например, тканевой изолентой.

Во многих конструкциях трансформаторов объем окон магнитопровода, в которые необходимо укладывать несколько обмоток толстыми проводами, сильно ограничен. Поэтому в этом пространстве магнитопровода дорог каждый миллиметр. При малых размерах сердечников изоляционные материалы должны занимать как можно меньший объем, т.е. быть как можно тоньше и эластичнее.

Распространенную ПВХ-изоленту можно сразу же исключить из применения на греющихся участках трансформатора. Даже при незначительном перегреве она становится мягкой и постепенно разлазится или продавливается проводами, а при значительном перегреве плавится и пенится. Для изоляции и бандажа можно использовать фторопластовые, стекло- и лакотканевые, киперные ленты. Хороший изоляционный материал стоит дорого, и его применение может сильно удорожить изготовление сварочного трансформатора.

Каждый слой провода необходимо надежно фиксировать. Для этого под слой провода в 3-4 местах с разных сторон поперек виткам ложатся отрезки киперной ленты из ткани или грубые веревочки, после завершения слоя лента стягивается и завязывается, таким образом витки надежно фиксируются друг к другу.

Между слоями провода укладывается изоляция. Это может быть лакоткань, киперная лента или лента из стеклоткани.

При работе трансформатор вибрирует. Если провода лежат друг на друге без промежуточной изоляции, то в результате вибрации и трения друг о друга изоляция провода может разрушиться, и произойдет замыкание.

Не очень хорошей изоляцией является стеклоткань без пропитки. С одной стороны, она не горит, выдерживает высокую температуру, хорошо проводит тепло, но с другой: волокна непропитанной стеклоткани, будучи неплотными и скользкими, под нагрузкой расходятся, таким образом, внутри обмоток эта изоляция может продавливаться проводами, теряя свои свойства.

В некоторых случаях межслоевая изоляция может занимать значительный объем и препятствовать охлаждению трансформатора, что особенно актуально для компактных конструкций с ограниченным объемом магнитопровода. ПВХ-изоленту лучше внутри обмоток не использовать, так как при нагреве она становится мягкой и может постепенно продавливаться проводами.

Иногда рекомендуют пропитывать готовые обмотки специальным пропиточным лаком или же покрывать слои провода эмалевой краской. Но здесь нужно учитывать, что пропиточный лак по технологии сохнет только при высокой температуре, для чего используются сушильные шкафы. Применение красок и лаков может привести к отрицательным последствиям в будущем, если предполагается перемотка катушек, полностью такую возможность в самодельном трансформаторе исключить нельзя. Высохшая краска намертво склеивает витки обмотки и часто их рассоединение возможно только вместе с сдиранием собственной изоляционной оболочки провода, после чего провод приходит в негодность.

Между слоями провода рекомендуется вставлять поперечные планки толщиной 5-10 мм. Планки служат прежде всего для образования внутри обмоток воздушных зазоров, через которые будет выходить теплый воздух, таким образом, улучшится вентиляция и температурный режим трансформатора. Кроме того, зазоры увеличивают объем катушек, а значит, и магнитное рассеивание трансформатора, что самым положительным образом сказывается на его сварочных характеристиках. Планки могут быть изготовлены из дерева или какого-либо другого диэлектрического материала. Их ставят несколько штук по длине витка катушки с определенными интервалами. В компактных магнитопроводах с внутренней стороны планки не ставятся, чтобы не занимать дополнительный объем окна. Имеет смысл устанавливать планки через каждые два слоя провода (кроме первого слоя), тогда каждый слой одной стороной будет выходить на воздушный зазор.

Принципиальное значение имеет способ соединения между собой находящихся на разных плечах обмоток.


Дисковые обмотки: 1 - первичная обмотка, 2 - вторичная обмотка

Так как магнитный поток в магнитопроводе циркулирует, то взаимное направление потоков в противоположных плечах должно быть соответственно направлено в разные стороны относительно их продольных осей.

