Расчет необходимого сечения кабеля. Калькулятор расчета потерь напряжения в электрическом кабеле Формулу расчета сечения проводов по потере напряжения

ГРЩ2.2. Показания фазных напряжений после первого участка кабельной линии

Параметры источника резервного питания:

  • Максимальная мощность ДЭС – 600 кВт,
  • Кабельная линия – 3 кабеля АВБбШв 4х240, включенных в параллель,
  • Длина кабельной линии – 250 м.

Исходя из этих параметров, можно однозначно сделать вывод, что мощностей ДЭС и кабельной линии резервного питания с учетом падения напряжения хватит не более чем на половину максимальных потребностей нагрузки, что совершенно недопустимо.

Поэтому мониторинг качества питания по линии ДЭС проводить не имеет никакого смысла.

Скачать файл

В заключение – как и обещал, хорошая книжка по расчетом потери напряжения и потерям напряжения в кабеле. Будет очень интересна всем, кого заинтересовала эта статья. Сейчас таких книг уже не пишут.

/ Брошюра из Библиотеки электромонтера. Приведены указания и расчеты, необходимые для выбора сечений проводов и кабелей до 1000 В. Полезно для тех, кто интересуется первоисточниками., zip, 1.57 MB, скачан: 385 раз./

  1. Расчет потери напряжения для сетей постоянного тока 12, 24, 36В.
  2. Расчет потери напряжения без учета индуктивного сопротивления 220/380В.
  3. Расчет потери напряжения с учетом индуктивного сопротивления 380В.

При проектировании сетей часто приходится рассчитывать потерю напряжения в кабеле. Сейчас я хочу рассказать про основные расчеты потери напряжения в сетях постоянного и переменного тока, в однофазных и трехфазных сетях.

Обратимся к нормативным документам и посмотри какие допустимые значения отклонения напряжения.

ТКП 45-4.04-149-2009 (РБ).

9.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения недолжны превышать в нормальном режиме ±5 %,
а в после аварийном режиме при наибольших расчетных нагрузках-±10%. В сетях напряжения
12–42 В (считая от источника напряжения, например пони­жающего трансформатора) отклонения напряжения разрешается принимать до 10%.

Допускается отклонение напряжения для электродвигателей в пусковых режимах, но не более 15 %.При этом должна обеспечиваться устойчивая работа пусковой аппаратуры и запуск двигателя.

В нормальном режиме работы при загрузке силовых трансформаторов в ТП, не превышающей 70 % от их номинальной мощности, допустимые (располагаемые) суммарные потери напряжения
от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях, учитывающие потери холостого хода трансформаторов и потери напряжения в них, приведенные ко вторичному напряжению, недолжны, как правило, превышать 7,5 %. При этом потери напряжения в электроустановках внутри зданий недолжны превышать 4 % от номинального напряжения, для постановочного освещения - 5%.

СП 31-110-2003 (РФ).
7.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения не должны превышать в нормальном режиме ±5%, а предельно допустимые в послеаварийном режиме при наибольших расчетных нагрузках — ±10%. В сетях напряжением 12-50 В (считая от источника питания, например понижающего трансформатора) отклонения напряжения разрешается принимать до 10%.

Для ряда электроприемников (аппараты управления, электродвигатели) допускается снижение напряжения в пусковых режимах в пределах значений, регламентированных для данных электроприемников, но не более 15%.

С учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5%.

Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.

ГОСТ 13109.

5.3.2 Предельно допустимое значение суммы установившегося отклонения напряжения dUy и размаха изменений напряжения в точках присоединения к электрическим сетям напряжением 0,38 кВ равно 10 % от номинального напряжения.

Потери напряжения зависят от материала кабеля (медь, алюминий), сечения, длины линии, мощности (силы тока) и напряжения.

Для расчета потери напряжения я сделал 3 программки в Excele на основе книги Ф.Ф. Карпова «Как выбрать сечение проводов и кабелей».

1 Для сетей постоянного тока индуктивное сопротивление не учитывают. Рассчитать потерю напряжения можно по следующим формулам (для двухпроводной линии):

По этим формулам я считаю потерю напряжения электроприводов открывания окон (24В), а также сети освещения (220В).

