Режимы кислородной резки. Режимы резки, используемые на практике, в зависимости от обрабатываемого материала и типа фрезы

Основные показатели режима резки - это давление режущего кислорода и скорость резки, которые зависят (для данного химического состава стали) от толщины разрезаемой стали, чистоты кислорода и конструкции резака.

Давление режущего кислорода имеет большое значение для резки. При недостаточном давлении струя кислорода не сможет выдуть шлаки из места реза и металл не будет прорезан на всю толщину. При слишком большом давлении кислорода расход его возрастает, а разрез получается недостаточно чистым.

Установлено, что уменьшение чистоты кислорода на 1% снижает скорость резки в среднем на 20%. Применять кислород чистотой ниже 95% нецелесообразно из-за снижения скорости и качества поверхности реза. Наиболее целесообразно и экономически оправдано применение, особенно при машинной кислородной резке, кислорода чистотой 99,5% и более.

На скорость резки также оказывают влияние степень механизации процессу (ручная или машинная резка), форма линии реза (прямолинейная или фигурная) и качество поверхности реза (разделочная, заготовительная с припуском на механическую обработку, заготовительная под сварку, чистовая).

Скорость ручной резки можно кроме таблицы также определить по формуле

где δ - толщина разрезаемой стали, мм.

Если скорость резки мала, то будет происходить оплавление кромок; если скорость слишком велика, то будут образовываться непрорезанные участки из-за отставания кислородной струи, непрерывность резки нарушится.

Режимы машинной чистовой резки деталей с прямолинейными кромками без последующей механической обработки под сварку приведены в табл. 20. Для фигурной резки скорость берется в пределах, указанных в таблице для резки двумя резаками. При заготовительной резке скорость принимается на 10 - 20% выше указанной в таблице.

Данные таблицы учитывают, что чистота кислорода - 99,5%. При меньшей чистоте расход кислорода и ацетилена возрастает, а скорость резки уменьшается; эти величины определяются умножением на поправочный коэффициент, равный:


При резке листов толщиной ∼ 100 мм экономически оправдано применение подогревающего пламени с избытком кислорода для возможно более быстрого нагрева поверхности металла.

Процесс кислородной резки основан на свойстве горения металла в струе кислорода и удаление этой струей образующихся оксидов.

Перед началом данного процесса следует ознакомится с техникой кислородной резки .

Процесс резки начинается с нагрева металла до температуры воспламенения, развивающееся при этом тепло реакции сгорания металла, способствует дальнейшему нагреву соседних частиц до температуры воспламенения, благодаря чему режущая струя кислорода непрерывно проникает на всю глубину и прорезает его насквозь, при этом часть металла вдоль плоскости реза обращается в окислы металла и выдувается струей кислорода.

Для устойчивого протекания процесса резки необходимо соблюдать следующие условия:

1.Температура горения металла должна быть ниже температуры плавления металла; в противном случае металл расплавится и стечет раньше, чем успеет сгореть.

2.Образующиеся при резке шлаки, состоящие преимущественно из окислов металла, должны быть легкоплавкими и жидкотекучими, и стекать под действием струи режущего кислорода .

3.Теплота выделяемая реакцией сгорания металла, должна быть достаточной, чтобы обеспечить непрерывное продолжение начавшегося процесса резки.

4.Теплопроводность металла должна быть достаточно малой, чтобы предупредить большие потери тепла от места резки на бесполезный подогрев всей массы металла.

5.Температура плавления металла должна быть выше точки плавления окислов; в противном случае образующиеся в процессе резки окислы не смогут отделяться от основного металла, не будет непрерывным. Этим условиям удовлетворяет железо (сталь), титан (и его сплавы), и марганец.

Разрезаемость стали и влияние углерода и легирующих элементов на кислородную резку сталей

Способность металлов подвергаться кислородной резке зависит от того, насколько полно удовлетворяется приведенные выше условия.

Влияние углерода на разрезаемость

Металл Характеристика разрезаемости
Низкоуглеродистая сталь При содержании углерода до 0,3% разрезаемость хорошая
Среднеуглеродистая сталь С увеличением содержания углерода с 0,3% до 0,7% резка осложняется
Высокоуглеродистая сталь При содержании углерода свыше 0,7% до 1% резка затруднительна и требуется предварительный подогрев стали до температуры 300-700°С. При содержании углерода более 1-1,2% резка невозможна (без применения флюса)

Марганец (Mn) - облегчает резку. Ухудшает резку при содержании более 4%.