Это значит, что направление течения тока в витках катушек на разных плечах должно быть в разные стороны: в одной - по часовой стрелки; в другой - против часовой. Имеет смысл намотать все обмотки в одну сторону - сделать их одинаковыми. Тогда для осуществления вышеуказанных условий обмотки на разных плечах нужно будет соединить между собой началами, что удобно. Последние же верхние витки будут включаться в питающую или сварочную цепь, соответственно для первичной или вторичной обмоток. Если обмотки соединить неправильно - в противофазе, то в случае первичной - трансформатор возьмет непомерный ток и будет сильно гудеть при включении; для вторичной - выходное напряжение будет близко к нулю.

При изготовлении П-образного трансформатора, катушки можно изготовить отдельно от магнитопровода. В некоторых других типах самодельных сварочных трансформаторов так поступить нельзя, что, конечно же, усложняет процесс изготовления. Перед намоткой катушек сначала для них необходимо изготовить каркасы, куда и будет укладываться провод. Каркас вместе с готовой катушкой одевается на магнитопровод. В простейшем случае каркас может быть сделан из нескольких слоев толстого картона, свернутого в виде короба. Но лучше каркас сделать из более жесткого материала: ДВП, текстолита, фанеры и т.д. Внутренние размеры каркаса делаются несколько большими, чем сечение магнитопровода, хотя бы по бокам, так чтобы между ними оставались зазоры по несколько миллиметров. В зазоры потом забиваются фиксирующие колышки.

При намотке катушки, внутрь каркаса необходимо временно поместить какой-нибудь жесткий материал, заполняющий весь его внутренний объем, обычно дерево. При укладке жесткого провода придется прилагать значительные усилия, это может деформировать и испортить каркас, именно поэтому и требуется временная внутренняя набивка. Ни в коем случае нельзя использовать один сплошной деревянный брус - если его сильно ужмет, то потом невозможно будет извлечь из каркаса без риска повреждения готовой обмотки. Лучше вставить 2-3 сложенных вместе доски, тогда одну из них всегда можно будет безболезненно удалить, после чего выйдут и остальные.

В некоторых случаях, если размеры магнитопровода позволяют, легче изготовить каркас для обмоток круглого сечения, особенно если есть отрезки подходящей картонной или пластмассовой трубы. Мотать на круглом каркасе легче, тем более обеспечивается лучшая сохранность провода, так как теперь отсутствуют прямые изгибы на углах. Увеличенные зазоры между каркасом и магнитопроводом заполняются деревянными вставками соответствующих размеров и формы.

Конечные участки первичной обмотки имеет смысл выполнить с несколькими отводами через 15-25 витков, тогда можно будет подрегулировать мощность трансформатора.

Вторичную обмотку следует рассчитать так, чтобы при включении в сеть максимального количества витков первичной обмотки, т.е. при минимальной мощности, выходное напряжение приближалось к 50В, в крайнем случае к 42В. Тогда при уменьшении, через отводы, количества работающих витков первичной обмотки, напряжение на выходе будет повышаться вместе с увеличением мощности.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Сварочный аппарат является необходимым инструментом для строительства и выполнения ряда работ, но представить данный агрегат без сварочного трансформатора трудно. Однако давно был найден выход из этой ситуации – создание самодельного сварочного трансформатора.

Что нужно знать перед работой?

На работу влияет ряд характеристик, поэтому необходимо ознакомиться с ними поподробнее, чтобы создать свой трансформатор . Следует начать с количества фаз и напряжения сети. Данные параметры указывают на то напряжение, в котором осуществляется работа. Что касается самодельных вариантов устройств, то для них часто используется 220 В, хотя на некоторых может использоваться и 380 В. Это важно при выполнении расчетов.

Еще одним важным показателем является номинальный сварочный ток. От данной величины зависит возможность использования средства для резки и сварки. В устройствах, изготовленных своими руками, данный параметр не превышает значения в 200 А. Этого вполне хватит, да и от увеличения этого показателя происходит увеличение веса агрегата, что в данном случае неуместно.

