Самодельные бинарные часы на avr. Часы на микроконтроллере своими руками. Описание работы простых часов на Attiny2313

Эта схема была опубликована еще в 2008 году, на сайте http://radiokot.ru/circuit/digital/home/33/ , и не смотря на явные схемотехнические ошибки - схема работает, многие за это время ее повторили, там же на сайте есть большая тема форума, где обсуждается это устройство. Кроме авторскйо прошивки, на форуме есть еще наборы прошивок. В том числе и для вариантов схемы при использовании различных индикаторов, как с собщим катодом, так и с общим анодом. Архив с проверенными прошивками и их исходными текстами в конце страницы.

Я вспомнил об этой схеме, когда мне потребовались простые "первичные часы". Схема была повторена в точности, с единственным изменением - вместо индикатора установлен разъем, к которому будет подключаться силовая часть "больших часов". Для того, чтобы убедиться в том, что часы работают - подключен первый, попавшийся под руку индикатор: XYLNH 420401B-0 - понятия не имею что эта надпись на корпусе означает, но индикатор по распиновке полностью совпадает с рекомендуемым авторм индикатором CC56-12SRWA, только синего свечения.

Управление часами очень простое: Кнопкой S2 устанавливают минуты, а кнопкой S3 - часы. Кнопка сброс (S1), позволяет установить время на полночь, иногда бывает полезно, хотя ее можно не устанавливать. Точка, разделяющая часы и минуты, моргает с частотой 1,25 Гц, то есть 0,4 секунды горит, 0,4 сек. нет.

В целом - схема работает. Но, если предполагается использовать ее так как она есть, то я бы все-таки посоветовал увеличил сопротивление резисторов R4-R11 до, хотя бы 330 Ом, и поставил бы транзисторы в цепь управления катодами. ATtini2313 процессор конечно живучий, но думаю не следует его мучать в таком режиме.

И пару слов о программировании МК. Я использовал программатор Программатор AVR ISP mkII с программой AVRDUDE_PROG 3.2

Этот вариант часов сделан таким образом, чтобы максимально упростить схему, снизить энергопотребление, и в итоге получить прибор, который легко помещается в кармане. Выбрав миниатюрные аккумуляторы для питания схемы, SMD - монтаж и миниатюрный динамик (например от нерабочего мобильного телефона), Вы можете получить конструкцию, размером чуть больше спичечного коробка.
Применение сверхъяркого индикатора позволяет снизить ток, потребляемый схемой. Снижение тока потребления также достигается в режиме "LoFF" - индикатор погашен, при этом включена только мигающая точка младшего разряда часов.

Индикация
Регулируемая яркость индикаторов позволяет выбрать наиболее комфортное отображение показаний (и опять же снизить энергопотребление).
В часах реализовано 9 режимов индикации. Переход по режимам осуществляется с помощью кнопок "плюс" и "минус". Перед выводом на индикацию самих показаний, на индикаторы выводится короткая подсказка названия режима. Длительность вывода подсказки - одна секунда. Применение кратковременных подсказок позволило достичь хорошей эргономичности часов. При переходах по режимам отображения (которых получилось достаточно много, для такого простого прибора, как обычные часы) не возникает путаницы, и всегда понятно, какие именно показания выведены на индикатор.

Коррекция показаний, выведенных на индикатор включается при нажатии на кнопку "Коррекция". При этом кратковременная подсказка выводится на 1/4 секунды, после чего корректируемое значение начинает мигать с частотой 2 Гц. Корректируются показания кнопками "плюс" и "минус". При длительном нажатии на кнопку, включается режим автоповтора, с заданной частотой. Частоты автоповтора нажатия кнопки составляют: для часов, месяцев и дня недели - 4 Гц; для минут, года и яркости индикатора - 10 Гц; для корректирующего значения - 100 Гц.
Все откорректированные значения, кроме часов, минут и секунд, записываются в EEPROM и восстанавливаются после выключения - включении питания. Секунды при коррекции обнуляются. Из всех режимов, кроме часы-минуты, минуты-секунды и LoFF организован автоматический возврат. Если в течение 10 секунд ни одна из кнопок не нажата, то часы переходят в режим отображения часов - минут.
Нажатием на кнопку "Вкл/Выкл буд." включается/выключается будильник. Включение будильника подтверждается коротким двухтональным звуком. При включенном будильнике светится точка в младшем разряде индикатора.
В режиме "Corr" на индикатор выведена корректирующая константа, начальное значение которой 5000 микросекунд в секунду. При отставании часов константу увеличиваем на величину отставания, вычисленное в микросекундах за одну секунду. Если часы спешат, то константу уменьшаем по тому же принципу.