Кремний (Si) - стали, при содержании углерода до 0,2 % и Si до 4 %, режутся хорошо.

Хром (Сг) - стали с содержанием Сг до 1,5% режутся хорошо, при повышении содержания резка затрудняется и при содержании свыше 8-10% - кислородная резка невозможна (здесь применяется кислородно-флюсовая или воздушно-плазменная резка).

Никель (Ni) - хорошо режутся стали с содержанием Ni до 0,7%, если содержание углерода в стали не более 0,5%, то она режется хорошо с содержанием Ni до 4-7%, при содержании более 34% - резка ухудшается.

Медь (Си) - стали с содержанием Си до 0,7% режутся хорошо.

Молибден (Мо) - обычные молибденовые стали режутся удовлетворительно при содержании до 0,25-0,3%, резка не затрудняется, но происходит закалка кромки реза.

Вольфрам (W) - стали с содержанием W до 10% режутся хорошо и удовлетворительно, при содержании свыше 10% резка сильно затруднена.

Сера и Фосфор (S и Р) - при содержании этих элементов в пределах, предусмотренных стандартами, - на резку не влияют.

Основные показатели режима кислородной резки :

  • мощность пламени
  • давление режущего кислорода
  • скорость резки

Мощность пламени зависит разрезаемого металла, состава и состояния стали (прокат, поковка, отливка). При ручной резке, из-за неравномерности перемещения резака, обычно в 1,5-2 раза увеличивают мощность пламени по сравнению с машинной резкой. При резке литья, т.к. поверхность отливки обычно покрыта формовочной землей и пригаром, мощность пламени увеличивается в 3-4 раза.

Для резки сталей толщиной до 300 мм применяют нормальное пламя, а при толщине металла свыше 400 мм целесообразно использовать подогревающее пламя с избытком ацетилена (науглероживающее) для увеличения длины факела (помимо применения более высокого давления кислорода) и прогрева нижней части реза.

Выбор давления режущего кислорода зависит, прежде всего от толщины разрезаемого металла и чистоты кислорода. При более высоком давлении используются мундштуки с большим диаметром канала режущего кислорода. Для каждого мундштука (наружного и внутреннего) существует оптимальная величина давления при изменении которой в ту или иную сторону, качество реза ухудшается и изменяется скорость резки. Соответственно может увеличиваться и расход кислорода на 1 пог. м. По указанным причинам следует строго руководствоваться эксплуатационной документацией на ручные и машинные резаки.

Скорость резки должна соответствовать скорости оксидирования (горения) металла по толщине разрезаемого листа.

При замедленной скорости происходит оплавление верхних кромок разрезаемого листа и расплавленные оксиды (шлаки, грат) из разреза вылетают в виде пучка искр в направлении реза.

При слишком большой скорости, вылет искр из разреза слабый и направлен в обратную сторону движения резака. След реза на вертикальной поверхности значительно «отстает» от вертикали. Возможно непрорезание металла.

При оптимальной скорости резки поток искр с обратной стороны разрезаемого листа сравнительно спокоен и направлен почти параллельно кислородной струе. След реза лишь немного «отстает» от вертикали, шероховатость реза незначительна и грат легко отделяется от нижней кромки реза. Рез ровный.

Статья разработана при поддержке сайта www.pgn.su . Это официальный сайт НПП ПромГрафит, которые предлагают современные уплотнительные материалы и термоизоляцию собственного отечественного производства.

Основной принцип действия фрезерного станка с ЧПУ

Фрезерование заготовок происходит при взаимодействии режущего инструмента с материалом. Степень вхождения зубьев фрезы в материал зависит от угла заострения. Чем меньше угол - тем меньше сила резания.

Выбор диаметра фрезы определяется шириной и глубиной фрезерования. Оба параметра задаются в чертежах и соответствуют размеру заготовки. При необходимости изготовления нескольких заготовок, параметры умножаются на число необходимых деталей.

Во время работы на фрезерных станках с ЧПУ фреза осуществляет вращательные движения, постепенно снимающие необходимые слои материала с заготовки, которая, в свою очередь совершает поступательное движение относительно фрезы. В зависимости от конструкции станка, либо стол движется в отношении фрезы, либо фреза во втором - фреза в отношении стола.

В процессе производства задействованы два элемента - фреза и заготовка. Однако все манипуляции производятся фрезой. Управление осуществляется при помощи компьютера или другого вычислительного устройства.

Основные режимы

Фрезерные станки имеют несколько основных режимов работы, параметры которых регулируются в зависимости от материала. Основные режимы работы включают в себя: раскрой, выборку и гравировку.

Обозначенный режим работы используется для нарезания заготовок и придания изделию форм. Работа в этом режиме выполняется с использованием спиральной 1-заходной или 2-заходной фрезы.

Гравировка включает в себя нанесение на поверхность материала рисунков или надписей с использованием гравера.

Выбор фрезы

Для успешной работы необходимо правильно выбрать фрезу. Выбор фрезы определяется двумя параметрами - глубиной и шириной фрезерования режущей поверхности. Обычно эти параметры указываются в чертежах для заготовок и зависят от планируемого размера деталей.

Глубина резанья - показатель, определяющий толщину материала, снимаемого фрезой на один проход. При обработке твёрдых материалов фреза совершает несколько проходов, тогда поверхность материала получается более гладкой. Тем не менее, при небольшой глубине фреза производит всего один проход. Ширина фрезерования - измеряется размером заготовки. Оба параметра задаются в чертежах.

Под скоростью резания понимается путь, который проходит фреза во время работы в течение одной минуты. Путь принято обозначать в метрах. Оптимальная скорость рассчитывается исходя из дины окружности фрезы и количества зубьёв. Общую длину окружности фрезы умножают на число её зубьев и количество совершаемых оборотов в минуту. Для получения метрического результата полученное значение необходимо разделить на 1000, по количеству миллиметров в метрах.

Оптимальную скорость для разных материалов определяют согласно справочным таблицам. Скорость резки во время работы станка зависит от надёжности фрезы, поэтому в таблицах приводятся максимально допустимые значения оборотов станка, при которых невозможно повреждение фрезы.

Перемещение шпинделя

Фреза передвигается в трёх направлениях, согласно координатной оси, где X - соответствует поперечному перемещению шпинделя, Y - продольному, а Z - вертикальному направлению.

Основные параметры резания - скорость подачи и вращения шпинделя. Подача в одну минуту означает величину перемещения, совершаемую шпинделем за одну минуту. Эта величина измеряется в миллиметрах. Её рассчитывают исходя из количества зубьев фрезы и оборотов, совершаемых в минуту. Таким образом подача в одну минуту равна подаче на один зуб фрезы, умноженной на число зубьев и оборотов в минуту.

Выбор режима работы

Выбор режима обработки зависит от материалов, мощности станка, и скорости обработки. Чем выше мощность станка, тем выше скорость получения детали, что отражается на интенсивности производства. Но слишком высокая скорость снижает качество обработки, поэтому выбор скорости определяется свойствами материала и наличием системы охлаждения станка и уборки стружки, а также тип фрезы. Основные данные относительно скоростей и глубины подачи резания и фрезеровки содержатся в прилагающихся таблицах. В таблице указываются максимально допустимые значения для обозначенных видов материалов, поскольку значение, превышающее обозначенное число может привести либо к порче фрезы, либо заготовки.

Материал

Режим работы

Тип фрезы и параметры

Частота, об/мин

Подача (XY), мм/сек

Подача (Z), мм/сек

Примечание

Гравировка V-гравером

Один проход 5 мм

Фрезеровка

1-зубая фреза D1=3 или 6 мм

Фрезерование встречное.
Один проход не более 3мм.
Использование СОЖ

ПВХ до 10 мм

Раскрой
Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование.

2-слойный пластик

Гравировка

Плоский гравер

0,3-0,5 мм за 1 проход.
Max шаг 50% от диаметра режущий части.

Композит

Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование

Дерево
ДСП

Раскрой
Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование.
5 мм за проход.

Max 10 мм за проход.

Гравировка

2-зубая сферическая фреза D1=3 мм

Max 5 мм за проход.

Плоский гравер D1=3 или 6 мм

Max 5 мм за проход в зависимости от материала
Max Шаг не более 50% диаметра режущий части.

V-гравировка

V-образный гравер D1=32 мм., a=90, 60 град., D2=0.2 мм

Max 3 мм за проход.

Раскрой
Фрезеровка

1-зубая фреза с удалением стружки вниз d=6 мм

Max 10 мм за проход.
При выборке шаг не более 45% от диаметра режущий части.

2-зубая компрессионная фреза D1=6 мм

Max 10 мм за проход.

Латунь
ЛС 59
Л-63
Бронза
БрАЖ

Раскрой
Фрезеровка

2-зубая фреза D1=2 мм

Max 0.5 мм за проход.

Гравировка

Гравер a=90, 60, 45, 30 град.

По 0.3 мм за проход.
Max шаг не более 50% от диаметра режущей части.
Желательно использовать СОЖ.

Дюралюминий, Д16, АД31

Раскрой
Фрезеровка

Фреза 1 зубая d=3 или 6 мм

По 0.2-0.5 мм за проход.
Желательно использовать СОЖ.

Гравировка

Гравер A=90, 60, 45, 30 град.

По 0.5 мм за проход.
Шаг не более 50% от диаметра режущий части.

Кислородная резка основана на сгорании металла в струе технически чистого кислорода. Металл при резке нагревают пламенем, которое образуется при сгорании какого-либо горючего газа в кислороде. Кислород, сжигающий нагретый металл, называют режущим. В процессе резки струю режущего кислорода подают к месту реза отдельно от кислорода, идущего на образование горючей смеси для подогрева металла. Процесс сгорания разрезаемого металла распространяется на всю толщину, образующиеся окислы выдуваются из места реза струёй режущего кислорода.

Металл, подвергаемый резке кислородом, должен удовлетворять следующим требованиям: температура воспламенения металла в кислороде должна быть ниже температуры его плавления; окислы металла должны иметь температуру плавления ниже, чем температура плавления самого металла, и обладать хорошей жидкотекучестью; металл не должен иметь высокой теплопроводности. Хорошо поддаются резке низкоуглеродистые стали.

Для кислородной резки пригодны горючие газы и пары горючих жидкостей, дающие температуру пламени при сгорании в смеси с кислородом не менее 1800 гр. Цельсия. Особенно важную роль при резке имеет чистота кислорода. Для резки необходимо применять кислород с чистотой 98,5-99,5 %. С понижением чистоты кислорода очень сильно снижается производительность резки и увеличивается расход кислорода. Так при снижении чистоты с 99,5 до 97,5 % (т.е. на 2 %) - производительность снижается на 31 %, а расход кислорода увеличивается на 68,1 %.

Технология кислородной резки . При разделительной резке поверхность разрезаемого металла должна быть очищена от ржавчины, окалины, масла и других загрязнений. Разделительную резку обычно начинают с края листа. Вначале металл разогревают подогревающим пламенем, а затем пускают режущую струю кислорода и равномерно передвигают резак по контуру реза. От поверхности металла резак должен находиться на таком расстоянии, чтобы металл нагревался восстановительной зоной пламени, отстоящей от ядра на 1,5-2 мм, т.е. наиболее высокотемпературной точкой пламени подогрева. Для резки тонких листов (толщиной не более 8-10 мм) применяют пакетную резку. При этом листы плотно укладывают один на другой и сжимают струбцинами, однако, значительные воздушные зазоры между листами в пакете ухудшают резку.

На машинах МТР "Кристалл" применяется резак "Эффект-М". Особенность резака - наличие штуцера для сжатого воздуха, который, пройдя через внутреннюю полость кожуха, истекает через кольцевой зазор над мундштуком и создает колоколообразную завесу, что локализует распространение продуктов сгорания и защищает элементы конструкции машины от перегрева.

Параметры режимов резки низкоуглеродистой стали приведены ниже в таблице 1:

Толщина Сопло Гильза Камера Давление Скорость Расход Расход2 Ширина Расстояние
мм мПа мм/мин м.куб./час м.куб./час
1 2 3 4 5 6 7 8 9 10
5 01 1ПБ 0,3 650 2,5 0,5 3 4
10 2 0,4 550 3,75 0,52 3,3 5
20 0,45 475 5,25 0,55 3,5
30 3 0,5 380 7 0,58 4 6
40 0,55 340 8 0,6 5
50 0,6 320 9 0,65
60 0,65 300 10 0,7
80 4 0,7 275 12 0,75
100 0,75 225 14 0,85 5,5 8
160 5 0,8 170 18 0,95 6 10
200 6 0,85 150 22 1,1 7,5 12
300 0,9 90 25 1,2 9

1. Толщина разрезаемого металла
5. Давление кислорода
6. Скорость резки
7. Расход кислорода
8. Расход пропана
9. Ширина реза
10. Расстояние до листа

Воздушно-плазменная резка

Процесс плазменной резки основан на использовании воздушно-плазменной дуги постоянного тока прямого действия (электрод-катод, разрезаемый металл - анод). Сущность процесса заключается в местном расплавлении и выдувании расплавленного металла с образованием полости реза при перемещении плазменного резака относительно разрезаемого металла.

Для возбуждения рабочей дуги (электрод - разрезаемый металл), с помощью осциллятора зажигается вспомогательная дуга между электродом и соплом - так называемая дежурная дуга, которая выдувается из сопла пусковым воздухом в виде факела длиной 20-40 мм. Ток дежурной дуги 25 или 40-60 А, в зависимости от источника плазменной дуги. При касании факела дежурной дуги металла возникает режущая дуга - рабочая, и включается повышенный расход воздуха; дежурная дуга при этом автоматически отключается.

Применение способа воздушно-плазменной резки, при котором в качестве плазмообразующего газа используется сжатый воздух, открывает широкие возможности при раскрое низкоуглеродистых и легированных сталей, а также цветных металлов и их сплавов

Преимущества воздушно-плазменной резки по сравнению с механизированной кислородной и плазменной резкой в инертных газах следующие: простота процесса резки; применение недорогого плазмообразующего газа - воздуха; высокая чистота реза (при обработке углеродистых и низколегированных сталей); пониженная степень деформации; более устойчивый процесс, чем резка в водородосодержащих смесях.

Рис. 1 Схема подключения плазмотрона к аппарату.


Рис. 2 Фазы образования рабочей дуги
а - зарождение дежурной дуги; б - выдувание дежурной дуги из сопла до касания с поверхностью разрезаемого листа;
в - появление рабочей (режущей) дуги и проникновение через рез металла.

Технология воздушно-плазменной резки . Для обеспечения нормального процесса необходим рациональный выбор параметров режима. Параметрами режима являются: диаметр сопла, сила тока, напряжение дуги, скорость резки, расстояние между торцом сопла и изделием и расход воздуха. Форма и размеры соплового канала обуславливают свойства и параметры дуги. С уменьшением диаметра и увеличением длины канала возрастают скорость потока плазмы, концентрация энергии в дуге, её напряжение и режущая способность. Срок службы сопла и катода зависят от интенсивности их охлаждения (водой или воздухом), рациональных энергетических, технологических параметров и величины расхода воздуха.

При воздушно-плазменной резке сталей диапазон разрезаемых толщин может быть разделён на два - до 50 мм и выше. В первом диапазоне, когда необходима надёжность процесса при небольших скоростях резки, рекомендуемый ток 200-250 А. Увеличение силы тока до 300 А и выше приводит к возрастанию скорости резки в 1,5-2 раза. Повышение силы тока до 400 А не даёт существенного прироста скоростей резки металла толщиной до 50 мм. При резке металла толщиной более 50 мм следует применять силу тока от 400 А и выше. С увеличением толщины разрезаемого металла скорость резки быстро падает. Максимальные скорости резки и сила тока для различных материалов и толщины, выполненные на 400 амперной установке приведены в таблице ниже.

Скорость воздушно-плазменной резки в зависимости от толщины металла: таблица 2

Разрезаемый материал Сила тока А Максимальная скорость резки (м/мм) металла в зависимости от его толщины, мм
10 20 30 40 50 60 80
Сталь 200 3,6 1,6 1 0,5 0,4 0,2 0,1
300 6 3 1,8 0,9 0,6 0,4 0,2
400 7 3,2 2,1 1,2 0,8 0,7 0,4
Медь 200 1,2 0,5 0,3 0,1
300 3 1,5 0,7 0,5 0,3
400 4,6 2 1 0,7 0,4 0,2
Алюминий 200 4,5 2 1,2 0,8 0,5
300 7,5 3,8 2,6 1,8 1,2 0,8 0,4
400 10,5 5 3,2 2 1,4 1 0,6

Режимы. таблица 3

Разрезаемый материал Толщина, мм Диаметр сопла, мм Сила тока, А Расход воздуха, л/мин Напряжение, В Скорость резки, м/мин Ширина реза (средняя), мм
Низкоуглеродистая сталь 1 - 3 0,8 30 10 130 3 - 5 1 - 1,5
3 - 5 1 50 12 110 2 - 3 1,6 - 1,8
5 - 7 1,4 75 - 100 15 1,5 - 2 1,8 - 2
7 - 10 10 120 1 - 1,5 2 - 2,5
6 - 15 3 300 40 - 60 160 - 180 5 - 2,5 3 - 3,5
15 - 25 2,5 - 1,5 3,5 - 4
25 - 40 1,5 - 0,8 4 - 4,5
40 - 60 0,8 - 0,3 4,5 - 5,5
Сталь 12Х18Н10Т 5 - 15 250 - 300 140 - 160 5,5 - 2,6 3
10 - 30 160 - 180 2,2 - 1 4
31 - 50 170 - 190 1 - 0,3 5
Медь 10 300 160 - 180 3
20 1,5 3,5
30 0,7 4
40 0,5 4,5
50 0,3 5,5
60 3,5 400 0,4 6,5
Алюминий 5 - 15 2 120 - 200 70 170 - 180 2 - 1 3
30 - 50 3 280 - 300 40 - 50 170 - 190 1,2 - 0,6 7

Режимы воздушно-плазменной резки металлов. таблица 4

Разрезаемый материал Толщина, мм Диаметр сопла, мм Сила тока, А Скорость резки, м/мин Ширина реза (средняя), мм
Сталь 1 - 5 1,1 25 - 40 1,5 - 4 1,5 - 2,5
3 - 10 1,3 50 - 60 1,5 - 3 1,8 - 3
7 - 12 1,6 70 - 80 1,5 - 2 1,8 - 2
8 - 25 1,8 85 - 100 1 - 1,5 2 - 2,5
12 - 40 2 110 - 125 5 - 2,5 3 - 3,5
Алюминий 5 - 15 1,3 60 2 -1 3
30 - 50 1,8 100 1,2 - 0,6 7


Рис. 3 Области оптимальных режимов резки металлов для плазмотрона с воздушным охлаждением (ток 40А и 60А)


Рис. 4 Области оптимальных режимов для плазмотрона с воздушным охлаждением (ток 90А).


Рис. 5 Зависимость выбора диаметра сопла от тока плазмы.


Рис. 6 Рекомендуемые токи для пробивки отверстия.

Скорость воздушно-плазменной резки, по сравнению с газокислородной, возрастает в 2-3 раза (см. Рис. 7).


Рис. 7 Скорость резки углеродистой стали в зависимости от толщины металла и мощности дуги.
Пологая нижняя линия - газокислородная резка.

Хорошего качества реза при резке алюминия, с использованием воздуха в качестве плазмообразующего газа, удаётся достигнуть лишь для небольших толщин (до 30 мм) на токах 200 А. Удаление грата с листов большой толщины затруднительно. Воздушно-плазменная резка алюминия может быть рекомендована лишь как разделительная при заготовке деталей, требующих последующей механической обработки. Припуск на обработку допускается не менее 3 мм.

Технологические процессы обработки металлов путем снятия стружки осуществляются режущими инструментами на с целью придания деталям заданных форм, размеров и качества поверхностных слоев.

Для получения поверхности заданной формы заготовки и инструменты закрепляют на металлообрабатывающих станках, рабочие органы которых сообщают им движения нужной траектории с установленной скоростью и силой.

Определение рационального режима резания металла

Любой вид такой обработки, как резка металла, характеризуется режимом резания металлов, представляющим собой совокупность следующих основных элементов: скорость резания, глубина резания и подача .

Назначенный для обработки заготовки режим резания определяет основное технологическое время на ее обработку и соответственно производительность труда. Работа резания переходит в тепло. Со стружкой уходит 80 % тепла и более, остальное распределяется между резцом, заготовкой и окружающей средой. Под влиянием тепла изменяются структура и твердость поверхностных слоев резца и его режущая способность, изменяются также и свойства поверхностного слоя заготовки.

Режимы резания для каждого случая могут быть рассчитаны по эмпирическим формулам с учетом свойств обрабатываемого материала, установленной нормативами стойкости резца, его геометрии и применяемого охлаждения, а также с учетом точностных параметров обработанной заготовки, особенностей станочного оборудования и оснастки. Назначение режимов резания начинают с определения максимально допустимой глубины резания , затем определяют допустимую подачу и скорость резания .

Глубина резания - толщина снимаемого слоя металла за один проход (расстояние между обрабатываемой и обработанной поверхностями, измеренное по нормали).

Скорость резания - скорость инструмента или заготовки в направлении главного движения, в результате которого происходит отделение стружки от заготовки, подача - скорость в направлении движения подачи. Другими словами, это путь, пройденный в минуту точкой, лежащей на обрабатываемой поверхности относительно режущей кромки резца. Например, при точении скоростью резания называется скорость перемещения обрабатываемой заготовки относительно режущей кромки резца (окружная скорость).

Когда определена скорость резания, можно определить частоту вращения шпинделя (об/мин).

По рассчитанным силе резания и скорости резания определяют мощность , необходимую на резание.

В зависимости от условий резания стружка , снимаемая режущим инструментом в процессе резания материала, может быть элементной, скалывания, сливной и надлома.

Характер стружкообразования и деформации металла рассматривается обычно для конкретных случаев, в зависимости от условий резания; от химического состава и физико-механических свойств обрабатываемого металла, режима резания, геометрии режущей части инструмента, ориентации его режущих кромок относительно вектора скорости резания, смазывающе-охлаждающей жидкости и др. Деформация металла в разных зонах стружкообразования различна, причем она охватывает также и поверхностный слой обработанной детали, в результате чего он приобретает наклёп и возникают внутренние (остаточные) напряжения, что оказывает влияние на качество деталей в целом.

В результате превращения механической энергии, расходуемой при обработки металлов резаньем, в тепловую возникают тепловые источники (в зонах деформации срезаемого слоя, а также в зонах трения контактов инструмент - стружка и инструмент - деталь), влияющие на стойкость режущего инструмента (время работы между переточками до установленного критерия затупления) и качество поверхностного слоя обработанной детали. Тепловые явления вызывают изменение структуры и физико-механических свойств как срезаемого слоя металла, так и поверхностного слоя детали, а также структуры и твёрдости поверхностных слоев режущего инструмента.

Процесс теплообразования зависит также от условий резания. Скорость резания и обрабатываемость металлов резанием существенно влияют на температуру резания в зоне контакта стружки с передней поверхностью резца. Трение стружки и обрабатываемой детали о поверхности режущего инструмента, тепловые и электрические явления при обработке металлов резанием вызывают его изнашивание. Различают следующие виды износа : адгезионный, абразивно-механический, абразивно-химический, диффузионный, электродиффузионный. Характер изнашивания металлорежущего инструмента является одним из основных факторов, предопределяющих выбор оптимальной геометрии его режущей части. При выборе инструмента в зависимости от материала его режущей части и др. условий резания руководствуются тем или иным критерием износа.

Значительное влияние на обработку металов резанием оказывают активные смазочно-охлаждающие жидкости , при правильном подборе, а также при оптимальном способе подачи которых увеличивается стойкость режущего инструмента, повышается допускаемая скорость резания, улучшается качество поверхностного слоя и снижается шероховатость обработанных поверхностей, в особенности деталей из вязких жаропрочных и тугоплавких труднообрабатываемых сталей и сплавов.

Эффективность обработки металлов резанием определяется установлением рациональных режимов резания, учитывающих все влияющие факторы. Повышение производительности труда и уменьшение потерь металла (стружки) при обработки металлов резанием связано с расширением применения методов получения заготовок, форма и размеры которых максимально приближаются к готовым деталям. Это обеспечивает резкое сокращение (или исключение полностью) обдирочных (черновых) операций и приводит к преобладанию доли чистовых и отделочных операций в общем объёме обработки металлов резанием.

Дальнейшие направления развития обработки металлов резанием

К дальнейшим направлениям развития обработки металлов резанием можно отнести:

  • интенсификация процессов резания,
  • освоение обработки новых материалов,
  • повышение точности и качества обработки,
  • применение упрочняющих процессов.