При работе аппарата должны существовать пределы регулировки тока. Для работы с металлом, имеющим определенную толщину, необходима и определенная сила тока, иначе он просто расплавится. Чтобы этого избежать, присутствует регулятор. Часто пределы зависят от необходимости применения электродов определенного диаметра.

Рисунок 1. Схема простого сварочного трансформатора.

В самодельных конструкциях они колеблются в пределах 50-200 А. Что касается аппаратов точечной сварки, то здесь значение выше, 800-1000 А.

Определенную значимость имеет и диаметр применяемого электрода. От него зависит и номинальный ток. Так, например, во время применения толстых электродов сила тока должна быть большой, а во время использования тонких – маленькая. Это касается и толщины обрабатываемого металла.

Для аппарата контактной, то есть точечной сварки значение диаметра важно. Необходимо обратить внимание, что в этом случае присутствуют два значения: диаметр электрода и его части в виде конуса.

Следующий показатель называется номинальное рабочее напряжение, которое представляет собой напряжение на выходе после понижения входящего. Данное значение не больше 80 В. Трансформаторы для дуговых агрегатов обладают номинальным напряжением от 30 до 70 В. Данное значение для точечной сварки равно 1,5-2 В. Необходимо обратить внимание, что указанный параметр – величина неизменяемая, а задается с самого начала.

Ключевой характеристикой является номинальный режим работы. Данный показатель указывает на время, в течение которого трансформатор может использоваться без перерыва и за которое он способен остыть. Для самодельных устройств это значение равно 30%. То есть при эксплуатации агрегата в течение 10 минут 7 из них уйдет на остывание аппарата, а 3 минуты будет составлять весь процесс работы.

Рисунок 2. Схема сварочного трансформатора с регуляторами.

Следующие показатели являются второстепенными, так как они практически ни на что не влияют. Но зная их, можно определить КПД устройства. Речь идет о выходной и потребляемой мощности. Во время проведения вычислений нужно знать значение используемой мощности. Кроме того, чем меньше показатель разности между вторым и первым показателями, тем лучше аппарат.

Для дуговых агрегатов необходимо еще учитывать напряжение при холостом ходе. Если этот параметр высокий, то вызвать дугу будет легче. Однако нужно учитывать, что указанное значение имеет свое ограничение, равное 80 В, что связано с безопасностью рабочего, использующего агрегат.

Схема устройства

Создание схемы является важной частью, особенно если нужно сделать трансформатор своими руками. Схема не является сложной, но при возникновении трудностей рекомендуется ознакомиться с ГОСТ 21.614, где указаны графические обозначения электрического оборудования. Самой простой схемой является представленная на рис. 1. Но развитие данного направления претерпевает изменения, в результате чего в самодельных механизмах можно увидеть более сложные детали, как, например, регуляторы и диодные мосты. Подобная схема указана на рис. 2.

Что касается дуговых аппаратов, изготовляемых собственноручно, то чаще всего используется тороидальный трансформатор. Он имеет высокое значение номинальный силы тока и КПД, а вес агрегата невелик. Остальные характеристики тоже выше, чем при использовании сердечника в виде буквы П.

Более сложную схему имеет трансформатор для точечной сварки. В нее включаются тиристоры, конденсаторы и диоды. Это позволяет лучше настроить время рабочего процесса и силу тока. Для агрегата данного типа сварки схема представлена на рис. 3.

Выполнение расчетов

Рисунок 3. Схема трансформатора для точечной сварки.

Трансформатор представлен сердечником и двумя обмотками, которые отвечают за технические параметры изделия. Поэтому для вычислений следует знать параметры первичной и вторичной обмотки, их напряжение, номинальную силу тока и ряд других характеристик.

Для расчетов нужно знать следующие параметры. Сначала потребуется узнать напряжение первичной обмотки, что является напряжением, в котором осуществляется работа агрегата от сети. Данное значение равняется 220 или 380 В.

Необходимо узнать и номинальное напряжение вторичной обмотки, которое направлено на понижение входящего. Данное значение не должно быть больше 80 В, оно нужно для возбуждения сварочной дуги. Следует учесть и диаметр электродов, и толщину металла, с которыми будет вестись работа. В этом случае речь идет о номинальной силе тока вторичной обмотки.