2 Для трехфазных сетей, где косинус равен 1 индуктивное сопротивление также не учитывают. Этот метод также можно использовать для сетей освещения, т.к. у них cos близок к 1, погрешность получим не значительную. Формула для расчета потери напряжения (380В):

Расчёт суммарной потери напряжения до удалённых потребителей с целью проверки у них отклонения напряжения и сравнения с нормативным является одним из базовых при проектировании систем электроснабжения. Как показывает практика, в различных проектных институтах, и даже у проектировщиков в рамках одного института, эти расчёты выполняются по-разному. В этой статье рассмотрены типичные ошибки проектировщиков на примере расчёта потери напряжения в магистральной линии, питающей летние домики на участках садовых товариществ.

2. Постановка задачи

Для магистральной линии, питающей летние домики садовых товариществ, требуется выполнить расчёт суммарной потери напряжения до удалённого потребителя. Конфигурация линии изображена на рис. 1.

Рис. 1. Конфигурация магистральной линии.

Линия подключена к трансформаторной подстанции (ТП) и содержит 4 ответвления (узла). Строго говоря, узел №4 узлом не является, так как в этом месте линия не разветвляется; он введён для удобства разграничения участков линии. Для каждого узла известно количество подключённых к нему домов. Ответвления в узлах №№1-3 подобны ответвлению в узле №4, но не разрисованы подробно, чтобы не загромождать рисунок.

Вся линия, за исключением ввода в дом №11, выполнена проводом СИП 2‑3х50+1х50; ввод в дом выполнен проводом СИП 4 - 2х16.Погонные электрические сопротивления проводов:

  • СИП 2 - 3х50+1х50: R пог = 0,641·10 -3 Ом/м; X пог = 0,0794·10 -3 Ом/м;
  • СИП 4 - 2х16: R пог = 1,91·10 -3 Ом/м; X пог = 0,0754·10 -3 Ом/м;

Коэффициент мощности нагрузки (cosϕ)равен 0,98 (tgϕ = 0,2). На рис. 1 указаны длины участков линии.

Определите величину суммарной потери напряжения в линии до дома №11.

3. Методика расчёта потери напряжения

Расчёт потери напряжения (в процентах) на участке линии можно выполнить по формуле:

  • для трёхфазных симметрично нагруженных линий

где P р (Q р) - расчётная активная (индуктивная) мощность линии, Вт (вар);

L - длина участка линии, м;

R пог (X пог) - погонное активное (индуктивное) сопротивление провода, Ом/м;

U ном (U ном.ф.) - номинальное линейное (фазное) напряжение сети, В.

Индуктивная мощность линии связана с активной следующим соотношением

  • для однофазных линий с одинаковым сечением фазного и нулевого проводников

\(\displaystyle {\Delta U=\frac{2 \cdot L \cdot P_р \cdot R_{пог}}{U_{ном.ф}^2}\cdot 100}\)

Осталось определить расчётную мощность на каждом участке линии. Это можно сделать по рекомендациям СП 31-110-2003 , п.6.2, табл.6.1, п.п.2. В зависимости от количества домов, запитанных через рассматриваемый участок линии, можно по таблице определить удельную нагрузку на дом и рассчитать электрическую нагрузку на участок линии. Количество домов на промежуточных участках рассчитывается, как суммарное количество домов на ответвлении (в узле) в конце участка и на следующем участке.

Например, число домов на участке между узлами №1 и №2 равно сумме числа домов на ответвлении №2 и на участке между узлами №2 и №3, т.е. N=8+(11+15)=34 дома. По табл.6.1 в определяется удельная нагрузка для 34 домов. В табл.6.1 указаны значения только для 24 и 40 домов, поэтому для 34 домов значение удельной нагрузки определяется методом линейной интерполяции:

где m - количество последовательных участков линии.

