Прямая и обратная полярность. Влияние условий горения дуги на процесс плавления электродов Функции флюса сердечника порошковой проволоки

Электродуговая сварка может осуществляться при помощи оборудования, вырабатывающего постоянный или переменный ток. Если работа на переменном токе не имеет нюансов в вопросе правильного подключения массы и держателя электрода, то при сварке на постоянном токе полярность сварочных электродов имеет большое значение.

Общие понятия

В зависимости от того какой полюс сварочного автомата подключен к держателю, определяется тип и особенности режима сварки:

  • Сварка на прямой полярности предполагает подключение положительного полюса к соединяемым заготовкам (массе), и отрицательного к держателю электрода.
  • Для выполнения работ при обратной полярности полюса меняются местами (плюс на держатель, минус на массу).

Несмотря на то, какая полярность электродов применяется, сварка на постоянном токе имеет общие особенности по сравнению с применением переменного напряжения:

Сварка на прямой полярности

При таком способе подключения электродов большему нагреву подвергается заготовка, а не электрод . Такой режим характеризуется выделением значительно большего количества тепла.

Поэтому сварка на прямой полярности рекомендована для выполнения следующих операций:

  • Резка металла любым типом электродов.
  • Сварка заготовок значительной толщины.
  • Работа с металлами, имеющими более высокую температуру плавления.

Именно в этих случаях требуется разогрев обрабатываемых деталей до более высоких температур, для выполнения этих работ требуется значительное тепловыделение.

Сварка на обратной полярности

В данном случае большему разогреву подвергается электрод, поэтому на заготовку передается меньшее количество тепловой энергии.

Благодаря этому электроды обратной полярности позволяют выполнять работы в более мягком (деликатном) режиме.

Это актуально во многих случаях, например, сварка нержавеющей или тонкой листовой стали, сплавов, чувствительных к тепловому воздействию.

Так же такое подключение используется для работ в среде защитных газов или под флюсом.

Определение необходимой полярности

О том, как определить полярность электродов при сварке, существует множество споров, при этом каждая сторона приводит правильные, казалось бы доводы. Противники указанной выше версии ссылаются на учебники по технологии сварочного производства, изданные еще в середине прошлого века, считая, что сведения указанные в них наиболее правильные.

Но стоит учитывать то, что с тех пор произошло существенное усовершенствование сварочной техники и расходных материалов. Поэтому основываться на рекомендациях, касающихся устаревших технологий, все-таки не стоит. Наиболее правильным считается именно описанный выше выбор полярности.

Существует еще одна группа сварщиков, считающих, что любые работы лучше (вернее удобней) выполнять исключительно на обратной полярности. Это связано в первую очередь с тем, что в таком режиме электроды меньше липнут и отсутствует риск прожига металла. Но появление инверторной сварочной техники решило и эту проблему.

Стоит обращать внимание и на тип электродов. Существуют марки, которые могут применяться только при прямой или обратной полярности, нарушение рекомендаций производителя может не только усложнить процесс сварки, но и сделать ее невозможной в принципе.

На сегодняшний день производители уже предлагают электроды, способные работать при любом напряжении и различной полярности.

Правильный выбор полярности подключения электродов способствует упрощению сварочного процесса и повышению качества шва.

Сварку металлов постоянным током можно проводить двумя режимами: с прямой полярностью и обратной. Прямая полярность при сварке – это когда к электроду подключается минус, к металлической заготовке плюс. При сварке током обратной полярности все наоборот, то есть, к стержню подключается плюс, к изделию минус.

При сварке постоянным током на кончике электрода образуется термическое пятно, которое обладает высокой температурой. В зависимости от того, какой полюс подключен к электроду, будет зависеть и температура на его кончике, а соответственно будет зависеть режим сварочного процесса. К примеру, если подключен к расходнику плюс, то на его конце образуется анодное пятно, температура которого равна 3900С. Если минус, то получается катодное пятно с температурой 3200С. Разница существенная.

Что это дает.