Надежность использования сварочного агрегата зависит от площади сечения сердечника. Для эксплуатации рекомендуется значения от 45 до 55 кв. см. За электропотери отвечает плотность тока в обмотке. Что касается собственноручных вариантов изделий, то для них этот показатель равен 2,5-3 А.

Чтобы наглядно показать, как проводятся расчеты, возьмем свои значения и используем их для формулы. Так, например, напряжение сети будет равно значению U1=220 В, а напряжение для вторичной обмотки составляет U2=60 В. Что касается остальных значений, то номинальная сила тока 180 А, площадь окна So=100 см², площадь сечения сердечника Sс=45 см², плотность тока в обмотке 3 А. Исходя из представленных данных можно вычислить мощность устройства, которая будет равна P = 1,5*Sс*So = 1,5*45*100 = 6750 Вт.

Необходимо обратить внимание, что в данном случае значение 1,5 использовано для трансформаторов, у которых сердечник Ш и П. Что касается сердечников ШЛ и ПЛ, то у них это значение равно 1,7, а для тороидальных – 1,9.

После этого нужно определить количество витков в каждой обмотке. В итоге выходит K = 50/Sс = 50/45 = 1,11. Последнее значение – это количество витков на 1 вольт. В этом случае тоже надо заметить, что цифра 50 подходит для сердечников Ш и П. Для ШЛ и ПЛ значение равно 40, а для тороидальных – 35. После проведенных ранее расчетов можно узнать максимальное значение силы тока на первичной обмотке. Для этого есть формула, куда нужно вставить полученные значения: Imax = P/U = 6750/220 = 30,7 А.

Далее необходимо провести вычисление витков по формуле Wх =Uх*K. Например, для вторичной обмотки подобная формула и результат будут выглядеть следующим образом: W2 = U2*K = 60*1,11 = 67. Последнее значение показывает количество необходимых витков.

Сборка конструкции

В качестве примера показан трансформатор, имеющий сердечник П-образный. Процесс создания конструкции начинается с изготовления каркаса для обмоток. Для этого потребуются пластины из текстолита. Из них вырезаются детали, необходимые для коробок.

Что касается самих коробов, то они будут иметь две крышечки, расположенные в верхней части, на каждой их них нужно сделать прорези, необходимые для стенок в количестве четырех штук. Площадь сечения сердечника будет равна внутренней площади указанных прорезей. Однако нужно заметить, что надо сделать небольшое увеличение, которое потребуется для стен коробов.

После завершения сборки каркаса его изолируют, затем можно приступать к созданию обмотки. В качестве проводов рекомендуется брать те, которые имеют термостойкую изоляцию. После намотки одного слоя его изолируют, затем начинается намотка следующего слоя. Следует не забывать, что после определенного количества мотков надо сделать отводы. После завершения обмотки нужно установить верхнюю изоляцию. Медные болты закрепляются на концах отводов.

Затем приступают к собиранию и шихтованию магнитопровода. С этой целью применяется специальное железо. Для сердечника подойдут старые пластины из металла, или можно приобрести новые. После завершения сборки нужно проверить устройство тестером.

На последнем этапе необходимо сделать диодный мост, затем установить регулятор. Для моста подойдут диоды KBPC5010 и В200. Их количество зависит от номинальной силы тока. Если агрегат имеет подобный параметр в 180 А, то для устройства нужно взять 4 диода, так как один рассчитан на 50 А. К радиатору из алюминия прикрепляются диоды, затем осуществляется подключение одновременно с дросселем отводов. Затем собирается корпус, в который будет помещен трансформатор.

Изготовление тороидального трансформатора

Указанные самодельные сварочные конструкции имеют больше преимуществ, чем трансформатор Ш или П-образный. В итоге такой агрегат сделать выгоднее. Чтобы сделать конструкцию самому, нужно воспользоваться частями от старых аппаратов.