Схема

Схема и программа очень простых часов на микроконтроллере AVR с использованием микросхемы реального времени DS1307

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Сегодня, уважаемые радиолюбители, вашему вниманию предлагается очень простая схема часов на микроконтроллере AVR и часов реального времени с последовательным интерфейсом I2C DS1307 .

Конструкция собрана на микроконтроллере ATyni26 (просто именно этот МК был под рукой). Но вы можете применить любой другой МК, главное чтобы у него было 13 свободных входов – 11 для вывода текущего времени на четырехразрядный семисегментный светодиодный индикатор и 2 вывода – на кнопки установки и коррекции времени.

Схема часов:

В схеме применены следующие детали:
- Микроконтроллер – ATyni26 в DID корпусе
– Часы реального времени – DS1307 в DIP корпусе
– Кварц – 32,768 кГц, с входной емкостью 12 пф (можно взять с материнской платы компьютера), от этого кварца зависит точность хода часов
– резервное питание DS1307 – 3 вольтовый литиевый элемент CR2032
– 4-разрядный семисегментный светодиодный индикатор – FYQ-5641UB -21 с общим катодом (ультраяркий, голубого цвета свечения)
– все транзисторы – NPN-структуры, можно применить любые (КТ3102, КТ315 и их зарубежные аналоги), я применил ВС547С
– микросхемный стабилизатор напряжения типа 7805
– все резисторы мощностью 0,25 ватт
– полярные конденсаторы на рабочее напряжение 50 вольт
Ток потребления устройством составляет до 30 мА.
Для питания конструкции можно использовать любое ненужное зарядное устройство от телефона или подходящий блок питания с выходным напряжением 7-9 вольт.
Общение микроконтроллера с часами DS1307 происходит по шине I2C и организовано программным путем.
Батарейку резервного питания часов DS1307 можно и не ставить, но в этом случае, при пропадании напряжения в сети, текущее время придется устанавливать заново.
Печатная плата устройства не приводится, конструкция была собрана в корпусе от неисправных механических часов. Светодиод (с частотой мигания 1 Гц) служит для разделения часов и минут в конструкции.

Работа программы.
Тактовая частота работы микроконтроллера – 1 мГц (заводская установка, FUSE-биты трогать и устанавливать не надо). Размер программы – 1 килобайт.
При запуске программы происходит:
- запуск таймера Т0 с предустановленной частотой СК/8 и вызовом прерывания по переполнению (при такой предустановленной частоте вызов прерывания происходит каждые 2 миллисекунды)
– инициализация портов (порты РА0-6 и РВ0-3 настраиваются на вывод, РА7 и РВ6 на ввод)
– инициализация шины I2C (выводы РВ4 и РВ5)
– при первом запуске, или повторном запуске при отсутствии резервного питания DS307, проверяется 7 бит (СН) нулевого регистра DS1307 и происходит переход в первоначальную установку текущего времени. При этом, кнопка S1 – для установки времени, кнопка S2 – переход к следующему разряду. Установленное время – часы и минуты записываются в DS1307 (секунды устанавливаются в ноль), а также вывод SQW/OUT (7-й вывод) настраивается на генерацию прямоугольных импульсов с частотой 1 Гц
– разрешается глобальное прерывание
– программа переходит в цикл с опросом копки S2
При переполнения счетчика таймера Т0 программа переходит к обслуживанию прерывания (каждые 2 мс):
– считывается текущее время с DS1307 которое записывается в четыре переменные SRAM (десятки часов, единицы часов, десятки минут, единицы минут)
– подпрограммой вывода текущего времени производится динамическая индикация текущего времени на светодиодном индикаторе
– при нажатии кнопки S2 программа запрещает глобальное прерывание и переходит в подпрограмму коррекции времени (кнопками S1 и S2 устанавливаются десятки и единицы минут, затем, с 0 секунд, нажатием кнопки S2 происходит запись уточненного времени в DS1307, разрешение глобального прерывания и возвращение в основную программу).