Приведённые выше формулы ни у кого не вызывают сомнений, так как приведены в справочниках. Но есть один момент, который явным образом не указан ни в справочниках, ни в нормативных документах, и который вызывает споры в среде проектировщиков, а именно - «какую нагрузку считать расчётной на участке магистральной линии при расчёте потери напряжения?». Ещё раз, «как определить расчётную нагрузку на участке магистральной линии не в случае выбора сечения жилы кабеля/провода линии по длительно-допустимому току, а при расчёте потери напряжения до удалённого потребителя?».

Например, в справочнике под редакцией Ю. Г. Барыбина нагрузка на участках линии определяется алгебраическим суммированием нагрузки в узлах, что никак не учитывает несовпадение максимумов графиков нагрузки потребителей. Там же, стр. 170:

Расчёт на потерю напряжения следует вести с учётом следующих обстоятельств: … для длительной работы исходными являются расчётная мощность P m или расчётный ток I m и соответствующий току коэффициент мощности.

Аналогичные расчёты приводятся в учебнике Ю. Д. Сибикина. В пособии С. Л. Кужекова суммарная потеря напряжения рассчитывается через суммы моментов нагрузки (момент нагрузки - произведение мощности электроприёмника на расстояние от него до центра питания), что по сути то же самое, что и в других справочниках, так как несовпадение максимумов нагрузки также не учитывается.

Привожу рассуждения, которыми руководствуются некоторые специалисты при расчётах.

При выборе сечения жилы провода используется понятие расчётной нагрузки как максимальной нагрузки на получасовом интервале . Действительно, это целесообразно при рассмотрении участка отдельно от других, так как при выборе сечения проводника не важно, какая нагрузка на соседнем участке. Другое дело - расчёт потери напряжения. Раз потери на различных участках суммируются, следовательно, в результате получим некоторое суммарное значение потери напряжения, рассчитанное из условия максимальной потери напряжения на каждом участке. При этом расчётное значение суммарной потери получается завышенным, так как максимумы нагрузок не совпадают по времени. При превышении потери напряжения нормативного значения приходится выполнять мероприятия по его уменьшению - увеличивать сечение проводов, дробить нагрузку на несколько линий. Таким образом, увеличиваются капитальные затраты на строительство линии.

Рассмотрим узел №3, приведённый на рис. 1. От узла отходят два ответвления - на 15 и 11 домов. Следовательно, на участке между узлами №2 и №3 (ветвь линии, входящая в узел №3) протекает нагрузка 26 домов. Определим расчётную нагрузку в каждой ветви:

  • N=26 домов, P 26 =0,882 кВт/дом, P р.26 =26·0,882=22,9 кВт;
  • N=15 домов, P 15 =1,2 кВт/дом, P р.15 =15·1,2=18 кВт;
  • N=11 домов, P 11 =1,5 кВт/дом, P р.11 =11·1,5=16,5 кВт.

Сумма нагрузок отходящих линий больше расчётной нагрузки входящей линии (18+16,5=34,5 кВт >22,9 кВт). Это нормально, так как максимумы нагрузок в отходящих линиях не совпадают по времени. Но если рассматривать нагрузку в какой-то конкретный момент времени, то, согласно первому правилу Кирхгофа, сумма нагрузок отходящих линий не должна превысить значение 22,9 кВт. Соответственно, если в расчётах учесть несовпадение максимумов нагрузок, то можно уменьшить расчётное значение потери напряжения, и, следовательно, капитальные затраты на строительство линии. Это можно сделать, если на отходящих линиях принять то же значение удельной нагрузки, что и на входящей в узел, то есть P 26 =0,882 кВт/дом. Тогда распределение нагрузок в отходящих линиях будет следующим:

  • N=15 домов, P р.15 =N·P 26 =15·0,882=13,2кВт;
  • N=11 домов, P р.11 =N·P 26 =11·0,882=9,7кВт.

Сумма нагрузок в отходящих линиях будет равна 22,9 кВт (расчётной нагрузке 26 домов), то есть равна расчётной нагрузке линии, входящей в узел №3.

Аналогичные рассуждения можно распространить на всю линию. Линия на рис. 1 питает 40 домов. Удельная нагрузка в этом случае равна 0,76 кВт/дом, расчётная нагрузка P р.40 =N·P 40 =40·0,76=30,4 кВт. Чтобы выполнялось первое правило Кирхгофа в каждом узле, следует на всех ответвлениях линии принять удельную нагрузку, равную удельной нагрузке для 40 домов.