Работа включает в себя следующие положения. Сначала нужно пластины из металла обкатать округлым предметом, например бутылкой. После этого одна из пластин скручивается в кольцо, элемент необходимо закрепить саморезами. Получается оправка для пластин.

Затем происходит укладка пластин, работу следует начинать от края, постепенно двигаясь вовнутрь. Необходимо уложить те пластины, которые еще не были обкатаны, что связано со значительным внутренним диаметром. После того как было набрано необходимое количество данных элементов, пластины поджимаются. Постепенно внутренний диаметр будет уменьшаться, поэтому можно начать использовать обкатанные элементы.

Получается первое кольцо для магнитопровода изделия. Нужно произвести подготовку второй оправки, необходимой для следующего кольца магнитопровода. В этом случае действия схожи, укладка осуществляется, как и в случае с первым кольцом. Важно обратить внимание, что не должно оставаться зазоров между пластинами. Нужно уделять время и прижиманию пластин.

После выполненных действий нужно использовать молоток, которым следует обстучать торцевую часть колец. Затем потребуется эпоксидный клей, которым пропитываются оба кольца. Клей предварительно нужно развести с растворителем. Оба кольца склеиваются между собой.

Теперь необходимо определить высоту сердечника. Нужно заметить, что она может варьироваться, что зависит от толщины используемых пластин. В данном случае используется сердечник, имеющий высоту 14 см. В итоге его площадь будет составлять 56 кв. см, что с поправкой на зазоры, в конечном счете, составит 50 кв.см.

Далее необходимо провести изоляцию элемента. Для этого вырезаются из картона круги, которые накладываются на сердечник. Готовую деталь обматывают черной изолентой, имеющей тряпичную основу, а после – малярным скотчем.

Трансформатор готов к следующему этапу. На челнок, изготовленный из ДСП, нужно намотать провод первичной обмотки, а конец провода № 1 обматывается филенкой. Затем через отверстие в торе просовываются челнок, каждый виток прижимается. Нужно каждый виток распределить по сердечнику.

После намотки первый ряд обматывается изолентой, далее наматывается второй ряд, не забывая сделать отводы. После этого нужно проверить ток на холостом ходу. Амперметр должен показать значение в диапазоне 0,2-1,2 А. В этом случае действия были выполнены правильно.

Конец № 2 тоже обматывается с помощью филенки. Далее происходит изоляция первичной обмотки. Затем наматывается вторичная обмотка, только в этом случае челнок не будет принимать участия. По завершении работы данная часть изолируется, из текстолита необходимо вырезать два круга, а для крепления обмоток сверлятся два отверстия.

Стоит обратить внимание, что изготовить и собрать конструкцию с первого раза не получится.

Но внимательно выполняя расчеты и монтаж, конечный результат вас порадует.

Ни один сварочный аппарат не сможет работать без надлежащих ему электрических кабелей. В этой статье мы кратко расскажем о том, как подключить сварочные кабели непосредственно, к инвертору и что нужно знать перед началом работ.

На самом деле, кабелей у сварочного аппарата не два, как обычно принято считать, а три. Почему так? – Всё очень просто, ведь многие попросту забывают о самом главном кабеле – кабеле электропитания. Без него сварочный аппарат попросту не включится. И с ним, дела обстоят проще всего – достаточно подключить его к инвертору, к соответствующему и единственному разъему сзади корпуса сварочного аппарата.

Несколько сложнее обстоят дела со сварочными кабелями для подключения электродов и зажима на массу. Для того чтобы их подключить, впереди корпуса сварочного инвертора располагается два разъема с маркировкой плюс «+» и минус «-». Будьте внимательны, так как кабели в таком случае следует правильно подключить.


Так, к разъему минус «-» необходимо подключить кабель для питания на массу, а к разъему плюс «+» соответственно подсоединить кабель с электрододержателем. Перед тем как подключить кабели, их необходимо визуально проверить на целостность, а проверить отсутствие короткого замыкания между кабелем электрододержателя и кабеля заземления.