Примененные в схеме часы DS1307 позволяют выводить на индикацию секунды, минуты, часы, день недели, дату и год.
Если в схеме вместо светодиодных индикаторов применить LCD дисплей, к примеру WH0802 (двухстрочный, с выводом восьми символов в строке) или аналогичный, то можно организовать полноценные часы с полным выводом текущего времени, а питание устройства организовать от гальванических элементов или аккумуляторных батарей.

Расположение выводов микроконтроллера ATyni26:

Расположение выводов DS1307:

Типовая схема подключения D1307:

Данные часы уже несколько раз обозревались, но я надеюсь, что мой обзор будет тоже Вам интересным. Добавил описание работы и инструкцию.

Конструктор покупался на ebay.com за 1.38 фунтов (0.99+0.39 доставка), что эквивалентно 2.16$. На момент покупки это самая низкая цена из всех предложенных.

Доставка заняла около 3х недель, набор пришел в обычном полиэтиленовом пакетике, который в свою очередь был упакован в небольшой «пупырчатый» пакет. На выводах индикатора был небольшой кусочек пенопласта, остальные детали были без какой либо защиты.

Из документации только небольшой листочек формата А5 со списком радиодеталей с одной стороны и принципиальной электрической схемой с другой.

1. Принципиальная электрическая схема, используемые детали и принцип работы



Основой или «сердцем» часов является 8-ми разрядный КМОП микроконтроллер AT89C2051-24PU оснащенный Flash программируемым и стираемым ПЗУ объемом 2кб.
Узел тактового генератора собран по схеме (рис.1) и состоит из кварцевого резонатора Y1 двух конденсаторов C2 и С3, которые образуют вместе параллельный колебательный контур.


Изменением емкости конденсаторов можно в небольших пределах изменять частоту тактового генератора и соответственно точность хода часов. На рисунке 2 показан вариант схемы тактового генератора с возможностью регулировки погрешности часов.

Узел начального сброса служит для установки внутренних регистров микроконтроллера в начальное состояние. Он служит для подачи после подключения питания на 1 вывод МК единичного импульса длительностью не менее 1 мкс (12 периодов тактовой частоты).
Состоит из RC цепочки, образуемой резистором R1 и конденсатором C1.

Схема ввода состоит из кнопок S1 и S2. Программно сделано так, что при одиночном нажатии любой из кнопок в динамике раздается одиночный сигнал, а при удержании двойной.

Модуль индикации собран на четырехразрядном семисегментном индикаторе с общим катодом DS1 и резистивной сборке PR1.
Резистивная сборка представляет собой набор резисторов в одном корпусе:


Звуковая часть схемы представляет собой схему собранную на резисторе R2 10кОм, pnp транзисторе Q1 SS8550(выполняющего роль усилителя) и пьезоэлемента LS1.

Питание подается через разъем J1 с подключенным параллельно сглаживающим конденсатором C4. Диапазон питающих напряжений от 3 до 6В.

2. Сборка конструктора

Сборка трудностей не вызвала, на плате подписано, куда какие детали паять.

Много картинок - сборка конструктора спрятана под спойлером

Я начал с панельки, так как она единственная не является радиодеталью:

Следующим шагом я припаял резисторы. Перепутать их невозможно, они оба на 10кОм:


После этого установил на плату соблюдая полярность электролитический конденсатор, резисторную сборку (также обращая внимание на первый вывод) и элементы тактового генератора - 2 конденсатора и кварцевый резонатор

Следующим шагом припаиваю кнопки и конденсатор фильтра питания:

После этого очередь за звуковым пьезоэлементом и транзистором. В транзисторе главное установить правильной стороной и не перепутать выводы:

В последнюю очередь припаиваю индикатор и разъем питания:

Подключаю к источнику напряжением 5В. Все работает!!!


3. Установка текущего времени, будильников и ежечасового сигнала.

После включения питания дисплей находится в режиме («ЧАСЫ: МИНУТЫ») и отображает время по умолчанию 12:59. Ежечасный звуковой сигнал включен. Оба будильника включены. Первый установлен на время срабатывания 13:01, а второй – 13:02.


При каждом кратковременном нажатии на кнопку S2 дисплей будет переключаться между режимами («ЧАСЫ: МИНУТЫ») и («МИНУТЫ: СЕКУНДЫ»).
При длительном нажатии кнопки S1 происходит вход в меню настроек, состоящее из 9 подменю, обозначенных буквами A, B, C, D, E, F, G, H, I. Подменю переключаются кнопкой S1, значения изменяются кнопкой S2. После подменю I следует выход из меню настроек.

А: Установка показаний часов текущего времени
При нажатии кнопки S2 значение часов изменяется от 0 до 23. После установки часов необходимо нажать S1 для перехода в подменю B.

B: Установка показаний минут текущего времени


C: Включение ежечасного звукового сигнала
По умолчанию включено (ON) – каждый час с 8:00 до 20:00 подается звуковой сигнал. При нажатии кнопки S2 значение изменяется между ON (Вкл.) и OFF (Выкл.). После установки значения необходимо нажать S1 для перехода в подменю D.

D: Включение\выключение первого будильника
По умолчанию будильник включен (ON). При нажатии кнопки S2 значение изменяется между ON (Вкл.) и OFF (Выкл.). После установки значения необходимо нажать S1 для перехода в следующее подменю. Если будильник выключен, то подменю E и F пропускаются.

E: Установка показаний часов первого будильника
При нажатии кнопки S2 значение часов изменяется от 0 до 23. После установки часов необходимо нажать S1 для перехода в подменю F.

F: Установка показаний минут первого будильника
При нажатии кнопки S2 значение минут изменяется от 0 до 59. После установки минут необходимо нажать S1 для перехода в подменю С.

G: Включение\выключение второго будильника
По умолчанию будильник включен (ON). При нажатии кнопки S2 значение изменяется между ON (Вкл.) и OFF (Выкл.). После установки значения необходимо нажать S1 для перехода в следующее подменю. Если будильник выключен, то подменю H и I пропускаются и происходит выход из меню настроек.

H: Установка показаний часов второго будильника
При нажатии кнопки S2 значение часов изменяется от 0 до 23. После установки часов необходимо нажать S1 для перехода в подменю I.

I: Установка показаний минут второго будильника
При нажатии кнопки S2 значение минут изменяется от 0 до 59. После установки минут необходимо нажать S1 для выхода из меню настроек.

Коррекция секунд
В режиме («МИНУТЫ: СЕКУНДЫ») необходимо удержать кнопку S2 для обнуления секунд. Далее коротким нажатием на кнопку S2 запустить отсчет секунд.

4. Общие впечатления от часов.