Теперь можно сформулировать положения, которыми следует руководствоваться при расчёте суммарного значения потери напряжения.

  1. Расчётная нагрузка на любом участке линии определяется по удельной нагрузке, принятой для всей линии.
  2. Расчётная нагрузка ответвления от магистральной линии к одному дому считается по удельной нагрузке для одного дома.
  3. При расчёте потери напряжения на участке с одинаковым шагом между ответвлениями (вводами в дома) допускается распределённую нагрузку заменить сосредоточенной в середине участка.

На рис. 2 выполнено разбиение магистральной линии на участки с указанием количества домов, которые получают электроснабжение через соответствующий участок.

Рис. 2. Конфигурация магистральной линии с разбиением на участки.

Результаты расчёта потери напряжения представлены в таблице 1. Расчётная нагрузка на каждом участке определена по удельной нагрузке для 40 домов - P 40 =0,76 кВт/дом.

Учитывая, что до сих пор широко распространены и находятся в эксплуатации системы с уровнем напряжения 220/380 В, это значение напряжения и используется в расчётах в данной статье. Следует иметь ввиду, согласно ГОСТ 29322-2014 табл.1, что сейчас в проектируемых и реконструируемых системах электроснабжения следует использовать значение напряжения 230/400 В.

Таблица 1. Расчёт потери напряжения с учётом совмещения максимумов нагрузки.

№ участка

Длина участка, м

Кол-во домов, шт.

* длина участка №5 составляет 30 ·6=180 м, но, согласно положению №3, для упрощения расчётов рассматривается сосредоточенная нагрузка в середине участка, т.е. 180/2=90 м.

4. Замечания к методике расчёта с учётом несовпадения максимумов нагрузки

Методика, приведённая выше, на первый взгляд логична и убедительна, особенно для неспециалистов. Но если попробовать разобраться в ней, то появляется несколько вопросов, на которые не так-то легко получить ответ. Другими словами, методика не работает. Ниже приведу вопросы к сторонникам изложенной методики и их ответы.

Вопрос №1.

Зависит ли методика расчёта от длины первого участка линии?

Ответ: не зависит.

Предположим, что длина первого участка линии составляет всего 1 м. Таким образом, электрическое сопротивление этого участка достаточно мало, по сравнению с другими участками, длина которых составляет десятки и сотни метров, и им можно пренебречь. Фактически, получаем, что узел №1 (см. рис. 2) перемещается на шины РУ-0,4 кВ ТП. В данной ситуации получается, что нужно использовать для расчётов удельную нагрузку, определяемую для числа домов участка линии №2, то есть для 34 домов. Возникает ещё вопрос: «При какой длине участка №1 линии следует использовать удельную нагрузку, определяемую для суммарного количества домов?». Точного ответа на этот вопрос я не получил, но меня заверили, что в практических расчётах это значение достаточно велико (более десятка метров), поэтому нет необходимости в определении точной границы.

Хочу обратить внимание, что дело не в том, достаточной считают эту длину сторонники расчёта, или нет. Важно, что если бы был способ определить это значение, то была бы выявлена взаимосвязь между соотношениями потери напряжения на участках линии и расчётной нагрузкой на соответствующих участках.

Вопрос №2.

Зависит ли методика расчёта от длины линии между шинами РУ-0,4 кВ и трансформатором?

Ответ: не зависит.

Как правило, линия между трансформатором и шинами РУ-0,4 кВ выполняется шинопроводом или кабелем и её длина составляет несколько (около 10) метров. Но, представим, что РУ-0,4 кВ резервируется на напряжении 0,4 кВ от другой ТП или дизельной электростанции (см. рис. 3) кабельной или воздушной линией длиной несколько десятков (например, 50) метров.

Рис. 3. Схема резервирования ТП на стороне 0,4 кВ.

В аварийной ситуации трансформатор на ТП №1 отключается, и питание поступает через трансформатор ТП №2 по линии резервирования. В этой ситуации, получается, что перед участком №1 нашей схемы (см. рис. 2) добавляется ещё один участок. Шины РУ-0,4 кВ ТП №1 превращаются в узел с тремя ответвлениями (разумеется, от ТП отходит несколько линий) - линия №1 (40 домов), линия №2 (60 домов) и линия №3 (80 домов) - и питающей резервной линией. Нагрузка на резервную линию (а значит и потеря напряжения в линиях №1, №2 и №3) определяется по удельной нагрузке для суммарного количества (40+60+80=180) домов P 180 =0,586 кВт/дом.

Результаты расчётов для линии №1 (см. рис. 2) приведены в табл. 2.

Таблица 2. Расчёт потери напряжения с учётом резервирования ТП на напряжении 0,4 кВ.

№ участка Длина участка, м Кол-во домов, шт. Рр, кВт ΔU, % ΣΔU, %
1 40 40 23,44 0,42 0,42
2 60 34 19,924 0,53 0,95
3 270 26 15,236 1,83 2,77
4 70 11 6,446 0,20 2,97
5 90 11 6,446 0,26 3,23
6 20 1 4 0,63 3,86

Разница в значении потери в конце участка №6, по сравнению со схемой без резервирования, составляет 4,82-3,86=0,96%. Обращаю внимание, что сама конфигурация линии №1 не поменялась, и потери в резервной линии не учитывались. Просто из-за изменения конфигурации питающей схемы каким-то образом изменились (в сторону уменьшения) суммарные потери в рассматриваемой линии. В этой ситуации сразу напрашивается следующий вопрос (см. вопрос №3).

Вопрос №3.

Какие мероприятия приводят к уменьшению суммарной потери напряжения в линии?

Ответ: увеличение сечения проводника, уменьшение нагрузки на линию (дробление нагрузки и прокладка дополнительных линий от ТП).

Предположим, в узле №1 (см. рис. 2) в результате дополнительного ответвления увеличилось количество домов с 6 до 26 шт. Теперь удельная нагрузка изменилась, так как поменялось суммарное количество домов - было 40, стало 60; P 60 =0,69 кВт/дом. Результаты расчётов для этого случая приведены в табл. 3.

Таблица 3. Расчёт потери напряжения при увеличении числа домов на линии.

№ участка

Длина участка, м

Кол-во домов, шт.

Как видим, величина суммарной потери напряжения в конце участка №6 снизилась со значения 4,82% до значения 4,68%, хотя, по логике, при увеличении нагрузки это значение должно было возрасти. Но, согласно методике, к мероприятиям по уменьшению суммарной потери напряжения в линии, следует добавить также увеличение количества домов на линии. Этот абсурдный вывод так же показывает, что методика, приведённая выше, не работает.

Вопрос №4.

Всегда ли должно выполняться условие, когда сумма нагрузок участков линии, исходящих из узла, равна расчётной нагрузке участка, входящего в узел?

Ответ: всегда, за исключением ответвления ввода к одному дому.

Требование считать потери в ответвлении ввода к дому по расчётной нагрузке одного дома, видимо, вызвано соображениями о том, что в этом случае не идёт речь о совпадении максимумов, так как нет совпадения максимумов нагрузки разных потребителей в силу того, что потребитель просто-напросто один единственный.Рассмотрим участки №5 и №6 более подробно (см. рис. 2). На участке №6 в расчёте используется расчётная нагрузка одного дома, которая равна удельной нагрузке одного дома P р.1 =Р 1 =4 кВт. Не будем заменять на участке №5 распределённую нагрузку сосредоточенной и попробуем определить расчётную нагрузку на каждом отрезке между ответвлениями (вводами) к домам. На участке линии между домами №11 и №9 (№10), очевидно, следует использовать это же значение расчётной нагрузки. На отрезке между ответвлениями к домам №7 (№8) и №9 (№10) расчётная нагрузка уже определяется по удельной нагрузке всей линии:

N=3 дома, P 40 =0,76 кВт/дом, P р.3 =N·P 40 =3·0,76=2,28 кВт.

Здесь возникает законный вопрос: «Почему нагрузка трёх домов ниже, чем нагрузка одного дома?». Даже если 3 дома подключены к разным фазам линии, то даже в этом случае нагрузка по фазам не должна быть ниже 4 кВт. Если же дома подключены к одной и той же фазе, то даже с учётом несовпадения максимумов нагрузки, эта нагрузка никак не может быть ниже нагрузки одного дома, то есть 4 кВт. Сколько же домов нужно подключить, чтобы превысить нагрузку 4 кВт?

N=P р.1 /P 40 =4/0,76=5,3 ~ 6 домов.

Очевидно, что здесь в методике тоже наблюдается недочёт, так как в этом случае наблюдается занижение потери напряжения из-за необоснованного занижения расчётной нагрузки на участках ответвлений с количеством 5 домов и менее.

5. Ошибки методики расчёта потери напряжения с учётом несовпадения максимумов нагрузки

Вопросы, сформулированные к сторонникам вышеприведённой методики, наглядно показали её несостоятельность в отдельных случаях. Это не значит, что в остальных случаях всё хорошо, наоборот, примеры нестыковок в расчётах показывают, что расчёты по этой методике математически не обоснованы, и использовать её нельзя. Ниже перечислены основные ошибки, которые допущены при выводе методики.

Ошибка №1: не учитывается соотношение потери напряжения на разных участках.

Наглядно эта ошибка продемонстрирована в вопросе №3 (см. табл. 3). При увеличении количества домов потери напряжения на участке №1 несколько возросли (с 0,54% до 0,74%), зато на остальных участках потери уменьшились. Особенно нагляден участок №3. На нём потери напряжения уменьшились с 2,37 до 2,15%, то есть на ту же величину, на которую они увеличились на участке №1. Но, увеличение потери напряжения на участке №1 выглядит логично, так как увеличилась нагрузка на этом участке. Но вот как объяснить снижение потери напряжения на остальных участках, которые никак не относятся к добавленной нагрузке? И самое главное, как объяснить снижение суммарной величины потери напряжения в конце участков №3, №4, №5 и №6?

Если бы длина участка №1 была достаточно большая по сравнению с остальными участками (следовательно, и величина потери напряжения на этом участке была бы наибольшей), чтобы компенсировать снижение напряжения на остальных участках, то формально всё выглядело бы логично: увеличиваем нагрузку - увеличиваются суммарные потери в конце каждого участка (хоть и в пределах каждого участка линии, кроме первого, наблюдалось бы снижение величины потери напряжения). Следовательно, учёт соотношения потери напряжения между разными участками как-то выправил бы формально ситуацию, но, разумеется, несколько усложнил расчёты. Ещё раз отмечу, что вопрос снижения потери напряжения на отдельном участке всё равно остаётся открытым.

Ошибка №2: не учитывается высокая корреляция графиков однотипной нагрузки, а также графиков ответвлений и суммарного графика нагрузки.

Вся линия питает однотипную нагрузку, а именно, летние домики садовых товариществ. Для графиков нагрузки различных участков максимальное потребление (пики) мощности наблюдается приблизительно в одно и то же время, то есть можно говорить о высоком значении корреляции (взаимосвязи) этих графиков. В результате суммирования этих графиков получается график нагрузки, который обладает ещё большим значением корреляции к суммируемым графикам. На рис. 4 приведены графики нагрузок на разных ответвлениях линии (обозначены синим и красным цветами), а также их суммарный график нагрузки (обозначён чёрным цветом). В рассматриваемом примере (рис. 2) это узел №3 с двумя ответвлениями по 11 и 15 домов соответственно, а также участок №3 линии, на котором наблюдается суммирование графиков нагрузки этих ответвлений.

Рис. 4. Графики нагрузки ответвлений линии (красный и синий) и их суммарный график нагрузки (чёрный).

Между графиками ответвлений прослеживается положительная корреляция, то есть очевиден общий тренд к увеличению нагрузки в интервале времени с 9 до 18 часов, и её снижению в остальное время. В то же время видно, что есть интервалы времени, например, в районе 10 или 14 часов, когда на одном графике явно выражен пик нагрузки, а на другом пик отсутствует (10 часов), или даже наблюдается провал (14 и 16 часов). Таким образом, действительно, можно говорить о несовпадении графиков нагрузки несвязанных (то есть не соединённых последовательно) ответвлений линии, и это учитывается в расчётах снижением удельной нагрузки на питающем участке (участке №3). При этом наглядно продемонстрировано, что пики каждого отдельного ответвления и пики суммарного графика нагрузки практически совпадают по времени, что означает высокую положительную корреляцию графиков нагрузки последовательных участков линии. Следовательно, расчёты по методике с учётом несовпадения максимумов нагрузки приведут к занижению расчётной величины суммарной потери напряжения.

6. Расчёт потери напряжения по максимальной нагрузке на получасовом интервале

Ввиду недочётов методики расчёта суммарной потери напряжения с учётом несовпадения максимумов графиков нагрузок, приведённых выше, расчёты потери напряжения на участках следует вести по расчётной нагрузке, определяемой как максимальная нагрузка на получасовом интервале. Разбиение линии на участки см. на рис. 5; результаты расчёта приведены в табл. 4.

Рис. 5. Конфигурация магистральной линии с правильным разбиением на участки.

Таблица 4. Расчёт потери напряжения по расчётной (максимальной на получасовом интервале) нагрузке на участках линии.

№ участка

Длина участка, м

Кол-во домов, шт.

7. Выводы

  1. Расчёт потери напряжения по методике с учётом несовпадения максимумов графиков нагрузки приводит к занижению расчётного значения.
  2. Расчёт потери напряжения на участках линии следует выполнять по расчётной нагрузке участка; под расчётной следует понимать максимальную нагрузку на получасовом интервале.
  3. Расчётная нагрузка на участке определяется по количеству домов, запитанных через данный участок, и по удельной нагрузке, определённой для этого количества домов.
  4. Не допускается заменять распределённую нагрузку сосредоточенной, приложенной в середине участка из-за различия удельных нагрузок на участках.
  5. Суммарное значение потери напряжения в линии от ТП до дома №11 составило:
  • при расчёте по методике с учетом несовпадения максимумов нагрузок - 4,82%;
  • при расчёте по максимальной нагрузке на получасовом интервале - 6,53%.

Разница составляет 1,71%.

8. Литература

  1. СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий».
  2. РД 34.20.185-94 «Инструкция по проектированию городских электрических сетей».
  3. Справочник по проектированию электрических сетей и электрооборудования / Под ред. Ю. Г. Барыбина и др. - М.: Энергоатомиздат, 1991.
  4. Электроснабжение промышленных предприятий и установок: Учеб.для проф. учеб. заведений. / Ю. Д. Сибикин, М. Ю. Сибикин, В. А. Яшков - М.: Высш. шк., 2001.
  5. Практическое пособие по электрическим сетям и электрооборудованию / С. Л. Кужеков, С. В. Гончаров. - Ростов н/Д.: Феникс, 2007.

Итак, сегодня на повестке дня вопрос- как рассчитать сечение провода по допустимой потере напряжения.

И поможет нам в этом конечно же программа для электриков которая так и называется- “Электрик”.

Для тех кто не знает зачем делать расчет по потере напряжения- напомню, что при большой длине провода происходит падение напряжения на этом участке и до нагрузки может “дойти” совсем мало если неправильно выбрать сечение провода.

Обычно организации, которые делают капитальный ремонт квартир , обязательно смотрят на состояние электропроводки да и вообще всего электрооборудования и при производстве ремонта меняют ветхие и устаревшие провода, автоматы ну и т.д.

При этом надо правильно выбрать сечение новой проводки не только по условиям нагрева, но и по допустимой потере напряжения.

Представим такую ситуацию. Вам предстоит ремонт квартиры ну или если у вас дом- то дома.

Вы делаете ремонт электропроводки в доме и решили провести отдельный провод розетки в комнату. Но эта комната дальняя и длина провода получается порядка 30 метров до последней розетки.

Вы знаете что ничего мощного в розетки включать никогда не будете, максимум что можете включить- это утюг, телевизор, компьютер что в сумме набегает не более 3кВт и ток при такой мощности I=P/U=3000/220=13,64 А или если округлим то 14 ампер .

Согласно ПУЭ для такого тОка подходит сечение по меди в 1,5 кв.мм. Правда изоляция провода при этом будет около 60 гр.С при температуре в помещении +25, но правила допускают такую нагрузку:

А сейчас давайте посмотрим что нам скажет программа “Электрик” в нашем случае, мы узнаем сколько вольт “потеряется” на 30м провода и сколько “дойдет” до розетки.

Итак, открываем программу “Электрик” и нас интересует кнопка под названием “Потери”, жмем на нее:

Открывается вот такое окошко, где надо поставить точку на “Потери напряжения”:

В следующем открывшемся окне жмем на кнопку “Кабельные линии и другие провода”:

Ну и в очередном окне указываем необходимые параметры, перечисляю сверху- вниз:

Найти - Потери в %

Материал проводника - медные

Задано:

3- Мощность Р,кВт

4- Допустимые потери,% (в нашем примере это значение не важно, можете ставить тоже 4):

Далее надо выбрать индуктивное сопротивление, тут особо заморачиваться не надо, просто жмем на кнопку “Выбрать Xo” и в открывшемся окне нажимаем на значение “Кабель с виниловой или полихлорвинил изоляцией”:

Далее вносим значение косинуса фи, я выставил 0,85 так как у нас не чисто активная нагрузка и следующее значение вносим- длину провода 30м:

На этом все, сейчас можно узнать и результат, для этого жмем на кнопку “Расчет”:

И сейчас видим результат- целых 10 вольт напряжения “теряется” на участке медного провода сечением 1,5 кв.мм длиной 30 метров!

То есть на включенной нагрузке в 3 кВт будет уже не 220 вольт, а только 210. Для интереса можно посчитать сколько вольт “потеряется” если провод будет сечением 2,5 кв.мм:

Как видите- уже меньше, падение напряжения на участке длиной 30м составит уже всего 6 вольт.

Так же можно и наоборот узнать- какое надо сечение провода если вы знаете необходимое значение потери напряжения, для этого вверху окошка надо поставить точку на “Сечение в мм кв.” и внести нужные значения- я их обвел красным на картинке:

Вот таким образом можно с помощью программы “Электрик” определить не только значение падения напряжения на электропроводке но и узнать необходимое сечение для правильного выбора проводов при монтаже электропроводки.

Надеюсь эта информация вам поможет и не раз пригодится.

Буду рад вашим комментариям, если есть какие то технические вопросы- то прошу задавать их на форуме, именно там я отвечаю на вопросы- .

Подписывайтесь на мой видеоканал на Ютубе !

Смотрите еще много видео по электрике для дома!

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % - от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников - на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку - диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия - вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB - гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода - p.
  • Длина токопроводящего кабеля - l.
  • Площадь сечения проводника - S.
  • Сила тока нагрузки в амперах - I.
  • Сопротивление проводника - R.
  • Напряжение в электрической цепи - U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

U = 0,0175*40*2/1,5*16

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В - это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы - работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q - активная, реактивная мощность.
  • r0, x0 - активное, реактивное сопротивление.
  • U ном - номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы - между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт - среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам - длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2 Линия с одной фазой Линия с тремя фазами
Питание Освещение Питание Освещение
Режим Пуск Режим Пуск
Медь Алюминий Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1 Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1
1,5 24,0 10,6 30,0 20,0 9,4 25,0
2,5 14,4 6,4 18,0 12,0 5,7 15,0
4,0 9,1 4,1 11,2 8,0 3,6 9,5
6,0 10,0 6,1 2,9 7,5 5,3 2,5 6,2
10,0 16,0 3,7 1,7 4,5 3,2 1,5 3,6
16,0 25,0 2,36 1,15 2,8 2,05 1,0 2,4
25,0 35,0 1,5 0,75 1,8 1,3 0,65 1,5
35,0 50,0 1,15 0,6 1,29 1,0 0,52 1,1
50,0 70,0 0,86 0,47 0,95 0,75 0,41 0,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме - 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % - допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы - точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины - ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения - одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.