После того как кабели будут присоединены, убедитесь, что аппарат и провода находятся на чистой и сухой поверхности. Подключите кабель питания на массу к сварочному столу или заготовке. Подключите электрод к электрододержателю, включите сварочный аппарат, установите необходимое значение сварочного тока и приступайте к работе.

Вот и всё, что следует знать о подключении сварочных проводов к сварочному аппарату. Еще раз – внимательно подключайте кабели к соответствующим разъемам, не перепутав плюс «+» и минус «-». В случае обратного подключения, когда к плюсу подключается масса, а к минусу электрододержатель, такой способ называется соединением с обратной полярностью.

Рассмотрим подробнее сварочный трансформатор: устройство и принцип действия. Регулировка тока в сварочном трансформаторе (далее – СТ) осуществляется по двум основным схемам:

  1. В первом случае, применяется трансформатор с нормальным рассеянием магнитного поля , которое осуществляется совмещённым или отдельным дросселем. Непосредственно сама регулировка сварочного тока производится изменением воздушного зазора в магнитопроводе дросселя;
  2. Во втором случае, регулировка гаджета осуществляется за счет управления рассеянием магнитного поля . Этот процесс может осуществляться следующими методами:
  • изменением размеров воздушного промежутка между первичной и вторичной обмотками;
  • согласованным изменением числа витков первичной и вторичной обмоток;
  • применением подмагничиваемого шунта. Он изменяет магнитную проницаемость между стержнями магнитопровода, чем и осуществляется регулировка сварочного тока.

Конструкция и органы управления однопостовым сварочным трансформатором с подвижными обмотками (т. е. работающим по первой схеме) приведены на рисунке.

Магнитопровод с катушками и механизмами помещается в защитный кожух, который имеет жалюзи для охлаждения. Регулировка величины сварочного тока в таком СТ осуществляется с помощью подвижной обмотки, которая перемещается посредством ходовой гайки и вертикального винта с ленточной резьбой. В движение последний приводится при помощи рукоятки.

Сварочные провода подключаются к специальным зажимам. СТ представляет собой массивную конструкцию (очень тяжёлый сердечник). Поэтому, для погрузо-разгрузочных работ, он оснащён рым-болтом, а для перемещения по рабочему объекту – транспортной тележкой и ручкой.

Принцип действия

Чтобы понять принцип работы СТ, давайте, хотя бы в самых общих чертах, рассмотрим физические процессы, происходящие в однофазном двухобмоточном трансформаторе. Для иллюстрации этих процессов воспользуемся рисунком.

Электромагнитная схема такого трансформатора состоит из двух обмоток (первичная и вторичная), размещенных на замкнутом магнитопроводе. Последний выполнен из ферромагнитного материала, что позволяет усилить электромагнитную связь между этими обмотками. Происходит это за счёт уменьшения магнитного сопротивления контура (замкнутой цепи), по которому проходит магнитный поток трансформатора (Ф).

Первичную обмотку подключают к источнику переменного тока, вторичную – к нагрузке. При подключении к источнику электропитания, в первичной обмотке появляется переменный ток i1. Этот электрический ток создаёт переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные электродвижущие силы (далее – ЭДС): е1 и е2.

Эти ЭДС, согласно закону Максвелла, пропорциональны числам витков N1 и N2 соответствующей обмотки и скорости изменения потока dФ/dt. Если пренебречь падением напряжения в обмотках трансформатора (они обычно не превышают 3…5 % от номинальных значений U1 и U2), то можно считать: e1≈U1 и e2≈U2. Тогда, путём несложных математических преобразований, можно получить связь между напряжениями и количеством витков обмоток: U1/U2 = N1/N2.

Таким образом, подбирая числа витков обмоток (при заданном напряжении U1) можно получить желаемое напряжение U2:

  • при необходимости повысить вторичное напряжение — число витков N2 берут больше числа N1. Такой трансформатор называют повышающим;
  • при необходимости уменьшить напряжение U2 — число витков N2 берут меньшим N1. Такой трансформатор называют понижающим.