Плюсы:
+ Низкая цена
+ Легкая сборка, минимум деталей
+ Удовольствие от самостоятельной сборки
+ Достаточно низкая погрешность (у меня за сутки отстали на несколько секунд)

Минусы:
- После отключения питания не держит время
- Отсутствие какой либо документации, кроме схемы (данная статья частично решила этот минус)
- Прошивка в микроконтроллере защищена от считывания

5. Дополнительно:

1) На безграничных просторах интернета нашел инструкцию к этим часам на английском языке и перевел ее на русский. Скачать ее можно

Иногда полезно иметь в системе часы отсчитывающие время в секундах, да еще с высокой точностью. Часто для этих целей применяют специальные микросехмы RTC (Real Time Clock) вроде . Вот только это дополнительный корпус, да и стоит она порой как сам МК, хотя можно обойтись и без нее. Тем более, что многие МК имеют встроенный блок RTC. В AVR его правда нет, но там есть асинхронный таймер, служащий полуфабрикатом для изготовления часиков.

Первым делом нам нужен часовой кварц на 32768Герц.

Почему кварц именно 32768Гц и почему его зовут часовым? Да все очень просто — 32768 является степенью двойки. Два в пятнадцатой степени. Поэтому пятнадцати разрядный счетчик, тикающий с частотой 32768 Гц, будет переполняться раз в секунду. Это дает возможность строить часы на обычной логической рассыпухе без каких либо заморочек. А в микроконтроллере AVR организовать часы с секундами можно почти без использования мозга, на рефлексах периферии.

Асинхронный режим таймера
Помните как работают таймеры? Тактовая частота с основного тактового генератора (RC внешняя или внутренняя, внешний кварц или внешний генератор) поступает на предделители, а с выхода предделителей уже щелкает значениями регистра TCNT. Либо сигнал на вход идет с счетного входа Тn и также щелкает регистром TCNT

Для этого на выводы TOSC2 и TOSC1 вешается кварцевый резонатор. Низкочастотный, обычно это часовой кварц на 32768Гц. На он смонтирован справа от контроллера и подключается перемычками. Причем тактовая частота процессора должна быть выше как минимум в четыре раза. У нас тактовая от внутреннего генератора 8Мгц, так что нас это условие вообще не парит:)

И не нужно высчитывать количество тактов основного кварца, а если его нет, то заморачиваться на плавающую частоту встроенного RC генератора. Часовой кварц имеет куда более компактные размеры чем обычный кварц, да и стоит дешевле.


Также немаловажным является тот факт, что асинхронный таймер может тикать сам по себе, от часового кварца, ведь тактовая частота процессора ему не нужна, а это значит тактирование ядра контроллера (самое жручее, что у него есть) можно отключить, загнав процессор в спячку, существенно снизив потребление энергии и просыпаясь только по переполнению таймера (1-2 раза в секунду), чтобы записать новые показания времени.

Конфигурирование
Для включения надо всего лишь установить бит AS2 регистра ASSR — и все, таймер работает в асинхронном режиме. Но есть тут одна фича которая мне стоила много головняков в свое время. Дело в том, что при работе от своего кварца все внутренние регистры таймера начинают синхронизироваться по своему же кварцу. А он медленный и основная программа может менять уже введенное значение гораздо быстрей чем оно обработается таймером.

Т.е., например, предустановил ты значение TCNT2, таймер на своей 32кгц молотилке его еще даже прожевать не успел, а твой алгоритм уже пробежал и снова туда что то записал — в результате в TCNT2 наверняка попадет мусор. Чтобы этого не случилось запись буфферизируется. Т.е. это ты думаешь, что записал данные в TCNT2, но на самом деле они попадают во временный регистр и в счетный попадут только через три такта медленного генератора.

Также буфферизируется регистры сравнения OCR2 и регистр конфигурации TCCR2

Как узнать данные уже внеслись в таймер или висят в промежуточных ячейках? Да очень просто — по флагам в регистре ASSR. Это биты TCN2UB, OCR2UB и TCR2UB — каждый отвечает за свой регистр. Когда мы, например, записываем значение в TCNT2 то TCNUB становится 1, а как только наше число из промежуточного регистра таки перешло в реальный счетный регистр TCNT2 и начало уже тикать, то этот флаг автоматом сбрасывается.

Таким образом, в асинхронном режиме, при записи в регистры TCNT2, OCR2 и TCCR2 сначала нужно проверять флаги TCN2UB, OCR2UB и TCR2UB и запись проводить только если они равны нулю. Иначе результат может быть непредсказуемым.

Да, еще один важный момент — при переключениях между синхронным и асинхронным режимом значение в счетном регистре TCNT может побиться. Так что для надежности переключаемся так:

  • Запрещаем прерывания от этого таймера
  • Переключаемся в нужный режим (синхронный или асинхронный)
  • Заново настраиваем таймер как нам нужно. Т.е. выставляем предустановку TCNT2 если надо, заново настраиваем TCCR2
  • Если переключаемся в асинхронный режим, то ждем пока все флаги TCN2UB, OCR2UB и TCR2UB будут сброшены. Т.е. настройки применились и готовы к работе.
  • Сбрасываем флаги прерываний таймера/счетчика. Т.к. при всех этих пертурбациях они могут случайно установиться
  • Разрешаем прерывания от этого таймера

Несоблюдение этой последовательности ведет к непредсказуемым и трудно обнаруживаемым глюкам.

Спящие режимы и асинхронный таймер
Т.к. асинхронный таймер часто используется в разных сберегающих режимах, то тут возникает одна особенность, раскладывающая целое поле из граблей.

Суть в том, что таймер, работающий от медленного кварца, не успевает за главным процессором, а в том дофига зависимостей от периферии — те же прерывания, например. И когда проц спит, то эти зависимости не могут реализоваться, в результате возникают глюки вроде неработающих прерываний или поврежденных значений в регистрах. Так что логика работы с асинхронным таймером и спящим режимом должна быть построена таким образом, чтобы между пробуждением и сваливаеним в спячку асинхронный таймер успел отработать несколько своих тактов и выполнил все свои дела.

Примеры:
Контроллер использует режим энергосбережения и отключения ядра, а пробуждается по прерываниям от асинхронного таймера. Тут надо учитывать тот факт, что если мы будем изменять значения регистров TCNT2, OCR2 и TCCR2, то уход в спячку нужно делат ТОЛЬКО после того, как флаги TCN2UB, OCR2UB и TCR2UB упадут. Иначе получится такая лажа — асинхронный таймер еще не успел забрать данные из промежуточных регистров (он же медленный, в сотни раз медленней ядра), а ядро уже отрубилось. И ладно бы конфигурация новая не применилась, это ерунда.

Хуже то, что на время модификаций регистров TCNT или OCR блокируется работа блока сравнения, а значит если ядро уснет раньше, то блок сравнения так и не запустится — некому его включить будет. И у нас пропадет прерывание по сравнению. Что черевато тем, что событие мы прошляпим и будем их терять до следующего пробуждения из спячки.
А если контроллер будится прерыванием по сравнению? То он уснет окончательно. Опаньки!
Вот и лови такой глюк потом.

Так что перед уходом в режимы энергосбережения надо обязательно дать асинхронному таймеру прожевать введенные значения (если они были введены) и дождаться обнуления флагов.

Еще один прикол с асинхронным режимом и энергосбережением заключается в том, что подсистема прерываний при выходе из спячки стартует за 1 такт медленного генератора. Так что даже если мы ничего не меняли, то обратно в спячку сваливаться нельзя — не проснемся, т.к. прерывания не успеют запуститься.

Так что выход из спячки и засыпание по прерыванию асинхронного таймера должно быть в таком виде:

  • Проснулись
  • Что то сделали нужное
  • Заснули

И длительность операции между Проснулись и Заснули НЕ ДОЛЖНА БЫТЬ МЕНЬШЕ чем один тик асинхронного таймера. Иначе анабиоз будет вечным. Можешь delay поставить, а можешь сделать как даташит советует:

  • Проснулись
  • Что то сделали нужное
  • Ради прикола записали что то в любой из буфферизиуемых регистров. Например, в TCNT было 1, а мы еще раз 1 записали. Ничего не изменилось, но произошла запись, поднялся флаг TCN2UB который продержится гарантированно три такта медленного генератора.
  • Подождали пока флаг упадет
  • Уснули.

Также не рекомендуется при выходе из спячки сразу же читать значения TCNT — можно считать лажу. Лучше подождать один тик асинхронного таймера. Или сделать прикол с записью в регистр и ожиданием пока флаг спадет, как было написано выше.

Ну и последний, но важный, момент — после подачи питания, или выхода из глубокой спячки, с отключением не только ядра, а вообще всей периферии, пользоваться медленным генератором настоятельно рекомендуется не раньше чем через 1 секунду (не миллисекунду, а целая секунда!). Иначе генератор может еще быть нестабильным и в регистрах будет еще каша и мусор.

И, в завершение статьи, небольшой примерчик. Запуск асинхронного таймера на Atmega16 (Как полигон используется плата )

Проект типовой, на базе диспетчера, одно лишь отличие — диспечтер переброшен на таймер0, чтобы освободить таймер2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 int main(void ) { InitAll() ; // Инициализируем периферию InitRTOS() ; // Инициализируем ядро RunRTOS() ; // Старт ядра. UDR = "R" ; // Маркер старта, для отладки SetTimerTask(InitASS_Timer, 1000 ) ; // Так как таймер в асинхронном режиме // запускается медленно, то делаем // Выдержку для запуска инициализации таймера. while (1 ) // Главный цикл диспетчера { wdt_reset() ; // Сброс собачьего таймера TaskManager() ; // Вызов диспетчера } return 0 ; }

int main(void) { InitAll(); // Инициализируем периферию InitRTOS(); // Инициализируем ядро RunRTOS(); // Старт ядра. UDR = "R"; // Маркер старта, для отладки SetTimerTask(InitASS_Timer,1000); // Так как таймер в асинхронном режиме // запускается медленно, то делаем // Выдержку для запуска инициализации таймера. while(1) // Главный цикл диспетчера { wdt_reset(); // Сброс собачьего таймера TaskManager(); // Вызов диспетчера } return 0; }

Сама процедура инициализации таймера в асинхронном режиме сделана в виде конечного автомата. При первом запуске она взводит бит асинхронного режима и делает приготовления, после запускает сама себя снова же, через диспетчер, чтобы дать возможность еще чему либо проскочить в очереди, не блокируюя систему на ожидание.

При последующих входах проверяются флаговые биты готовности регистров таймера. Если они все по нулям, то мы на всякий случай зануляем флаги прерывания таймера, чтобы не было глюков и ложных срабатываний, а потом разрешаем нужное нам прерывание. И выходим.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 void InitASS_Timer(void ) { if (ASSR & (1 << AS2) ) //Если это второй вход то { if (ASSR & (1 << TCN2UB | 1 << OCR2UB | TCR2UB) ) // проверяем есть ли хоть один бит флаговый { SetTask(InitASS_Timer) ; // Если есть, то отправляем на повторный цикл ожидания } else // Если все чисто, то можно запускать прерывания { TIFR |= 1 << OCF2 | 1 << TOV2; // Сбрасываем флаги прерываний, на всякий случай. TIMSK |= 1 << TOIE2; // Разрешаем прерывание по переполнению return ; } } TIMSK &= ~(1 << OCIE2 | 1 << TOIE2) ; // Запрещаем прерывания таймера 2 ASSR = 1 << AS2; // Включаем асинхронный режим TCNT2 = 0 ; TCCR2 = 5 << CS20; // Предделитель на 128 на 32768 даст 256 тиков в секунду // Что даст 1 прерывание по переполнению в секунду. SetTask(InitASS_Timer) ; // Прогоняем через диспетчер, чтобы зайти снова. }

void InitASS_Timer(void) { if(ASSR & (1<

ISR(TIMER2_OVF_vect) // Прерырвание по переполнению таймера 2 { UDR = i; i++; }

Можно было сделать переменные содержащие часы:минуты:секунды и щелкать этими переменными со всей их логикой переполнения часов/минут, но мне было лень. И так все понятно.