  • При сварке током прямой полярности основная температурная нагрузка ложится на металлическую заготовку. То есть, она разогревается сильнее, что позволяет углубить корень сварочного шва.
  • При сварке током обратной полярности концентрация температуры происходит на кончике электрода. То есть, основной металл при этом нагревается меньше. Поэтому этот режим в основном используют при соединении заготовок с небольшой толщиной.

Необходимо добавить, что режим обратной полярности применяют также при стыковке высокоуглеродистых и легированных сталей, нержавейки. То есть, тех видов металлов, которые чувствительны к перегреву.

Внимание! Так как на анодном и катодном пятне температура разная, то от правильного подключения сварочного аппарата будет зависеть расход самого электрода. То есть, обратная полярность при сварке инвертором – это перерасход электродов.

В процессе сварки постоянным током необходимо добиться того, чтобы металл заготовок прогрелся хорошо, практически до состояния расплавленного. То есть, должна образоваться сварочная ванна. Именно прямая и обратная полярность режима сваривания влияет на качественное состояние ванны.

  • Если сила тока будут большой, а значит, и температура нагрева также будет высокой, то металл разогреется до такого состояния, что электрическая дуга будут просто его отталкивать. Ни о каком соединении здесь уже говорить не придется.
  • Если ток будут, наоборот, слишком мал, то металл не разогреется до необходимого состояния. И это тоже минус.

При прямой полярности внутри ванны будет создана среда, которой легко руководить электродом. Она растекается, поэтому одно движение стержня создает направленность сварного шва. При этом легко контролируется глубина сваривания.

Кстати, скорость движения электрода напрямую влияет на качество конечного результата. Чем скорость выше, тем меньше тепла поступает в зону сварки, тем меньше прогревается основной металл заготовок. Уменьшая скорость, увеличивается температура внутри сварочной ванны. То есть, металл хорошо прогревается. Поэтому опытные сварщики выставляют на инверторе ток больше необходимого. А вот качество сварного шва контролируют именно скоростью перемещения электрода.

Что касается самих электродов, то выбор полярности обусловлен материалом, из которого он изготовлен, или видом обмазки. К примеру, использование обратной полярности при сварке постоянным током, в которой применяется угольный электрод, приводит к быстрому расходу сварных стержней. Потому что при высоких температурах угольный электрод начинает разрушаться. Поэтому этот вид используется только при режиме прямой полярности. Чистый металлический стержень без покрытия, наоборот, хорошо заполняет сварочный шов при обратной полярности.

Глубина и ширина сварочного шва также зависит от используемого режима. Чем выше ток, тем происходит увеличение провара. То есть, увеличивается глубина сварного шва. Все дело в погонной энергии на дуге. По сути, это количество тепловой энергии, проходящей через единицу длины сварочного шва. Но увеличивать ток до бесконечности нельзя, даже в независимости от толщины свариваемых металлических заготовок. Потому что тепловая энергия создает давление на расплавленный металл, что вызывает его вытеснение. Конечный результат такой электросварки при повышенном токе – прожог сварочной ванны. Если говорить о влиянии прямой и обратной полярности при сварке инвертором, то большую глубину проплавки может обеспечить режим обратной полярности.

Некоторые особенности сваривания при прямой полярности

Что такое прямая полярность определено. Указаны некоторые качества сварных швов при проведении процесса соединения в режиме прямой полярности. Но остались некоторые тонкие моменты.

  • В сварочную ванну металл от электродов или присадочных материалов переносится большими каплями. Это, во-первых, большой разбрызг металла. Во-вторых, увеличение коэффициента проплавления.
  • При таком режиме электрическая дуга нестабильна.
  • С одной стороны снижение глубины провара, с противоположной снижение внедрения углерода в массу металла заготовки.
  • Правильный нагрев металла.
  • Меньший нагрев стержня электрода или присадочной проволоки, что позволяет сварщику использовать токи с более высоким значением.
  • При некоторых сварочных материалах наблюдается увеличение коэффициента наплавки. К примеру, при использовании плавящихся электродов в инертных и некоторых активных газах. Или при применении присадочных материалов, которые наносятся под флюсами некоторых типов, например, марки ОСЦ-45.
  • Кстати, прямая полярность влияет и на состав материала, оказавшегося в шве между двумя металлическими заготовками. Обычно в металле практически отсутствует углерод, но зато в большом количестве присутствует кремний и марганец.

Особенности сварки током обратной полярности

Сваривание тонких заготовок – процесс с повышенной трудностью, потому что постоянно присутствует опасность появления прожогов. Поэтому их соединяют режимом обратной полярности. Но есть и другие методы, чтобы снизить опасность.

  • Снизить потенциал тока, чтобы уменьшить температуру на заготовке.
  • Сварку лучше проводить прерывистым швом. К примеру, сделать небольшой участок в начале, затем переместиться в центр, после начать стыковку с противоположной стороны, далее начать варить промежуточные участки. В общем, схему можно менять. Таким способом можно избежать коробления металла, особенно если длина стыка больше 20 см. Чем больше сваренных отрезков, чем короче каждый участок, тем меньше процент коробления металла.
  • Очень тонкие металлические заготовки сваривают с периодическим прерыванием электрической дуги. То есть, электрод выдергивается из зоны сварки, затем тут же быстро снова поджигается, и процесс продолжается.
  • Если проводится сварка внахлест, то две заготовки должны быть герметично прижиматься друг к другу. Небольшой воздушный зазор приводит к прожогу верхней детали. Для создания плотного прилегания нужно использовать струбцины или любой груз.
  • При стыковочном соединении заготовок лучше минимизировать зазор межу деталями, а идеально, чтобы зазора не было бы вообще.
  • Для сварки очень тонких заготовок с неровными кромками под стык необходимо уложить материал, который бы хорошо забирал на себя тепло процесса. Обычно для этого используют медную пластину. Можно и стальную. В данном случае, чем больше толщина вспомогательного слоя, тем лучше.
  • Можно провести отбортовку кромок свариваемых изделий. Угол отбортовки - 180°.
Подробности Категория: Сварка

В книге рассмотрены технологические свойства электро сварочных дуг при сварке низкоуглеродистыми электрода ми с различными покрытиями. Показано влияние энергетически: процессов у катода, анода и в столбе дуги па производительность расплавления и проплавляющее действие электродов, а также на перенос металла в дуге и устойчивость ее горения. Установлен характер изменения энергетического состояния отдельных зон дуги при внесении в нее различных веществ.

На основе теории распространения тепла при сварке разработаны способы расчета некоторых технологических характеристик электродов.

Книга рассчитана на инженеров, научных работников и аспирантов, интересующихся вопросами применения дугового разряда и его энергетическими особенностями.

Свойства электрической дуги должны оказывать решающее влияние на особенности процесса сварки электродами. Это связано с тем, что дуга является основным источником тепловой энергии. Другие возможные источники энергии (подогрев электрода током и тепло химических реакций при плавлении покрытия) имеют второстепенное значение. Это подтверждается следующими данными. При нагреве сварочным током стержней диаметром 4-5 мм из низкоуглеродистой стали при плотности тока до 20 ajмм2 в них выделяется лишь около 20% тепла, необходимого для плавления, причем основное количество тепла выделяется в конце расплавления электрода, когда значительно возрастает его омическое сопротивление из-за разогрева . Термический эффект химических реакций для наиболее распространенных промышленных электродов, определенный в работе с помощью специальной методики калориметрирования, не превышает ±8-9% мощности дуги.

Энергетические характеристики сварочных дуг зависят от типа покрытия электрода. Эта зависимость может быть установлена при одинаковом токе I по разнице в напряжении горения дуги Да, так как мощность дуги составляет /Да* Целесообразно сравнивать между собой величины так называемого номинального напряжения горения дуги (напряжение дуги, характерное для данного электрода при оптимальном режиме сварки).

Ниже приведены значения номинального напряжения горения дуги, полученные А. А. Ерохиным для низкоуглеродистой проволоки с различными тонкими покрытиями на постоянном токе прямой полярности (в в):
Без покрытия............................................................18

Тонкий слой жидкого стекла......................................17

Мел и жидкое стекло............................................... 15

Кварцевый песок и жидкое стекло.............................24

Каолин и жидкое стекло...........................................28
Очевидно, что сварочные дуги с более высоким номинальным напряжением при прочих равных условиях будут более мощными. Причина изменения мощности сварочной дуги при нанесении тех или иных покрытий кроется в изменении физических условий существования дугового разряда, вызываемом покрытиями.

В настоящее время характеристики конкретных электрических дуг при сварке различными электродами изучены чрезвычайно слабо. В определенной степени известны лишь явления в столбе дуги. В то же время почти не исследованы процессы в приэлектродных областях, имеющие большое значение для понимания технологической роли электрической дуги в сварочном процессе. Результаты исследовании несварочных электрических дуг дают некоторое представление о явлениях в приэлектродных областях сварочных дуг. Так, в связи с разнообразием типов электрических дуг физиками делались попытки приблизительно классифицировать их по явлениям па катоде.

А. Энгель считает, что самоподдерживающие электрические дуги целесообразно разделить на две группы: дуги, у которых катоды заметно испаряются при температурах, когда термоэлектронная эмиссия еще отсутствует (дуги с «холодным» катодом), и дуги, в которых катоды имеют температуру, достаточную для значительной термоэлектронной эмиссии (дуги с термокатодом).

Основу низкоуглеродистых сварочных электродов составляет железо, температура кипения которого равна примерно 2740° С. Имеющиеся в стали примеси могут приводить к снижению температуры кипения электрода или к избирательному кипению при температуре ниже температуры кипения железа. Например, марганец испаряется уже при 1900° С, потери его при сварке за счет испарения могут быть значительными. Поверхность капель на конце электрода почти всегда покрыта шлаками и окислами, температура кипения которых также может быть ниже температуры кипения железа (А!203-2250е С, Si02- 2230° С и т. д.). Температура железных катодов, покрытых шлаками и окислами в связи с их испарением в дуге и значительными затратами энергии на такое испарение, может не достигать температуры кипения железа

При сравнительно низкой температуре кипения железа и возможных примесей и шлаков заметная термоэлектронная эмиссия с поверхности капель при атмосферном давлении теоретически невозможна и поэтому сварочные дуги с плавящимися электродами должны быть отнесены по классификации Энгеля к дугам с «холодным» катодом. Следует отметить, что разделение дуг, предложенное Энгелем, не является строгим. Исследования показали, что благодаря локальным повышениям давления и температуры в катодной области в дугах с «холодным» катодом, также возможна термоэлектронная эмиссия.

В последнее время появились более тонкие феноменологические градации дуг. Так, В. Финкельнбург и Г. Меккер считают, что существуют дуги без катодного пятна, дуги с весьма сжатым и неподвижным катодным пятном и нестационарные туги с катодным пятном, находящимся в быстром и хаотическом движении. В нестационарных дугах очень мало время существования катодного пятна, которое при своем исчезновении сменяется вновь образующимся подобным пятном (или несколькими пятнами). Эти дуги по своим параметрам (ток, давление, состояние поверхности катода) наиболее близко пот ходят к сварочным дугам с плавящимся электродом.

В работе указывается, что на интенсивность движения шипа существенно влияет материал катода. Найдена связь между интенсивностью испарения катода и перемещением пятна. При плохо испаряющихся катодах пятно перемещается интенсивнее.

Дуга с катодным пятном при некоторых условиях может переходить в дугу без пятна. По мнению В. Вейцеля, в дуге без катодного пятна существенную роль играет термическая эмиссия электронов с катода. В дуге же с катодным пятном в контрагированной плазме у катода образуется облако положительных ионов, вырывающее из него электроны.

Дуга без пятна на переменном токе должна гореть без пиков напряжения в каждый полупериод из-за большой тепловой инерции электродов. В дуге с катодным пятном всегда наблюдается пик напряжения в начале каждого из полупериодов. Энергия, затрачиваемая на этот пик, расходуется на пере ориентацию облака положительных ионов и создание необходимых эмиссионных условий у катода.

Изучение явлений в катодной области, несомненно, имело бы важное значение и для сварочных дуг, однако для дуг с плавящимся электродом это затруднено, так как малая длина душ наличие втулочки из покрытия и перенос капель металла метают прямым наблюдениям в катодной области.

Несмотря на это, могут быть получены некоторые данные, убеждающие в существенном отличии процессов па катоде у сварочных дуг различных электродов. Например, анализируя сварку на переменном токе по осциллограммам напряжения, можно установить, что дуги различных электродов по характеру возбуждения в каждый полупериод и, следовательно, по характеристикам катодов отличаются друг от друга. В случае электродов ЦМ7, ОММ5 и ЦЦ1 пики напряжения при возбуждениях дуги существуют в каждом полупериоде, и по В. Вейнелю такие дуги могут быть отнесены к дугам с катодным пятом. Наибольшие пики напряжения наблюдаются у электродов ЦЦ1. Электроды с основным покрытием (УОНИ13, СМИ, > 112) при таких же режимах образуют дугу с пиком напряжения только в одном полупериоде (рис. 1).

Отличия имеются и в интенсивности блуждания пятна. Например, как показывает скоростная киносъемка, на электродах с меловым покрытием катодное пятно перемещается медленно, в то время как на электродах с покрытием из плавикового шпата оно быстро передвигается по поверхности капли.

Перемещение пятна непостоянно. Некоторое время оно может находиться в относительном покое и затем внезапно начать двигаться. Пятно может совершать быстрые вращательные движения вокруг капли. По кинокадрам, снятым со скоростью 5000 кадров в 1 сек, трудно судить, является ли перемещение пятен непрерывным или скачкообразным. В случае очень быстрого движения пятна создается впечатление, что оно гаснет и мгновенно вновь возникает в новом более благоприятном месте, которое может находиться даже с другой стороны капли Анодное пятно, подобно катодному, также может интенсивно блуждать. Таким образом, поведение активных пятен сварочной дуги соответствует по классификации В. Финкельнбурга и Г. Меккера третьему типу дуг с нестационарным катодным пятном.

Весьма вероятно, что природа перемещения пятна на жидком катоде при сварке близка к природе блуждания пятна на ртутном катоде, который также относится к катодам «холодного» типа. Катодное пятно на ртути состоит из отдельных ячеек. Перестройка этих ячеек (появление новых и исчезновение старых) приводит к быстрому хаотическому перемещению всего пятна. Размеры ячеек весьма малы. Плотность тока в одной ячейке составляет около 106 а/см2. Дуги с ртутных катодов благодаря ячеистому строению катода могут гореть одновременно с нескольких катодных пятен. Аналогичное явление в ряде случаев наблюдается при скоростной киносъемке сварки низкоуглеродистой проволокой при плотности тока более 18 а/мм2 па прямой полярности.

Таким образом, даже чисто феноменологическое рассмотрение показывает, что электрические дуги при сварке различными электродами имеют существенные отличия в протекающих в них физических процессах. Эти отличия и являются причинами изменения как мощности дуги, так и ее устойчивости при нанесении различных покрытий.

Отличия в физических и энергетических характеристиках луг неизбежно должны приводить к разным технологическим характеристикам электродов. Наблюдения показывают, что сварочные дуги, потребляющие большую мощность, характеризуйются более интенсивным блужданием активных пятен. Впервые па связь между номинальным напряжением дуги и ее устойчивостью обратил внимание Г. М. Тиходеев. Номинальное напряжение связано также со скоростью плавления электрода. Это было установлено И. Д. Давыденко и А. А. Ерохиным.

Несмотря на практическую важность этих фактов, взаимосвязи технологических характеристик электродов с особенностями электрических сварочных дуг посвящено сравнительно мало работ. Можно указать лишь на несколько работ в этом направлении.

Так, К- К- Хренов показал, что вещества с низким потенциалом ионизации, вводимые в дугу даже в небольших количествах, способствуют повышению ее устойчивости и позволяют производить сварку на переменном токе. В этой работе повышение устойчивости дуги связывалось с увеличением степени ионизации плазмы.

А. А. Ерохин установил, что коэффициент расплавления при прямой полярности увеличивается с ростом номинального напряжения дуги. При обратной полярности коэффициент расплавления в меньшей степени зависит от номинального напряжения. Этот результат исследовании А. Л. Ерохина, как будет показано ниже, имеет принципиальное значение.

В ряде работ было показано, что свойства сварочных дуг с плавящимся электродом и технологические характеристики процесса зависят от полярности при сварке, материала электродов, состояния их поверхности и атмосферы дуги. Однако в этих работах в большинстве случаев не делается попыток связать энергию дуги и технологические характеристики электродов.

Исследования в основном посвящены рассмотрению явлений с столбе дуги. Можно указать, например, на характерные в этом отношении монографии К. К. Хренова, A. Я. Броуна и Г. И. Погодина-Алексеева, Г. М. Тиходеева. Однако столб сварочной дуги обычно потребляет незначитечьную долю энергии и не может оказать существенного влияния на взаимен действие дуги и электродов. Значительно большее влияние на это взаимодействие должны оказать малоизученные приэлектродные области дуги.

На большое значение энергии, выделяемой в приэлектродных областях, при оценке теплового действия дуги па электрод обратил внимание Б. Е. Патон, который пишет: Лаши исследования и исследование, проведенное в последнее время в Институте электросварки Д. М. Бабкиным, показали, что основная тепловая энергия, идущая на нагрев и плавление электрода, выделяется в приэлектродной области».

Из работ, посвященных сварочной дуге, можно назвать лишь несколько, в которых плавление электрода исследуется в связи с характеристиками приэлектродных областей. Д. М. Бабкин рассмотрел действие приэлектродных областей мощной сварочной дуги под флюсом па плавление электродной проволоки. Хотя некоторые положения работы Д. М. Бабкина (равное значение электронного и ионного тока на катоде) встречают возражения, им впервые высказана важная идея о необходимости раздельного рассмотрения действия приэлектродных областей на плавление электрода и выполнены соответствующие расчеты. Японский исследователь С. Одзава сделал аналогичную попытку рассмотреть плавление различных электродов в связи с энергией в приэлектродных областях дуги.

Определенное отрицательное влияние на развитие исследований приэлектродных зон сварочной дуги оказало неверное положение К. Комптона о том, что для дуг высокого давления катодное падение напряжения численно равно потенциалу ионизации дугового газа. Это создавало иллюзию возможности расчета падения напряжения в катодной области сварочной дуги по величине потенциала ионизации паров металла электрода без проведения специальных измерений. На основе такой точки зрения, например, была сделана попытка создать модель сварочной дуги, в которой катодное падение напряжения различных дуг с плавящимся электродом из низкоуглеродпстой стали во всех случаях равнялось 8 в, что примерно соответствовало потенциалу ионизации паров железа В действительности катодное падение напряжения сварочном дуги может сильно отличаться в зависимости и от состояния поверхности электрода, типа покрытия или флюса, режима сварки, и такая модель не является обоснованном.

Очевидная связь между явлениями в дуге и технологическими характеристиками сварочных электродов создает определенные возможности по регулированию технологических свойств сварочных щектродов, которое можно осуществлять несколькими путями. Можно в определенных пределах стабилизировать процессы в дуге (улучшить устойчивость горения и уменьшить разбрызгивание) за счет соответствующего выбора электрических параметров источников тока и сварочной цепи. Принцип такого регулирования заключается в подборе правильных обратных связен в системе дуга - сварочная цепь - источник тока, что связано главным образом с установлением определенной формы вольт-амперной характеристики источника тока и его шнамических свойств.

Эти явления подробно исследованы Б. Е. Патоном. В. П. Никитиным, И. Я- Рабиновичем, В. К. Лебедевым и М. Н. Сидоренко, Д Б. Кейта и др. Этот способ можно назвать внешним способом регулирования синологических свойств.

Другой, значительно менее изученный способ регулирования технологических свойств электродов заключается в активном воздействии на энергетические процессы в самой дуге за счет введения в дугу различных веществ, иногда в весьма малых количествах.

Результатам исследования возможности такого регулирования технологических свойств электродов посвящена данная книга.

В зависимости от ряда факторов, сварочная дуга, подаваемая при сварке постоянным током, может иметь прямую или обратную полярность. В первом случае к обрабатываемым элементам подводится заряд «плюс», а к электроду - «минус». Обратная полярность при сварке отличается подачей к электроду «плюса» и «минуса» к детали. Подробнее о специфике методов - далее.

При прямой направленности кабель для сварки соединяет свариваемый элемент с положительной клеммой аппарата. Таким образом положительный заряд доходит от инвертора к заготовке; отрицательный же подается посредством электрододержателя.

Данный тип подключения вызывает увеличение температуры на аноде (полюсе «+»), если сравнивать с катодом («-»). Это обуславливает сферу использования прямой полярности при сварке. Она применима для резки металлических конструкций, заготовок с толстыми стенками, а также в случаях, когда необходимо выделение большого количества тепла или создание высокой температуры процесса.

Обратная полярность при сварке инвертором - это подача отрицательного заряда на обрабатываемый металл, а положительного - на электрод. Ситуация с выделением тепла противоположная - на расходном элементе наблюдается избыточный нагрев, а у свариваемой заготовки - недостаточный. Поэтому обратную полярность при сварке используют, если необходимо минимизировать порчу заготовки при работе, а также для деликатных работ. Она используется для неразъемных соединений таких материалов, как:

  • нержавеющая сталь;
  • тонколистовой металл;
  • высокоуглеродистая, либо легированная сталь;
  • сплавы, восприимчивые к перегреву.

Наиболее известные виды сварки, где используется подача тока обратной направленности - флюсовая электродуговая и в среде защитных газов.

Закономерности выбора

Почему для одних работ выбирается обратная, а для других - прямая полярность при сварке? Ответим на сей вопрос, рассмотрев термические особенности процесса с использованием обратной направленности.

Габариты и форма получаемого шва также зависят от расположения полюсов. Например, более глубокая проплавка возможна при постоянном токе обратной направленности, что обусловлено увеличенным теплообразованием на аноде и катоде.

Немаловажно помнить - чем быстрее осуществляется сварочный процесс, тем ширина шва и глубина провара становятся меньше.

Какое оборудование использовать

Обратное направление востребовано в работе особыми установками. Специфика в том, что машина подает проволоку с некоторой скоростью на заготовку, поэтому возможен выбор нескольких типов сварки.

Например, в среде защитных газов (когда используется аргон или углекислый газ), либо с использованием проволоки, обработанной порошком. Обратная направленность тока применима при работе с газами, прямая - когда процесс выполняется порошковой проволокой (также известной как флюсовой).

Полуавтоматическая сварка предполагает ряд изменений процесса. Во-первых, подключение «держака» и «массы» меняется - на первом «плюс», на второй «минус» (обратная). Делается это для того, чтобы флюс выгорел полностью, а сварочный процесс произошел внутри образовавшегося газообразного облака. Металл будет меньше прогреваться, а разбрызгивание капель сведется к минимуму.

Прямая используется для сварки цветных металлов, когда рабочим расходным элементом выступает вольфрамовый электрод. Таким образом достигается увеличение температуры в зоне нагрева, что может быть критично для, например, алюминия.

В работе с переменным током задача пользователя - своевременно менять расходные элементы. Профессионалы же или продвинутые любители предпочитают постоянный ток как надежный залог качественной сварки. Работа с инвертором позволяет выбирать один из двух известных вариантов действий. Прямая и обратная полярность при сварке выступают способами, каждый из которых имеет свои преимущества и недостатки. Выбор направления диктуется рядом факторов, главные из которых - материал расходников и используемое оборудование.

Если вы знаете другие специфические особенности выбора параметров сварки, поделитесь информацией в комментариях к статье.