Теперь мы можем, непосредственно, рассмотреть принцип действия СТ. Как сказано выше, он заключается в преобразовании входного напряжения (220В или 380В) в более низкое, которое в режиме холостого хода равно примерно 60В. Когда мы рассматриваем сварочный трансформатор, принцип работы будет очевиден после знакомства с компоновкой и функциональной схемой СТ.

Компоновка узлов СТ (в качестве примера предлагается агрегат серии «ТДМ») представлена на рисунке.

Пояснения к схематическому изображению сварочного трансформатора:

  • 1 — первичная обмотка трансформатора. Выполнена из изолированного провода;
  • 2 — вторичная обмотка не изолирована («голая» проволока) для улучшения теплопередачи. Кроме того, для улучшения охлаждения имеются воздушные каналы;
  • 3 — подвижная часть магнитопровода;
  • 4 — система подвеса трансформатора внутри корпуса агрегата;
  • 5 — механизм управления воздушным зазором;
  • 6 — ходовой винт. Основной элемент управления воздушным зазором;
  • 7 — рукоятка привода ходового винта.

Функциональная схема такого СТ представлена на рисунке.

Трансформатор состоит из:

  1. магнитопровода с зазором б;
  2. первичной обмотки I;
  3. вторичной обмотки II;
  4. обмотки реактивной катушки IIк.

Регулировка величины сварочного тока осуществляется изменением величины зазора в магнитопроводе. Размер зазора влияет на изменение магнитного сопротивления контура и, соответственно, величину магнитного потока, который и создаёт в обмотках электрический ток:

  • при необходимости уменьшить величину сварочного тока — величину зазора увеличивают;
  • при необходимости увеличить величину сварочного тока — величину зазора уменьшают.

Полезное видео

Посмотрите небольшой обучающий ролик об устройстве и принципе действия трансформатора:

Магнитопровод

Магнитопровод – это центральная часть конструкции СТ. Он является сердечником понижающего трансформатора и играет основную роль в формировании сварочного тока. По нему протекает магнитный поток, который индуцирует (создаёт) электрическое напряжение на всех обмотках.

Магнитопровод сварочного трансформатора представляет собой пакет пластин из трансформаторной стали. Вызвано это тем, что под воздействием магнитного потока в нём наводятся вихревые замкнутые электрические токи (в честь французского физика, их открывшего, названы: токи Фуко). В соответствии с правилом Ленца, магнитное поле этих токов стремиться уменьшить индукцию поля его создавшего, т. е. полезного. В результате:

  1. уменьшается КПД СТ;
  2. токи Фуко нагревают материал сердечника.

Для уменьшения этого влияния принимаются меры по уменьшению этих токов. Поэтому, как было сказано выше, магнитопровод и представляет собой пакет пластин. Поверхности пластины имеют хорошую электроизоляцию (они имеют оксидное изоляционное покрытие) и, кроме этого, часто дополнительно покрываются электроизолирующим лаком. Благодаря этому, они не представляют собой сплошной проводник, что существенно уменьшает величину токов Фуко.

Пластины между собой стягиваются шпильками в плотный пакет. Если этого не сделать (или стянуть неплотно), то они вибрируют с частотой колебаний тока в источнике питания: 50 Гц. В результате, СТ «гудит» с такой частотой.

Ограничитель холостого хода

Ограничитель напряжения холостого хода СТ применяется, в соответствии со своим наименованием, для автоматического ограничения этого параметра. Он уменьшает индуцированную при размыкании вторичной обмотки ЭДС до безопасного значения не позже, чем через одну секунду после разрыва сварочной цепи. На картинке изображена популярная модель ограничителя напряжения холостого хода однофазных сварочных трансформаторов «ОНТ-1».

Принцип действия ограничителя следующий. Мы уже знаем, что в случае разрыва сварочной цепи, резко изменяется величина магнитного потока в магнитопроводе. Это, в свою очередь, приводит к резком скачку ЭДС самоиндукции. Резкий рост величины электрического напряжения может стать причиной аварии СТ или поражения током сварщика. Ограничитель напряжения холостого хода сварочного трансформатора уменьшает эту ЭДС до безопасного значения — не более 12 В.

Метки: