Схема контроля и регулирования уровня. Типовые схемы автоматического регулирования технологических переменных (расхода, давления, температуры, уровня, концентрации и т.п.). Разомкнутая система автоматического регулирования

К основным технологическим параметрам, подлежащим контролю и регулированию в химико-технологических процессах, относят расход, уровень, давление, температуру, значение рН и показатели качества (концентрацию, плотность, вязкость и др.)

Необходимость регулирования расхода возникает при автоматизации практически любого непрерывного процесса.

АСР расхода, предназначенные для стабилизации возмущений по материальным потокам, являются неотъемлемой частью разомкнутых систем автоматизации технологических процессов. На рис.3.4 дана принципиальная схема объекта при регулировании расхода. Обычно таким объектом является участок трубопровода между точкой измерения расхода (например, местом установки сужающего устройства 1) и регулирующим органом 2. Длина этого участка определяется правилами установки сужающих устройств и регулирующих органов и составляет обычно несколько метров. Динамика канала “расход вещества через клапан – расход вещества через расходомер” приближенно описывается апериодическим звеном первого порядка с чистым запаздыванием. Время чистого запаздывания обычно составляет доли секунд для газа и несколько секунд – для жидкости; значение постоянной времени – несколько секунд.

Ввиду малой инерционности объекта регулирования особые требования предъявляются к выбору средств автоматизации и методов расчёта АСР. В частности, в промышленных установках инерционность цепей контроля и регулирования расхода становится соизмеримой с инерционностью объекта, и ее следует учитывать при расчете систем регулирования.


Рис. 3.4. Принципиальная схема объекта при регулировании расхода: 1-измеритель расхода; 2-регулирующий клапан.

Выбор законов регулирования диктуется обычным требуемым качеством переходных процессов. Для регулирования расхода без статической погрешности в одноконтурных АСР применяют ПИ-регуляторы. Если АСР расхода является внутренним контуром в каскадной системе регулирования, регулирование расхода может осуществляться П-законом регулирования. При наличии высокочастотных помех в сигнале расхода применение регуляторов с дифференциальными составляющими в законе регулирования без предварительного сглаживания сигнала может привести к неустойчивой работе системы. Поэтому в промышленных АСР расхода применение ПД- или ПИД-регуляторов не рекомендуется.

В системах регулирования расхода применяют один из трех способов изменения расхода:

дросселирование потока вещества через регулирующий орган, устанавливаемый на трубопроводе (клапан, шибер, заслонка);

изменение напора в трубопроводе с помощью регулируемого источника энергии (например, изменением числа оборотов двигателя насоса или угла поворота лопастей вентилятора);

байпасирование, т.е. переброс избытка вещества из основного трубопровода в обводную линию.

Регулирование расхода после центробежного насоса осуществляется регулирующим клапаном, устанавливаемым на нагнетательном трубопроводе (рис. 3.5,а). Если для перекачивания жидкости используют поршневой насос, применение подобной АСР недопустимо, так как при работе регулятора клапан может закрыться полностью, что приведет к разрыву трубопровода (или к помпажу, если клапан установлен на оси насоса).

В этом случае для
Измерителем расхода при этом может служить взвешивающее устройство, которое определяет массу материала на ленте транспортера.

Рис. 3.6. Схемы регулирования расхода сыпучих веществ:

а - изменением степени открытия регулирующей заслонки;

б–изменением скорости движения транспортера; 1– бункер;

2 - транспортер; 3 – регулятор; 4 – регулирующая заслонка;

5 – электродвигатель

Регулирование соотношения расходов двух веществ можно осуществлять по одной из трех схем, описанных ниже.

1. При незаданной общей производительности расход одного вещества (рис.3.7,а) G1, называемый “ведущим”, может меняться произвольно; второе вещество подается при постоянном соотношении g с первым, так что “ведомый” расход равен gG1. Иногда вместо регулятора соотношения используют реле соотношения и обычный регулятор для одной переменной (рис.3.7,б). Выходной сигнал реле 6, устанавливающего заданный коэффициент соотношения g, подается в виде задания регулятору 5, обеспечивающему поддержание “ведомого ”расхода.

2. При заданном “ведущем” расходе кроме АСР соотношения применяют и АСР “ведущего” расхода (рис. 3.7,в). При такой схеме в случае изменения задания по расходу G1 автоматически изменится и расход G2 (в заданном соотношении с G1).

3. АСР соотношения расходов является внутренним контуром в каскадной системе регулирования третьего технологического параметра g (например, температуры в аппарате). При этом заданный коэффициент соотношения устанавливается внешним регулятором в зависимости от этого параметра, так что G2 = g(y) G1 (рис. 3.7,г).


Рис. 3.7 Схемы регулирования соотношения расходов:

а, б – при незаданной общей нагрузке; в – при заданной общей нагрузке; г – при заданной общей нагрузке и коррекции коэффициента соотношения по третьему параметру; 1,2 – измерители расхода;3- регулятор соотношения; 4,7 – регулирующие клапаны;

5 – регулятор расхода; 6 – реле соотношения; 8 – регулятор температуры; 9 – устройство ограничения

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования

«Самарский государственный технический университет» в г. Сызрани

Кафедра «Электромеханика и промышленная автоматика»

Курсовой проект

по дисциплине «Проектирование автоматизированных систем»

Регулирование технологических параметров на установке ЭОЛУ АВТ-6

Выполнил:

Студент гр. ЭАБЗ-401 Голотин К.О.

Проверил:

Ст. преподаватель Шумилов Е.А.

Сызрань 2014

Введение

1. Описание работы установки

3. Расчёты регуляторов

Заключение

Введение

Нефть известна человеку с древнейших времен. В течение многих столетий нефтью пользовались в качестве лечебного средства, топлива и осветительного материала. По мере развития техники в России развивалась и нефтеперерабатывающая промышленность, которая обеспечивала получение из нефти различных нефтепродуктов. Перед нефтяной промышленностью стоит огромная задача: обеспечить сырьем и промежуточными продуктами химическую и нефтехимическую промышленность. Сырьем для развития этих отраслей промышленности служат природный и попутный газ, сжиженный газ и отдельные углеводородные фракции. Кроме того, на нефтеперерабатывающих заводах стали получать ароматические углеводороды, сырье для сажи, синтетические жирные кислоты и спирты, а также многие другие продукты. Современная нефтеперерабатывающая промышленность постоянно идет под знаком научно-технических разработок. Основными технологическими процессами на нефтеперерабатывающих предприятиях являются: обессоливание и обезвоживание нефти на первичном этапе, каталитический крекинг, каталитический риформинг, изомеризация, гидрогенизационная очистка нефтяных дистиллятов и др. - на вторичном и последующих этапах.

Широкое распространение вторичных процессов переработки нефти повышает требования к четкости разделения нефти и более глубоким отборам. Современные технологические процессы переработки нефти отличаются большой производительностью, высокими скоростями потоков и определенными значениями параметров, отклонение которых допускается лишь в самых небольших пределах.

На современном мировом рынке предъявляются высокие требования к качеству нефти и нефтепродуктов, поэтому необходимо непрерывно улучшать качество выпускаемой продукции. А это требует применения современных высокоточных систем управления.

Процессы перегонки нефти осуществляют на так называемых атмосферных трубчатых (AT) и вакуумных трубчатых (ВТ) или атмосферно-вакуумных трубчатых (АВТ) установках.

На установках AT осуществляют неглубокую перегонку нефти с получением топливных (бензиновых, керосиновых, дизельных) фракций и мазута. Установки ВТ предназначены для перегонки мазута. Получаемые на них газойлевые, масляные фракции и гудрон используют в качестве сырья процессов последующей (вторичной) переработки их с получением топлив, смазочных масел, кокса, битумов и других нефтепродуктов.

Современные процессы перегонки нефти являются комбинированными с процессами обезвоживания и обессоливания, вторичной перегонки и стабилизации бензиновой фракции: ЭЛОУ-АТ, ЭЛОУ-АВТ и т. д.

1. Описание работы установки

Технологический процесс в атмосферном блоке ЭЛОУ АВТ-6 протекает следующим образом. Обезвоженную и обессоленную на ЭЛОУ нефть дополнительно подогревают в теплообменниках и подают на разделение в колонну частичного отбензинивания 1. Уходящие с верха этой колонны углеводородный газ и легкий бензин конденсируют и охлаждают в аппаратах воздушного и водяного охлаждения и направляют в емкость орошения. Часть конденсата возвращают на верх колонны 1 в качестве острого орошения. Отбензиненную нефть с низа колонны 1 подают в трубчатую печь 4, где нагревают до требуемой температуры и направляют в атмосферную колонну 2. Часть отбензиненной нефти из печи 4 возвращают в низ колонны 1 в качестве горячей струи. С верха колонны 2 отбирают тяжелый бензин, а сбоку через отпарные колонны 3 выводят топливные фракции 180-220 (230), 220 (230)-280 и 280-350 °С. Атмосферная колонна, кроме острого орошения, имеет два циркуляционных орошения, которыми отводят тепло ниже тарелок отбора фракций 180-220 и 220-280 °С. В нижние части атмосферной и отпарных колонн подают перегретый водяной пар для отпарки легко кипящих фракций. С низа атмосферной колонны выводят мазут, который направляют на блок вакуумной перегонки.

2. Технологическая схема установки

На рис. 1 показана принципиальная схема блока атмосферной перегонки нефти установки ЭЛОУ АВТ-6.

1- отбензинивающая колонна;

2 - атмосферная колонна;

3 - отпарные колонны;

4 - атмосферная печь;

I - нефть с ЭЛОУ;

II - легкий бензин;

III- тяжелый бензин;

IV - фракция 180-220 ;

V - фракция 220-280 ;

VI - фракция 280-350 ;

VII - мазут;

IX - водяной пар.

3. Расчет регуляторов

Таблица 1 Данные для расчета

нефтеперерабатывающий элоу промышленность

Для регулирования параметров используется трехконтурная система подчиненного регулирования. Структурная схема такой системы показана на рис.2.

Для системы регулирования температуры в атмосферной печи:

R1(s) - передаточная функция регулятора скорости электродвигателя;

W11(s) - передаточная функция тиристорного преобразователя;

W12(s) - передаточная функция электродвигателя;

Wос1(s) - передаточная функция датчика скорости;

R2(s) - передаточная функция регулятора расхода топлива;

W21(s) - передаточная функция насоса;

Wос2(s) - передаточная функция датчика расхода топлива;

R3(s) - передаточная функция регулятора температуры в атмосферной печи;

W31(s) - передаточная функция атмосферной печи;

Wос3(s) - передаточная функция датчика температуры атмосферной печи.

Первый контур системы регулирования по скорости настроим на технический оптимум (рис.3).

Желаемая передаточная функция первого разомкнутого контура:

С другой стороны:

Подставив в формулу (2) значение, можно рассчитать передаточную функцию регулятора:

Проверим правильность вычислений с помощью компьютерного моделирования в Simulink. На (рис.5) изображен график переходного процесса, параметры которого соответствуют техническому оптимуму.

Рис. 4 Схема модели системы электропривода

Рис. 5 График переходного процесса

Передаточная функция первого замкнутого контура:

Второй контур системы регулирования расхода топлива настроим на технический оптимум (рис.6).

Желаемая передаточная функция второго разомкнутого контура:

С другой стороны:

Подставив в формулу (4) значение, можно рассчитать передаточную функцию регулятора:

Проверим правильность вычислений с помощью компьютерного моделирования в Simulink. На (рис.8) изображен график переходного процесса, параметры которого соответствуют техническому оптимуму.

Рис. 7 Схема модели системы электропривода

Рис. 8 График переходного процесса

Передаточная функция второго замкнутого контура:

Третий контур системы регулирования температуры настроим на симметричный оптимум (рис.9).

Желаемая передаточная функция третьего разомкнутого контура:

С другой стороны:

Подставив в формулу (6) значение, можно рассчитать передаточную функцию регулятора:

Проверим правильность вычислений с помощью компьютерного моделирования в Simulink. На (рис.11) изображен график переходного процесса, параметры которого соответствуют техническому оптимуму.

Рис. 10 Схема модели системы электропривода

Рис. 11 График переходного процесса

Заключение

В ходе данной курсовой работы были рассчитаны регуляторы для каждого контура системы подчиненного регулирования, правильность которых проверялось с помощью компьютерного моделирования в Simulink. По полученным графикам переходного процесса были рассчитаны перерегулирование, время рассогласования, максимальное время и время переходного процесса. Рассчитанные значения соответствуют стандартным, в зависимости от выбранного условия (технический или симметричный оптимумы). Так же подробно изучен технологический процесс в атмосферном блоке ЭЛОУ АВТ-6, который отличается большой производительностью, высокими скоростями потоков и определенными значениями параметров, отклонение которых допускается лишь в самых небольших пределах.

Размещено на Allbest.ru

...

Подобные документы

    Задачи нефтеперерабатывающей и нефтехимической промышленности. Особенности развития нефтеперерабатывающей промышленности в мире. Химическая природа, состав и физические свойства нефти и газоконденсата. Промышленные установки первичной переработки нефти.

    курс лекций , добавлен 31.10.2012

    Значение химической и нефтехимической промышленности. Структура отрасли. Размещение химической и нефтехимической промышленности. Влияние химической и нефтехимической промышленности на окружающую среду. Современное состояние и тенденции развития.

    реферат , добавлен 27.10.2004

    Типы промышленных установок. Блок атмосферной перегонки нефти установки. Особенности технологии вакуумной перегонки мазута по масляному варианту. Перекрестноточные посадочные колонны для четкого фракционирования мазута с получением масляных дистиллятов.

    реферат , добавлен 14.07.2008

    Структура Московского нефтеперерабатывающого завода в Капотне: 8 основных и 9 вспомогательных цехов, в составе которых 48 технологических установок. Данные об установке ЭЛОУ-АВТ-6. Технологическая схема установки трехкратного испарения нефти ЭЛОУ-АВТ.

    отчет по практике , добавлен 19.07.2012

    Автоматизация химической промышленности. Назначение и разработка рабочего проекта установок гидрокрекинга, регенерации катализатора и гидродеароматизации дизельного топлива. Моделирование системы автоматического регулирования. Выбор средств автоматизации.

    курсовая работа , добавлен 16.08.2012

    Элементный состав нефти и характеристика нефтепродуктов. Обоснование выбора и описание технологической схемы атмосферной колонны. Расчет ректификационной колонны К-1, К-2, трубчатой печи, теплообменника, конденсатора и холодильника, подбор насоса.

    курсовая работа , добавлен 11.05.2015

    Разработка функциональной и структурной схемы автоматизированной системы управления процессом атмосферной перегонки нефти. Разработка соединений и подключений. Программно-математическое обеспечение системы. Расчет экономического эффекта от внедрения АСУ.

    дипломная работа , добавлен 11.08.2011

    История предприятия ОАО АНК "Башнефть". Обязанности мастера по контрольно-измерительным приборам и средствам автоматики. Технологический процесс промысловой подготовки нефти. Его регулирование с помощью первичных датчиков и исполнительных механизмов.

    отчет по практике , добавлен 09.04.2012

    Ректификация бинарных смесей. Установка атмосферной перегонки нефти. Конструкция агрегата и технологический процесс. Контроль и регулирование уровня раздела фаз нефть/вода в электродегидраторе. Разработка функциональной схемы автоматизации устройства.

    курсовая работа , добавлен 07.01.2015

    Процесс первичной перегонки нефти, его схема, основные этапы, специфические признаки. Основные факторы, определяющие выход и качество продуктов первичной перегонки нефти. Установка с двухкратным испарением нефти, выход продуктов первичной перегонки.

К основным технологическим параметрам, подлежащим контролю и регулированию в химико-технологических процессах, относят расход, уровень, давление, температуру, значение рН и показатели качества (концентрацию, плотность, вязкость и др.)* [Основы измерения этих параметров, автоматические приборы контроля и исполнительные устройства изучают в курсах «Технологические измерения и приборы» и «Технические средства автоматизации». Здесь рассмотрены особенности регулирования этих параметров с учетом статических и динамических характеристик каналов регулирования, приборов контроля и средств автоматизации и приведены примеры наиболее распространенных систем регулирования некоторых параметров.]. Регулирование расхода. Необходимость регулирования расхода возникает при автоматизации практически любого непрерывного процесса. АСР расхода, предназначенные для стабилизации возмущений по материальным потокам, являются неотъемлемой частью разомкнутых систем автоматизации технологических процессов. Часто АСР расхода используют как внутренние контуры в каскадных системах регулирования других параметров. Для обеспечения заданного состава смеси или для поддержания материального и теплового балансов в аппарате применяют системы регулирования соотношения расходов нескольких веществ в одноконтурных или каскадных АСР.

Системы регулирования расхода характеризуются двумя особенностями: малой инерционностью собственно объекта регулирования; наличием высокочастотных составляющих в сигнале изменения расхода, обусловленных пульсациями давления в трубопроводе (последние вызваны работой насосов или компрессоров или случайными колебаниями расхода при дросселировании потока через сужающее устройство).

На рис. 2.1 дана принципиальная схема объекта при регулировании расхода. Обычно таким объектом является участок трубопровода между точкой измерения расхода (например, местом установки сужающего устройства 1 ) и регулирующим органом2. Длина этого участка определяется правилами установки сужающих устройств и регулирующих органов и составляет обычно несколько метров. Динамика канала «расход вещества через клапан - расход вещества через расходомер» приближенно описывается апериодическим звеном первого порядка с чистым запаздыванием. Время чистого запаздывания обычно со-

Рис. 2.1. Принципиальная схема объекта при регулировании расхода: /-измеритель расхода; 2 - регулирующий клапан

ставляет доли секунд для газа и несколько секунд - для жидкости; значение постоянной времени - несколько секунд.

Ввиду малой инерционности объекта регулирования особые требования предъявляются к выбору средств автоматизации и методов расчета АСР. В частности, в промышленных установках инерционность цепей контроля и регулирования расхода становится соизмеримой с инерционностью объекта, и ее следует учитывать при расчете систем регулирования.

Приближенная оценка чистого запаздывания и постоянных времени отдельных элементов цепи показывает (рис. 2.2), что современные первичные преобразователи расхода, построенные на принципе динамической компенсации, можно рассматривать как усилительные звенья. Исполнительное устройство аппроксимируется апериодическим звеном первого порядка, постоянная времени которого составляет несколько секунд, причем быстродействие исполнительного устройства существенно повышается при использовании позиционеров. Импульсные линии, связывающие средства контроля и регулирования, аппроксимируются апериодическим звеном первого порядка с чистым запаздыванием, параметры которого определяются длиной линии и лежат в пределах нескольких секунд. При больших расстояниях между элементами цепи необходимо по длине импульсной линии устанавливать дополнительные усилители мощности.

Вследствие малой инерционности объекта рабочая частота может оказаться выше максимальной, ограничивающей область нормальной работы промышленного регулятора, в пределах которой реализуются стандартные законы регулирования. За пределами этой области динамические характеристики регуляторов отличаются от стандартных, вследствие чего требуется введение поправок на рабочие настройки с учетом фактических законов регулирования.

Рис. 2.2. Структурная схема системы регулирования расхода:

1 - объект;2 - первичный преобразователь расхода;3 - регулятор;4 - импульсные линии;5 - исполнительное устройство

Выбор законов регулирования диктуется обычно требуемым качеством переходных процессов. Для регулирования расхода без статической погрешности в одноконтурных АСР применяют ПИ-регуляторы. Если АСР расхода является внутренним контуром в каскадной системе регулирования, ре-

Рис. 2.3. Схемы регулирования расхода после центробежного (а) и поршневого (б ) насосов:

/ - измеритель расхода; 2 - регулирующий клапан;3- регулятор;4 - насос

гулятор расхода может осуществлять П-закон регулирования. При наличии высокочастотных помех в сигнале расхода применение регуляторов с дифференциальными составляющими в законе регулирования без предварительного сглаживания сигнала может привести к неустойчивой работе системы. Поэтому в промышленных АСР расхода применение ПД- или ПИД-регулято-ров не рекомендуется.

В системах регулирования расхода применяют один из трех способов изменения расхода:

дросселирование потока вещества через регулирующий орган, устанавливаемый на трубопроводе (клапан, шибер, заслонка);

изменение напора в трубопроводе с помощью регулируемого источника энергии (например, изменением числа оборотов двигателя насоса или угла поворота лопастей вентилятора);

байпасирование, т. е. переброс избытка вещества из основного трубопровода в обводную линию.

Регулирование расхода после центробежного насоса осуществляется регулирующим клапаном, устанавливаемым на нагнетательном трубопроводе (рис. 2.3, а ). Если для перекачивания жидкости используют поршневой насос, применение подобной АСР недопустимо, так как при работе регулятора клапан может закрыться полностью, что приведет к разрыву трубопровода (или к помпажу, если клапан установлен на всасе насоса). В этом случае для регулирования расхода используют байпасирование потока (рис. 2.3,б ).

Регулирование расхода сыпучих веществ осуществляется изменением степени открытия регулирующей заслонки на выходе из бункера (рис. 2.4, а ) или изменением скорости движения ленты транспортера (рис. 2.4,б ). Измерителем расхода при этом может служить взвешивающее устройство, которое определяет массу материала на ленте транспортера.

Регулирование соотношения расходов двух веществ можно осуществлять по одной из трех схем, описанных ниже.

1. При незаданной общей производительности расход одного вещества (рис. 2,5, a ) G 1 , называемый «ведущим», может меняться произвольно; второе вещество подается при постоянном соотношенииу с первым, так что «ведомый» расход равенyG 1 .

Рис. 2.4. Схемы регулирования расхода сыпучих веществ:

а - изменением степени открытия регулирующей заслонки; б - изменением скорости движения транспортера; / - бункер; 2 - транспортер;3 - регулятор;4 - регулирующая заслонка; 5 - электродвигатель

Иногда вместо регулятора соотношения используют реле соотношения и обычный регулятор для одной переменной (рис. 2.5,6). Выходной сигнал реле 6, устанавливающего заданный коэффициент соотношенияу, подается в виде задания регулятору 5, обеспечивающему поддержание «ведомого» расхода.

    При заданном «ведущем» расходе кроме АСР соотношения применяют и АСР «ведущего» расхода (рис. 2.5,в). При такой схеме в случае изменения задания по расходу G \ автоматически изменится и расходG % (в заданном соотношении сGi ).

    АСР соотношения расходов является внутренним контуром в каскадной системе регулирования третьего технологического параметра у (например, температуры в аппарате). При

Рис. 2.5. Схемы регулирования соотношения расходов:

а, б - при незаданной общей нагрузке;в - при заданной общей нагрузке;г - при заданной общей нагрузке и коррекции коэффициента соотношения по третьему параметру; ",2 - измерители расхода;3 - регулятор соотношения;4, 7 - регулирующие клапаны; 5 - регулятор расхода;6 - реле соотношения;8 - регулятор температуры;9 - устройство ограничения

этом заданный коэффициент соотношения устанавливается внешним регулятором в зависимости от этого параметра так что Gi = y { y ) G \ (рис. 2.5,г). Как отмечалось выше, особенность настройки каскадных АСР состоит в том, что на задание внутреннему регулятору устанавливают ограничение Хрн^Яр^Ярв. Для АСР соотношения расходов это соответствует ограничениюYh^y^Yb- Если выходной сигнал внешнего регулятора выходит за пределы [дг рн, х рв ], то задание регулятору соотношения остается на предельно допустимом значенииу (т. е.Yh или Yb)-Регулирование уровня. Уровень является косвенным показателем гидродинамического равновесия в аппарате. Постоянство уровня свидетельствует о соблюдении материального баланса, когда приток жидкости равен стоку, и скорость изменения уровня равна нулю. Следует отметить, что «приток» и «сток» здесь являются обобщенными понятиями. В простейшем случае, когда в аппарате не происходят фазовые превращения (сборники, промежуточные емкости, жидкофазные реакторы), приток равен расходу жидкости, подаваемой в аппарат, а сток - расходу жидкости, отводимой из аппарата. В более сложных процессах, сопровождающихся изменением фазового состояния веществ, уровень является характеристикой не только гидравлических, но и тепловых и массообменных процессов, а приток и сток учитывают фазовые превращения веществ. Такие процессы протекают в испарителях, конденсаторах, выпарных установках,ректификационных колоннах и т. п.

В общем случае изменение уровня описывается уравнением вида

(2.1)

где S- площадь горизонтального (свободного) сечения аппарата;G B x,

В зависимости от требуемой точности поддержания уровня применяют один из следующих двух способов регулирования:

Рис. 2.6. Пример схемы позиционного регулирования уровня:

/ - насос; 2 - аппарат; 3 - сигнализатор уровня;4 - регулятор уровня;5,6 - регулирующие клапаны

1) позиционное регулирование, при котором уровень в аппарате поддерживается в заданных, достаточно широких пределах: L „^ L ^. L B . Такие системы регулирования устанавливают на сборниках жидкости или промежуточных емкостях

Рис. 2.7. Схемы непрерывного регулирования уровня:

а - регулирование «на притоке»;б - регулирование «на стоке»;в - каскадная АСР; / - регулятор уровня;2 - регулирующий клапан;3, 4 - измерители расхода; 5 - регулятор соотношения

(рис. 2.6). При достижении предельного значения уровня происходит автоматическое переключение потока на запасную емкость;

2) непрерывное регулирование, при котором обеспечивается стабилизация уровня на заданном значении, т. е. L = L °.

Особенно высокие требования предъявляются к точности регулирования уровня в теплообменных аппаратах, в которых уровень жидкости существенно влияет на тепловые процессы. Например, в паровых теплообменниках уровень конденсата определяет фактическую поверхность теплообмена. В таких АСР для регулирования уровня без статической погрешности применяют ПИ-регуляторы. П-регуляторы используют лишь в тех случаях, когда не требуется высокое качество регулирования и возмущения в системе не имеют постоянной составляющей, которая может привести к накоплению статической погрешности.

При отсутствии фазовых превращений в аппарате уровень в нем регулируют одним из трех способов:

изменением расхода жидкости на входе в аппарат (регулирование «на притоке», рис. 2.7, а) ;

изменением расхода жидкости на выходе из аппарата (регулирование «на стоке», рис. 2.7,6);

регулированием соотношения расходов жидкости на входе в аппарат и выходе из него с коррекцией по уровню (каскадная АСР, рис. 2.7,в); отключение корректирующего контура может привести к накоплению ошибки при регулировании уровня, так как вследствие неизбежных погрешностей в настройке регулятора соотношения расходы жидкости на входе и выходе аппарата не будут точно равны друг другу и вследствие интегрирующих свойств объекта [см. уравнение (2.1)] уровень в аппарате будет непрерывно нарастать (или убывать).

В случае, когда гидродинамические процессы в аппарате сопровождаются фазовыми превращениями, можно регулировать уровень изменением подачи теплоносителя (или хладоагента), как это показано на рис. 2.8. В таких аппаратах уровень взаимосвязан с другими параметрами (например, давлением), поэтому выбор способа регулирования уровня в каждом конкрет-

Рис. 2.8. Схема регулирования уровня в испарителе:

1 - испаритель;2 - регулятор уровня;3 - регулирующий клапан

Рис. 2.9. Регулирование уровня кипящего слоя:

а - отводом зернистого материала; б - изменением расхода газа;1 - аппарат с кипящим слоем; 2 - регулятор уровня;3 - регулирующий орган

ном случае должен выполняться с учетом остальных контуров регулирования.

Особое место в системах регулирования уровня занимают АСР уровня в аппаратах с кипящим (псевдоожиженным) слоем зернистого материала. Устойчивое поддержание уровня кипящего слоя возможно в достаточно узких пределах соотношения расхода газа и массы слоя. При значительных колебаниях расхода газа (или расхода зернистого материала) наступает режим уноса слоя или его оседания. Поэтому к точности регулирования уровня кипящего слоя предъявляют особенно высокие требования. В качестве регулирующих воздействий используют расход зернистого материала на входе или выходе аппарата (рис. 2.9, а) или расход газа на ожижение слоя (рис. 2.9, б ).\

Регулирование давления. Давление является показателем соотношения расходов газовой фазы на входе в аппарат и выходе из него. Постоянство давления свидетельствует о соблюдении материального баланса по газовой фазе. Обычно давление (или разрежение) в технологической установке стабилизируют в каком-либо одном аппарате, а по всей системе оно устанавливается в соответствии с гидравлическим сопротивлением линии и аппаратов. Например, в многокорпусной выпарной установке (рис. 2.10) стабилизируют разрежение в последнем выпарном аппарате. В остальных аппаратах при отсутствии возмущений устанавливается разрежение, которое определяется из условий материального и теплового балансов с учетом гидравлического сопротивления технологической линии.

В тех случаях, когда давление существенно влияет на кинетику процесса, предусматривается система стабилизации давления в отдельных аппаратах. Примером может служить процесс ректификации, для которого кривая фазового равновесия существенно зависит от давления. Кроме того, при регулировании процесса бинарной ректификации часто в качестве косвенного

показателя состава смеси используют ее температуру кипения, которая однозначно связана с составом лишь при постоянном давлении. Поэтому в продуктовых ректификационных колоннах обычно предусматривают специальные системы стабилизации давления (рис. 2.11).

Уравнение материального баланса аппарата по газовой фазе записывается в виде:

где V - объем аппарата; 0 В х и (Звых - расход газа соответственно подаваемого в аппарат и отводимого из него;G 0 e- масса газа, образующегося (или расходуемого)" в аппарате в единицу времени.

Как видно из сравнения уравнений (2.1) и (2.2), способы регулирования давления аналогичны способам регулирования уровня. В рассмотренных выше примерах АСР давления регулирующими воздействиями выбраны расход несконденсировав-шихся газов, отводимых из верхней части колонны (т. е. G Bb ix, рис. 2.11) и расход охлаждающей воды в барометрический конденсатор, который влияет на скорость конденсации вторичного пара (т. е. наG 0 6, рис. 2.10).

Особое место среди АСР давления занимают системы регулирования перепада давления в аппарате, характеризующего гидродинамический режим, который существенно влияет на протекание процесса. Примерами таких аппаратов могут служить насадочные колонны (рис. 2.12,а),аппараты с кипящим слоем (рис. 2.12,6) и др.

Регулирование температуры. Температура является показателем термодинамического состояния системы и используется как вы-

Рис. 2.10. Регулирование разрежения в многокорпусной выпарной установке:

1,2 - выпарные аппараты;3 - барометрический конденсатор;4 - регулятор разрежения;5 - регулирующий клапан

Рис. 2.11. АСР давления в ректификационной колонне:

/ - колонна; 2 - дефлегматор;3 - флегмовая емкость;4 - регулятор давления; 5 - регулирующий клапан

Рис. 2.12. Схема регулирования перепада давления: а - в колонном аппарате с насадкой; б - в аппарате с кипящим слоем; / - аппарат;2 - регулятор перепада давления;3 - регулирующий клапан

ходная координата при регулировании тепловых процессов. Динамические характеристики объектов в системах регулирования температуры зависят от физико-химических параметров процесса и конструкции аппарата. Поэтому общие рекомендации по выбору АСР температуры сформулировать невозможно, и требуется анализ каждого конкретного процесса.

К общим особенностям АСР температуры можно отнести значительную инерционность тепловых процессов и промышленных датчиков температуры. Поэтому одна из основных задач при проектировании АСР температуры - уменьшение инерционности датчиков.

Рассмотрим, например, динамические характеристики термометра взащитном чехле (рис. 2.13, а). Структурную схему термометра можно представить как последовательное соединение четырех тепловых емкостей (рис. 2.13,6): защитного чехла 1, воздушной прослойки2, стенки термометра3 и собственно рабочей жидкости4. Если пренебречь тепловым сопротивлением каждого слоя, то все элементы можно аппроксимировать апериодическими звеньями 1-го порядка, уравнения которых имеют вид:

М/ - масса соответственно чехла, воздушной прослойки, стенки и жидкости;c P j - удельные теплоемкости; ал,а.ц - коэффициенты теплоотдачи; ^л.Гц - поверхности теплоотдачи.

Как видно из уравнений (2.3), основными направлениями уменьшения инерционности датчиков температуры являются:

повышение коэффициентов теплоотдачи от среды к чехлу в результате правильного выбора места установки датчика; при этом скорость движения среды должна быть максимальной; при прочих равных условиях более прдпочтительна установка термометров в жидкой фазе (по сравнению с газообразной), в конденсирующемся паре (по сравнению с конденсатом) и т. п.;

уменьшение теплового сопротивления и тепловой емкости защитного чехла в результате выбора его материала и толщины;

уменьшение постоянной времени воздушной прослойки за счет применения наполнителей (жидкость, металлическая стружка); у термоэлектрических преобразователей (термопар) рабочий спай припаивается к защитному чехлу;

выбор типа первичного преобразователя; например, при выборе термометра сопротивления, термопары или манометрического термометра необходимо учитывать, что наименьшей инерционностью обладает термопара в малоинерционном исполнении, наибольшей - манометрический термометр. Регулирование рН. Системы регулирования рН можно подразделить на два типа, в зависимости от требуемой точности регулирования. Если скорость изменения рН невелика, а допустимые пределы ее колебаний достаточно широки, применяют позиционные системы регулирования, поддерживающие рН в заданных пределах: pH H sgpH

Общей особенностью объектов при регулировании рН является нелинейность их статических характеристик, связанная с нелинейной зависимостью рН от расходов реагентов . На рис. 2.14 показана кривая титрования, характеризующая за-


Рис. 2.13. Принципиальная (а) и структурная (б) схемы термометра:1 - защитный чехол;2 - воздушная прослойка; 3 -стенка термометра;4 - рабочая жидкость

Рис. 2.14. Зависимость величины рН от расхода реагента

висимость рН от расхода кислоты G \. Для различных заданных значений рН на этой кривой можно выделить три характерных участка: первый (средний), относящийся к почти нейтральным средам, близок к линейному и характеризуется очень большим коэффициентом усиления; второй и третий участки, относящиеся к сильно щелочным или кислым средам, обладают наибольшей кривизной.

На первом участке объект по своей статической характеристике приближается к релейному элементу. Практически это означает, что при расчете линейной АСР коэффициент усиления регулятора настолько мал, что выходит за пределы рабочих настроек промышленных регуляторов. Так как собственно реакция нейтрализации проходит практически мгновенно, динамические характеристики аппаратов определяются процессом смешения и в аппаратах с перемешивающими устройствами достаточно точно описываются дифференциальными уравнениями 1-го порядка с запаздыванием. При этом чем меньше постоянная времени аппарата, тем сложнее обеспечить устойчивое регулирование процесса, так как начинают сказываться инерционность приборов и регулятора и запаздывание в импульсных линиях.

Для обеспечения устойчивого регулирования рН применяют специальные системы. На рис. 2.15, а показан пример системы регулирования рН с двумя регулирующими клапанами. Клапан1, обладающий большим условным диаметром, служит для грубого регулирования расхода и настроен на максимальный диапазон изменения выходного сигнала регулятора рн , х рв ] (рис. 2.15,6, кривая /). Клапан2, служащий для точного регулирования, рассчитан на меньшую пропускную способность и настроен таким образом, что прих р р °+<А он полностью открыт, а приx p = x v ° -А - полностью закрыт (кривая 2). Таким

Рис. 2.15. Пример системы регулирования рН:

а - функциональная схема; б - статические характеристики клапанов;1, 2 - регулирующий клапан;3 - регулятор рН

Рис. 2.16. Кусочно-линейная аппроксимация статической характеристики объекта при регулировании рН.

Рис. 2.17. Структурная схема системы регулирования рН с двумя регуляторами

образом, при незначительном отклонении рН от рН°, когда Хр° -Л^АГр^лгр 0 +)А, степень открытия клапана / практически не изменяется, и регулирование ведется клапаном2. Если р -х р °| >Л, клапан2 остается в крайнем положении, и регулирование осуществляется клапаном /.

На втором и третьем участках статической характеристики (рис. 2.14) ее линейная аппроксимация справедлива лишь в очень узком диапазоне изменения рН, и в реальных условиях ошибка регулирования за счет линеаризации может оказаться недопустимо большой. В этом случае более точные результаты дает кусочно-линейна» аппроксимация (рис. 2.16), при которой линеаризованный объект имеет переменный коэффициент усиления:

Да рис. 2.17 приведена структурная схема такой АСР. В зависимости от рассогласования ЛрН, включается в работу один из регуляторов, настроенный на соответствующий коэффициент усиления объекта.

Регулирование параметров состава и качества. В процессах химической технологии большую роль играет точное поддержание качественных параметров продуктов (состава газовой смеси, концентрации того или иного вещества в потоке и т. п.). Эти параметры характеризуются сложностью измерения. В ряде случаев для измерения состава используют хроматографический метод. При этом результат измерения бывает известен в дискретные моменты времени, отстоящие друг от друга на продолжительность цикла работы хроматографа. Аналогичная ситуация возникает и тогда, когда единственным способом измерения качества продукции является в той или иной степени механизированный анализ проб.

Рис. 2.18. Блок-схема АСР параметра качества продукта:

1 - объект;2 - анализатор качества;3 - вычислительное устройство;4 - регулятор

Дискретность измерения может привести к значительным дополнительным запаздываниям и снижению динамической точности регулирования. Чтобы уменьшить нежелательное влияние задержки измерения, используют модель связи качества продукта с переменными, которые измеряют непрерывно. Эта модель может быть достаточно простой; коэффициенты модели уточняют, сравнивая рассчитанное по ней и найденное в результате очередного анализа значение качественного параметра (алгоритмы такого уточнения изложены в разд. 5.8). Таким образом, одним из рациональных способов регулирования качества является регулирование по косвенному вычисляемому показателю с уточнением алгоритма его расчета по данным прямых анализов. В промежутках между измерениями показатель качества продукта может быть рассчитан экстраполяцией ранее измеренных значений.

Блок-схема системы регулирования параметра качества продукта показана на рис. 2.18. Вычислительное устройство в общем случае непрерывно рассчитывает оценку показателя качества x (t ) по формуле

в которой первое слагаемое отражает зависимость х от непрерывно измеряемых переменных процесса или величин, динамически с ними связанных, например производных, а второе - от выхода экстраполирующего фильтра.

Для повышения точности регулирования состава и качества применяют приборы с устройством автоматической калибровки. В этом случае система управления производит периодическую калибровку анализаторов состава, корректируя их характеристики.

Основные понятия и определения..................................................................................................... 4

1. Структурные схемы объекта регулирования.......................................................................... 13

2. Последовательность выбора системы автоматизации........................................................... 15

3. Регулирование основных технологических параметров....................................................... 17

3.1. Регулирование расхода, соотношения расходов............................................................ 17

3.2. Регулирование уровня....................................................................................................... 19

3.3. Регулирование давления................................................................................................... 21

3.4. Регулирование температуры............................................................................................. 22

3.5. Регулирование рН.............................................................................................................. 24

3.6. Регулирование параметров состава и качества.............................................................. 26

Автоматизация основных процессов химической технологии.................................................... 27

4. Автоматизация гидромеханических процессов..................................................................... 27

4.1. Автоматизация процессов перемещения жидкостей и газов........................................ 27

4.2. Автоматизация разделения и очистки неоднородных систем...................................... 31

5. Автоматизация тепловых процессов....................................................................................... 32

5.1. Регулирование теплообменников смешения.................................................................. 33

5.2. Регулирование поверхностных теплообменников........................................................ 38

5.3. Автоматизация трубчатых печей..................................................................................... 42

6. Автоматизация массообменных процессов............................................................................ 45

6.1. Автоматизация процесса ректификации......................................................................... 46

6.2. Автоматизация процесса абсорбции................................................................................ 53

6.3. Автоматизация процесса абсорбции - десорбции.......................................................... 57

6.4. Автоматизация процесса выпаривания........................................................................... 59

6.5. Автоматизация процесса экстракции.............................................................................. 64

6.6. Автоматизация процесса сушки....................................................................................... 66

6.6.1. Процесс сушки в барабанной сушилке.................................................................... 66

6.6.2. Автоматизация сушилок с кипящим слоем............................................................. 69

7. Автоматизация реакторных процессов................................................................................... 71

Регулирование технологических реакторов............................................................................... 71

Контрольные вопросы по дисциплине для подготовки к экзамену............................................ 74

Литература.......................................................................................................................................... 76


Основные понятия и определения

Автоматизация - это техническая дисциплина, которая занимается изучением, разра- боткой и созданием автоматических устройств и механизмов (т.е. работает без непосредствен- ного вмешательства человека).

Автоматизация - это этап машинного производства, характеризующийся передачей функции управления от человека к автоматическим устройствам (техническая энциклопедия).

ТОУ - технологический объект управления - совокупность технологического оборудо- вания и реализуемого на нем технологического процесса.

АСУ - автоматизированная система управления это человеко-машинная система, обес- печивающая автоматизированный сбор и обработку информации, необходимую для опти- мального управления в различных сферах человеческой деятельности.

Развитие химической технологии и других отраслей промышленности, где преоблада- ют непрерывные технологические процессы (нефтехимическая, нефтеперерабатывающая, ме- таллургическая и др.) потребовало создания более совершенных систем управления, чем ло- кальные АСР. Эти принципиально новые системы получили название автоматизированных систем управления технологическими процессами - АСУ ТП.

Создание АСУ ТП стало возможным благодаря созданию ЭВМ второго и третьего по- колений, увеличению их вычислительных ресурсов и надёжности.

АСУ ТП - называют АСУ для выработки и реализации управляющих воздействий на ТОУ в соответствии с принятым критерием управления - показателем, характеризующим ка- чество работы ТОУ и принимающим определенные значения в зависимости от используемых управляющих воздействий.

АТК - совокупность совместно функционирующих ТОУ и АСУ ТП образует автомати- зированный технологический комплекс.

АСУ ТП отличается от локальных САР:

Более совершенной организацией потоков информации;

Практически полной автоматизацией процессов получения, обработки и представления информации;

Возможностью активного диалога оперативного персонала с УВМ в процессе управле- ния для выработки наиболее эффективных решений;

Более высокой степенью автоматизации функций управления, включая пуск и останов- ку производства.

От систем управления автоматическими производствами типа цехов и заводов- автоматов (высшая ступень автоматизации) АСУ ТП отличается значительной степенью уча- стия человека в процессах управления.


Переход от АСУ ТП к полно- стью автоматическим производствам сдерживается:

Несовершенством технологи- ческих процессов (наличие не- механизированных технологи- ческих операций;

Низкой надёжностью техноло- гического оборудования; не- достаточной надёжностью средств автоматизации и вы- числительной техники;

Трудностями математического описания задач, решаемых че- ловеком в АСУ ТП и т.д.) Глобальная цель управления

ТОУ с помощью АСУ ТП состоит в поддержании экстремального значе- ния критерия управления при выпол- нении всех условий, определяющих


Рис. 1. Типовая функциональная структура АСУ ТП.

1 – первичная обработка информации (И); 2 – обнаружение от- клонений технологических параметров и показателей состояния оборудования от установленных значений (И); 3 – расчет не измеряемых величин и показателей (И); 4 – подготовка инфор- мации и выполнение процедур обмена со смежными и другими АСУ (И); 5 – оперативное и (или) по вызову отображение и ре- гистрация информации; 6 – определение рационального режима технологического процесса (У); 7 – формирование управляю- щих воздействий, реализующих выбранный режим.


множество допустимых значений управляющих воздействий.

В большинстве случаев глобальная цель разбивается на ряд частных целей; для дости- жения каждой из них требуется решение более простой задачи управления.

Функцией АСУ ТП называют действия системы, направленные на достижение одной из частных целей управления.

Частные цели управления, как и реализующие их функции, находятся в определенном соподчинении, образуя функциональную структуру АСУ ТП.

Функции АСУ ТП:

1. Информационные - сбор, преобразование и хранение информации о состоянии ТОУ; представление этой информации оперативному персоналу или передача ее для после- дующей обработки.

2. Первичная обработка информации о текущем состоянии ТОУ.

3. Обнаружение отклонений технологических параметров и показателей состояния обо- рудования от установленных значений.

4. Расчет значений не измеряемых величин и показателей (косвенные измерения, расчет ТЭП, прогнозирование);

5. Оперативное отображение и регистрация информации.


6. Обмен информацией с оперативным персоналом.

7. Обмен информацией со смежными и вышестоящими АСУ. Управляющие функции обес-

печивают поддержание экстремаль- ных значения критерия управления в условиях изменяющейся производст- венной ситуации, они делятся на две группы:

первая – определение опти- мальных управляющих воздействий;

вторая – реализация этого ре- жима путем формирования управ- ляющих воздействий на ТОУ (стаби- лизация, программное управление; программно-логическое управление).

Вспомогательные функции


обеспечивают решение внутрисис- темных задач.

Для реализации функций АСУ ТП необходимы:

Техническое обеспечение;

Программное;

Информационное;

Организационное;

Оперативный персонал.


Рис. 2. Техническая структура КТС АСУ ТП для ра- боты в супервизорном режиме.

Техническая структура КТС АСУ ТП в режиме непосредствен- ного цифрового управления:

ИИ – источник информации; УСО – устройство связи с объ- ектом; ВК – вычислительный комплекс; УСОП – устройство связи с оперативным персоналом; ОП – оперативный персо- нал; ТСА – технические средства автоматизации для реали- зации функций локальных систем; ИУ – исполнительные устройства.


Техническое обеспечение АСУ ТП составляет комплекс технических средств (КТС),

Средства получения информации о текущем состоянии ТОУ;

УВК (управляемый вычислительный комплекс);

Технические средства для реализации функций локальных систем автоматизации;

Исполнительные устройства, непосредственно реализующие управляющие воздействия на ТОУ.

В комплекс ТС многих АСУ ТП входят механические средства автоматизации из со- става электрической ветви ГСП.

Специфическим компонентом КТС является УВК, в состав которого входят собственно вычислительный комплекс (ВК), устройства связи ВК с объектом (УСО) и с оперативным пер- соналом.


Первым и до сих пор распространенным типом технических структур АСУ ТП является централизованная. В системах с централизованной структурой вся информация, необходимая для управления АТК, поступает в единый центр - операторский пункт, где установлены прак- тически все технические средства АСУ ТП, за исключением источников информации и ис- полнительных устройств. Такая техническая структура наиболее проста и имеет ряд преиму- ществ.

Недостатками её являются:

Необходимость избыточного числа элементов АСУ ТП для обеспечения высокой на- дежности;

Большие затраты кабеля.

Такие системы целесообразны для сравнительно небольших по мощности и компакт- ных АТК.

В связи с внедрением микро- процессорной техники всё большее распространение получает распреде- лённая техническая структура АСУ ТП, т.е. расчленённая на ряд авто- номных подсистем - локальных тех- нологических станций управления, территориально распределённых по технологическим участкам управле- ния. Каждая локальная подсистема представляет собой однотипно вы-


полненную централизованную струк- туру, ядром которой является управ- ляющая микро-ЭВМ.

Локальные подсистемы через


ОП
Рис. 3. Техническая структура КТС АСУ ТП для ра- боты в режиме непосредственного цифрового управ- ления.

свои микро-ЭВМ объединены в единую систему сетью передачи данных.

К сети подключается необходимое для управления АТК число терминалов для опера- тивного персонала.

Программное обеспечение АСУ ТП связывает все элементы распределённой техниче- ской структуры в единое целое, обладающее рядом достоинств:

Возможностью получения высоких показателей надёжности за счёт расщепления АСУ ТП на семейство сравнительно небольших и менее сложных автономных подсистем и дополнительного резервирования каждой из этих подсистем через сеть;

Применение более надежных средств микроэлектронной вычислительной техники;


Большой гибкостью при композиции и модернизации технического и программного обеспечения и т.д.

Большинство функций АСУ ТП реализуются программно, поэтому важнейшим компо- нентом АСУ ТП является её программное обеспечение (ПО), т.е. совокупность программ, обеспечивающих реализацию функций АСУ ТП.

Программное обеспечение АСУ ТП делится:

Специальное.

Общее ПО поставляется в комплекте со средствами вычислительной техники. Специальное ПО разрабатывается при создании конкретной АСУ ТП и включает про-

граммы, реализующие её информационные и управляющие функции.

Программное обеспечение создается на базе математического обеспечения (МО). МО – совокупность математических методов, моделей и алгоритмов для решения задач и обработки информации с применением вычислительной техники.

Для реализации информационных и управляющих функций АСУ ТП создают специ- альное МО, в состав которого входят:

Алгоритм сбора, обработки и представления информации;

Алгоритмы управления с математическими моделями соответствующих объектов управления;

Алгоритмы локальной автоматизации.

Все взаимодействия как внутри АСУ ТП, так и с внешней средой представляют собой различные формы информационного обмена, необходимы массивы данных и документов, ко- торые обеспечивают при эксплуатации АСУ ТП выполнение всех её функций.

Правила обмена информацией и сама информация, циркулирующая в АСУ ТП, обра- зуют информационное обеспечение АСУ ТП.

Организационное обеспечение АСУ ТП представляет собой совокупность описаний функциональной, технической и организационной структур системы, инструкций и регламен- тов для оперативного персонала, обеспечивающую заданное функционирование АСУ ТП.

Оперативный персонал АСУ ТП состоит из технологов-операторов, осуществляющих управление ТОУ, эксплутационного персонала, обеспечивающего функционирование АСУ ТП (операторы ЭВМ, программисты, персонал по обслуживанию аппаратуры КТС).

Оперативный персонал АСУ ТП может работать в контуре управления или вне него. При работе в контуре управления ОП реализует все функции управления или часть их,


Если оперативный персонал работает вне контура управления, он задаст АСУ ТП ре- жим работы и осуществляет контроль за его соблюдением. В этом случае, зависимости от со- става КТС, АСУ ТП может функционировать в двух режимах:

Комбинированном (супервизорном);

В режиме непосредственного цифрового управления, при котором УВК непосредствен- но воздействует на исполнительные устройства, изменяя управляющие воздействия на ТОУ.

Создание АСУ ТП включает пять стадий:

1. техническое задание (ТЗ);

2. технический проект (ТП);

3. рабочий проект (РП);

4. внедрение АСУ ТП;

5. анализ её функционирования.

На стадии ТЗ основным этапом являются предпроектные научно-исследовательские работы (НИР), обычно выполняемые научно-исследовательской организацией совместно с предприятием-заказчиком. Главная задача предпроектных НИР – изучение технологического процесса как объекта управления. При этом определяют цель и критерии качества функцио- нирования ТОУ, технико-экономические показатели объекта-прототипа, их связи с техноло- гическими показателя-ми; структуру ТОУ, т. е. входные воздействия (в том числе контроли- руемые и неконтролируемые возмущающие воздействия, и управляющие воздействия), вы- ходные координаты и связи между ними; структуру математических моделей статики и дина- мики, значения параметров и их стабильность (степень стационарности ТОУ); статистические характеристики возмущающих воздействий.

Наиболее трудоемкая задача на этапе предпроектных НИР – построение математиче- ских моделей ТОУ, которые в дальнейшем используют при синтезе АСУ ТП. При синтезе ло- кальных АСР обычно используют линеаризованные модели динамики в виде линейных диф- ференциальных уравнений 1 – 2-го порядка с запаздыванием, которые получают обработкой экспериментальных или расчетных переходных функций по разным каналам воздействия. Для решения задач оптимального управления статическими режимами используют конечные со- отношения, полученные из уравнений материального и энергетического баланса ТОУ, или уравнения регрессии. В задачах оптимального управления динамическими режимами исполь- зуют нелинейные дифференциальные уравнения, полученные из уравнений материального и энергетического баланса, записанных в дифференциальной форме.

При выполнении предпроектных НИР применяют методы анализа систем автоматиче- ского управления, изучаемые в дисциплине «Теория автоматического управления», и методы построения математических моделей, которые излагаются в курсе «Моделирование на ЭВМ объектов и систем управления».


Результаты, полученные на этапе предпроектных НИР, используют на этапе эскизной разработки АСУ ТП , в ходе которого выполняются следующие работы:

Выбор критерия и математическая постановка задачи оптимального управления ТОУ, ее декомпозиция (при необходимости) и выбор методов решения глобальной и локаль- ных задач оптимального управления, на основе которых в дальнейшем строят алгоритм оптимального управления;

Разработка функциональной и алгоритмической структуры АСУ ТП;

Определение объема информации о состоянии ТОУ и ресурсов ВК (быстродействие, объем запоминающих устройств), необходимых для реализации всех функций АСУ ТП;

Предварительный выбор КТС, прежде всего УВК;

Предварительный расчет технико-экономической эффективности АСУ ТП. Центральное место среди работ этой стадии занимает математическая постановка зада-

чи оптимального управления ТОУ.

Остальные задачи данного этапа (кроме расчета технико-экономической эффективно- сти) относятся к системотехническому синтезу АСУ ТП, при выполнении которого широко применяют метод аналогий. Накопленный опыт разработки АСУ ТП для ТОУ различной сте- пени сложности позволяет перевести разработку ряда функций и алгоритмов из категории на- учных работ в категорию технических, выполняемых проектным путем. К их числу относятся многие информационные функции (первичная обработка исходной информации, расчет ТЭП, интегрирование и усреднение и др.), а также типовые функции локальных систем автоматиза- ции, реализуемые в АСУ ТП программным способом (сигнализация, противоаварийная бло- кировка, регулирование с использованием типовых законов при НЦУ и др.).

Завершающим этапом эскизной разработки АСУ ТП является предварительный расчет технико-экономической эффективности разрабатываемой системы. Выполняют его специа- листы по экономике, однако исходные данные для них должны подготовить специалисты по автоматизации, поэтому рассмотрим некоторые узловые моменты.

Основным показателем экономической эффективности АСУ ТП служит годовой эко- номический эффект от ее внедрения, который рассчитывают по формуле

Э = (С 2 - S 2) - (C 1 - S 1) - (K 2 - K 1) ,

где С1 и С2 – годовые объемы реализации продукции в оптовых ценах до и после внедрения АСУ ТП, тыс. руб.; S1 и S2 – себестоимость продукции до и после внедрения системы, тыс. руб; K1 и K2 – капитальные затраты на АТК до и после ввода в действие АСУ ТП, тыс. руб; – нормативный отраслевой коэффициент эффективности капитальных вложений в средства автоматизации и вычислительную технику, руб/руб.

Основными источниками экономической эффективности систем автоматизации хими- ко-технологических процессов обычно являются прирост объема реализации продукции и (или) снижение ее себестоимости. Улучшение этих экономических показателей чаще всего достигается за счет уменьшения расхода сырья, материалов и энергии на единицу продукции благодаря более точному поддержанию оптимального технологического режима, повышению


качества продукции (сортности и, соответственно, цены), увеличению производительности оборудования за счет сокращения потерь рабочего времени из-за неплановых остановок про- цесса, вызванных ошибками управления и др. На этапе предпроектных НИР должны быть вы- явлены резервы производства, которые могут быть использованы благодаря применению сис- темы автоматизации.

Например, если при использовании локальной системы автоматизации технологический агрегат простаивает в среднем 20 % планового рабочего времени, из которых 1/4 вызвана ошибками оперативного персонала из-за не- своевременного обнаружения пред аварийных ситуаций, то применение АСУ ТП, реализующей функции прогно- за и анализа производственных ситуаций, может устранить эти потери. Тогда объем выпускаемой продукции в натуральном исчислении возрастет на 5 %, что приведет к увеличению объема реализации и снижению себе- стоимости продукции.

Накопленный опыт автоматизации химических производств показал, что резервы эко- номической эффективности, которые могут быть использованы благодаря автоматизации тех- нологических процессов, обычно составляют от 0,5 до 6 %. При этом, чем лучше отработана технология, тем, как правило, меньше резервы.

Однако не все выявленные (потенциальные) резервы экономической эффективности могут быть использованы после внедрения АСУ ТП. Фактическая эффективность оказывается меньше потенциальной из-за не идеальности АСУ ТП, которая проявляется, в частности, в не- полной адекватности математической модели ТОУ, по которой рассчитывается оптимальный режим, в погрешностях измерения выходных координат объекта, которые также влияют на точность определения оптимального режима, в отказах элементов технического и программ- ного обеспечения, из-за которых снижается качество выполнения отдельных функций и АСУ ТП в целом и т. д. Реальный эффект обычно составляет от 25 до 75 % потенциального, причем, как правило, чем больше потенциальный эффект, тем в меньшей степени он реализуется. Ос- новным показателем технико-экономической эффективности АСУ ТП является срок окупае- мости системы, который определяется по формуле



= K 2 - K 1 .

(C 2 - S 2) - (C 1 - S 1)


Он должен быть не больше нормативного, который для химической промышленности равен 3

Завершающей стадией первого этапа создания АСУ ТП является разработка техниче- ского задания на проектирование системы, которое должно включать полный перечень функ- ций, технико-экономическое обоснование целесообразности разработки АСУ ТП, перечень и объем НИР и план-график создания системы.

При разработке нетиповых АСУ ТП на первый этап приходится примерно 25 % общей трудоемкости, в том числе на предпроектные НИР–15 %. При тиражировании АСУ ТП первая стадия может быть исключена или значительно уменьшена.

Следующим этапом создания нетиповой АСУ ТП является разработка технического проекта , в ходе которой принимаются основные технические решения, реализующие требо-


вания технического задания. Работы на этом этапе выполняют научно-исследовательская и проектная организации.

Основным содержанием НИР является развитие и углубление предпроектных НИР, в частности, уточнение математических моделей и постановок задач оптимального управления, проверка с помощью имитационного моделирования на ЭВМ работоспособности и эффектив- ности алгоритмов, выбранных для реализации важнейших информационных и управляющих функций АСУ ТП. Уточняются функциональная и алгоритмическая структуры системы, про- рабатываются информационные связи между функциями и алгоритмами, разрабатывается ор- ганизационная структура АСУ ТП.

Очень важным и трудоемким этапом на стадии ТП является разработка специального программного обеспечения системы. По имеющимся оценкам, трудоемкость создания специ- ального ПО была близка к общему объему предпроектных НИР и составляла 15 % от общих трудозатрат на создание АСУ ТП.

На стадии ТП окончательно выбирают состав КТС и выполняют расчеты по оценке на- дежности реализации важнейших функций АСУ ТП и системы в целом. Общие затраты труда на проектирование составляют примерно 30 % от затрат на создание АСУ ТП.

На стадии внедрения АСУ ТП производятся монтажные и пуско-наладочные работы, последовательность и содержание которых изучаются в соответствующем курсе. Трудозатра- ты на этой стадии составляют около 30% от общих затрат на систему.

При разработке головных образцов АСУ ТП, подлежащих в дальнейшем тиражирова- нию на однотипных ТОУ, важное значение имеет анализ функционирования системы, в ходе которого проверяют эффективность решений, принятых при ее создании, и определяют фак- тическую технико-экономическую эффективность АСУ ТП.

Любое химическое производство представляет последовательность трёх основных опе-

1. подготовка сырья;

2. собственно химическое превращение;

3. выделение целевых продуктов.

Эта последовательность операций включается в единую сложную химико- технологическую систему (ХТС).

Современное химическое предприятие, завод или комбинат как система большого мас- штаба, состоит из большого количества взаимосвязанных подсистем, между которыми суще- ствуют отношения соподчинённости в виде иерархической структуры с тремя основными сту- пенями.

Каждая подсистема химического предприятия представляет собой совокупность хими- ко-технологической системы и системы автоматического управления, они действуют как еди- ное целое для получения заданного продукта или полупродукта.


Структурные схемы объекта регулирования


(u )⎨


(z )


Один из этапов проектирования систем регулирования технологиче-

⎫ ских процессов – выбор структуры

метров регуляторов. И структура сис-


Рис. 1.1. Структурная схема объекта регулирования.

го процесса как объекта регулирования.


темы, и параметры регуляторов опре- деляются свойствами технологическо-


Любой технологический процесс как объект регулирования (рис. 1.1) характеризуется следующими основными группами переменных:

1. Переменные, характеризующие состояние процесса (совокупность их будем обозначать вектором y ). Эти переменные в процессе регулирования необходимо поддерживать на заданном уровне или изменять по заданному закону. Точность стабилизации перемен- ных состояния может быть различной, в зависимости от требований, диктуемых техно- логией, и возможностей системы регулирования. Как правило, переменные, входящие в вектор y , измеряют непосредственно, но иногда их можно вычислить, используя мо- дель объекта по другим непосредственно измеряемым переменным. Вектор y часто на- зывают вектором регулируемых величин.

2. Переменные, изменением которых система регулирования может воздействовать на объект с целью управления. Совокупность этих переменных обозначают вектором xp (или u ) регулирующих воздействий. Обычно регулирующими воздействиями служат изменения расходов материальных потоков или потоков энергии.

3. Переменные, изменения которых не связаны с воздействием системы регулирования. Эти изменения отражают влияние на регулируемый объект внешних условий, измене- ния характеристик самого объекта и т. п. Их называют возмущающими воздействиями и обозначают вектором или z . Вектор возмущающих воздействий, в свою очередь, можно разбить на две составляющие – первую можно измерить, а вторую – нельзя. Возможность измерения возмущающего воздействия позволяет ввести в систему регу- лирования дополнительный сигнал, что улучшает возможности системы регулирова- ния.

Например, для изотермического химического реактора непрерывного действия, регу- лируемыми переменными являются температура реакционной смеси, состав потока на выходе из аппарата; регулирующими воздействиями могут быть изменение расхода пара в рубашку реактора, изменение расхода катализатора и расхода реакционной смеси; возмущающими воз- действиями являются изменения состава сырья, давления греющего пара, причем если давле-


ние греющего пара нетрудно измерить, то состав сырья во многих случаях может быть изме- рен с низкой точностью или недостаточно оперативно.

Анализ технологического процесса как объекта автоматического регулирования пред- полагает оценку его статических и динамических свойств по каждому из каналов от любого возможного управляющего воздействия к любому возможному регулируемому параметру, а также оценку аналогичных характеристик по каналам связи регулируемых переменных с со- ставляющими вектора возмущений. В ходе такого анализа необходимо выбрать структуру системы регулирования, т. е. решить, с использованием какого регулирующего воздействия следует управлять тем или иным параметром состояния. В результате во многих случаях (от- нюдь не всегда) удается выделить контуры регулирования для каждой из регулируемых вели- чин, т. е. получить совокупность одноконтурных систем регулирования.

Важным элементом синтеза АСР технологического процесса является расчет однокон- турной системы регулирования. При этом требуется выбрать структуру и найти числовые зна- чения параметров регуляторов. Как правило, используют следующие типовые структуры ре- гулирующих устройств (типовые законы регулирования): пропорциональный (П) регулятор (R(p) = -S1); интегральный (И) регулятор (R(p) = -S0/p); пропорционально-интегральный (ПИ) закон регулирования (R(p) = -S1 – S0/p) и, наконец, пропорционально-интегрально- дифференциальный (ПИД) закон (R(p) = -S1 – S0/p – S2·p). При расчете системы проверяют возможность использования наиболее простого закона регулирования, каждый раз оценивая качество регулирования, и если оно не удовлетворяет требованиям, переходят к более слож- ным законам или используют так называемые схемные методы улучшения качества .

В теории автоматического регулирования разработаны различные методы расчета АСР при заданных критериях качества, а также методы оценки качества переходных процессов при заданных параметрах объекта и регулятора. При этом наряду с точными методами, требую- щими больших затрат времени и ручного труда, разработаны приближенные методы, позво- ляющие сравнительно быстро оценить рабочие параметры регулятора или качество переход- ных процессов (метод Циглера–Никольса для расчета настроек регуляторов; приближенные формулы для оценки интегрального квадратичного критерия и т. п.).

На универсальных станках контроль параметров технологического процесса и станка осуществляется станочником. Он же принимает решения по перестройке оборудования, остановке оборудования, подачи СОЖ и т.п. Поддержание параметров работы оборудования ГПМ (гибкого поизводственного модуля) или автоматической линии осуществляется системой управления (рис. 12.1), которая включает в себя средства контроля и диагностирования, что позволяет при использовании ГПМ отказываться от персонала, непосредственно занятого в технологическом процессе. В системе управления ГПМ используются два источника информации: программа контроля за отклонениями от нормазьного функционирования ГПМ и сведения, поступающие от диагностических устройств, например датчиков обратной связи, измеряющих параметры движения (скорость, координаты) рабочих органов станка и его вспомогательных механизмов или устройств автоматизации.

Рис. 12.1.

Дополнительные средства, предназначенные для выполнения функций оператора, объединены в систему, которая включает в себя контрольно-измерительные и диагностические устройства и приборы (с датчиками для определения величины контролируемых параметров), устройства сбора и первоначальной обработки информации и принятия решений.

В случае замены оператора система должна: следить за работой механизмов ГПМ, ходом рабочего технологического процесса, качеством готовой продукции, выявлять отклонения от нормального

функционирования ГПМ, в том числе такие, которые еще не привели к сбоям и отказам, но в дальнейшем могут стать их причиной; фиксировать сбои и отказы; формировать решения, необходимые для автоматического продолжения работы ГПМ после временной остановки по той или иной причине; при необходимости прерывать работу ГПМ, вызывать наладчика и сообщать ему сведения о причине отклонения от нормального функционирования.

Система поддержания работоспособности станка состоит из нескольких подсистем, работающих совместно или автономно в зависимости от конструктивных решений или условий производства. К ним относятся подсистема контроля за состоянием режущего инструмента, подсистема контроля качества, подсистема контроля за функционированием механизмов станка и подсистема диагностирования механизмов.

Устройства подсистемы контроля за состоянием режущего инструмента могут осуществлять периодический или текущий контроль (рис. 12.2, 12.3). Периодическому контролю подвергается мелкий осевой инструмент (сверла, метчики, концевые фрезы диаметром до 6-8 мм), а также другой инструмент, если текущий контроль его состояния невозможен или нецелесообразен. Для реализации этой процедуры должна быть дана команда на остановку станка.

Контрольное устройство может располагаться в рабочей зоне станка, на узле, несущем инструмент, в инструментальном магазине. Метод измерения обычно прямой, с помощью индуктивных, электромеханических или фотоэлектрических датчиков. На рис. 12.2 приведена схема контроля состояния инструмента 2 на многоцелевом станке 6. После обработки заготовки 1 и отвода инструмента со сверлом входит в контакт щуп 3. При поломке инструмента положение щупа изменяется, в результате чего рычаг 4 поворачивается и перестает воздействовать на электроконтактный датчик (конечный выключатель) 5. По сигналу последнего система управления дает команду на прекращение обработки и замену инструмента дублером или вызов наладчика. В качестве датчика может быть использован датчик типа БВК или датчик Холла, что значительно повышает срок его службы и безотказность работы.

Для контроля состояния режущего инструмента на токарном станке используют метод измерения координаты вершины резца. После

очередного прохода резец перемещается в положение контроля, и в том случае, если отсутствует электрический контакт между вершиной резца и специальной контактной пластиной, подается сигнал на прерывание технологического процесса обработки, с последующей заменой инструмента или вызовом наладчика.


головка; 3- инструмент; 4 -шпиндель станка

Рис. 12.2. Схема контроля режущего инструмента на многоцелевом станке

Рис. 12.3. Размещение измерительной головки на многоцелевом станке: 1 -стол; 2- измерительная

Для контроля инструмента, находящегося в магазине многоцелевого станка, используются телевизионные камеры, выполненные на основе ПЗС матриц, что при удовлетворительном качестве изображения позволяет значительно снизить себестоимость оборудования. Изображение инструмента проецируется на экран, а электронная система последовательно «считывает» изображение и передает в память компьютера. Ввиду низкого качества изображения для его восстановления используются специальные математические методы . Для выявления поломки эталонное изображение, записанное в память компьютера после установки нового инструмента, сравнивается с изображением того же инструмента, но уже работавшего. Времени, необходимого для передачи изображения в память компьютера, достаточно мало, что позволяет проводить измерение без остановки. Независимо от типоразмера инструмента, телекамера всегда находится в одном положении.

Периодический- контроль осуществляется и при необходимости ввода коррекции в управляющую программу в случае замены изношенного или сломанного инструмента дублером. Для этого посредством измерительной головки с датчиком касания на токарных

станках измеряют вылет резцов, на многоцелевых (см. рис. 12.3) - длину и диаметр инструмента.

Измерительная головка занимает определенное положение в рабочей зоне станка: на столе многоцелевого или на передней бабке токарного станка. Такие измерения позволяют осуществлять «привязку» инструмента к системе координат станка, получать информацию о наличии инструмента в шпинделе, контролировать его износ и целостность.

Текущему контролю состояния подвергают осевой инструмент диаметром более 8... 12 мм, а также резцы и фрезы различного вида. Контроль осуществляется в процессе резания; его цель - предупреждение аварийных ситуаций, возникающих при внезапной поломке инструмента. Метод текущего контроля - главным образом косвенный (по крутящему моменту, величине тока двигателя привода главного движения, нагрузке, ускорению и т.д.).

Так, при затуплении инструмента возрастает сила резания, а следовательно, нагрузка (крутящий момент) на двигатель и ток, протекающий через его обмотки. Чувствительность датчика крутящего момента, работающего по такому принципу, зависит от типа двигателя, его мощности и величины передаточного отношения кинематической цепи между двигателем и шпиндельным узлом. Перед началом каждого цикла резания должна измеряться и запоминаться нагрузка холостого хода.

Измерение осевой нагрузки на ходовом винте станка с помощью тензометрического датчика, встроенного в опору винта, позволяет следить за износом инструмента, а также за изменением режима его функционирования в процессе обработки партии заготовок (например, на токарном станке фиксируется изменение 0,2...0,3 мм). Сигнал такого датчика практически свободен от помех. Датчик малоинерционный, т.е. может регистрировать быстропеременные нагрузки, вызванные, например, неравномерным вращением ходового винта в пределах одного оборота.

Для измерения нагрузки, испытываемой револьверными головками, шпиндельными коробками и шпиндельными узлами, в них встраивают тензодатчики, выполненные в виде тензоподшипников. Вращение каждого шарика подшипника под соответствующей нагрузкой вызывает местную деформацию наружного кольца, воспринимаемую тензорезисторами, размещенными в канавке на наружной поверхности кольца. При обработке выходного сигнала датчика следует учитывать его пульсацию, частота которой напрямую связана с частотой вращения шпинделя.

Для измерения нагрузки, действующей на различные узлы, широко используют накладные пьезодатчики (рис. 12.4). Их чувствительность выше, чем у терморезисторов, а полоса пропускания позволяет фиксировать достаточно быстрые изменения нагрузки, действующей на инструмент.

Конструктивные решения, реализуемые при использовании таких датчиков, различны. Например, их встраивают в плиту, подкладываемую

Рис. 12.4. Пьезодатчики для измерения силы резания: а

принципиальная схема измерения; б - ее конструктивная реализация; (1 -упругий элемент; 2 - пьезодатчик; 3 -деталь станка; 4 - контактные поверхности, / - измерительная база датчика; Р, - сила растяжения-сжатия;

Р , - сила прижима

под револьверную головку токарного станка. Для создания

предварительного натяга пьезодатчик должен выступать над поверхностью на 10... 15 мкм.

Износ инструмента можно определять по величине ускорения упругой волны, которая

распространяется от зоны резания к месту установки датчика

(1акселерометра ), фиксирующего

виброакустическую эмиссию. Если инструмент вращается, датчик

устанавливают на столе станка; если

инструмент неподвижен, а вращается заготовка - на резцедержателе или на корпусе револьверной головки. При использовании таких датчиков необходимо для инструментов

каждого вида предварительно определять диапазон частот, в

котором в наиоольшеи степени проявляется связь параметров

виброакустической эмиссии с износом или поломкой инструмента. Следует максимально уменьшать число стыков между заготовкой (или инструментом) и датчиком, так как они оказывают деформирующее действие (ослабляют вибрации), что затрудняет измерения.

Время работы инструмента измеряют таймером, время врезания и резания - датчиком силы или ускорения (фиксируются моменты начала и конца процесса резания), величину составляющих сил резания -датчиками давления в гидростатических подшипниках шпинделя или магнитоупругими датчиками, измеряющими крутящий момент резания, ЭДС - милливольтметром, электрическое сопротивление контакта заготовки с инструментом - омметром.

Следует учитывать, что надежность автоматического контроля состояния режущего инструмента относительно невелика. Причинами могут быть микротрещины в режущей части, неоднородность и местные колебания твердости как обрабатываемого, так и инструментального материала и другие факторы, не поддающиеся определению автоматическими средствами. Поэтому рекомендуется двойной контроль ресурса стойкости инструмента для его своевременной замены и реального состояния инструмента по одному из косвенных параметров (текущий контроль).

При проектировании оборудования датчики, используемые для контроля инструмента, не разрабатывают. Конструктор выбирает серийно выпускаемый или заказывает специальный датчик, характеристики которого соответствуют поставленной задаче, и встраивает его в соответствующую зону станка.

Различные устройства, применяемые в подсистеме контроля состояния режущего инструмента, описаны в литературе . Одним из таких устройств является система Monitor, используемая в ГПМ. Система мониторинга с индикатором контакта (см. рис. 12.5) базируется на информации, поступающей от привода подачи станка и датчиков, регистрирующих перемещение стола и шпиндельного узла. В Monitor вводятся три массива данных: 1) константы, определяющие настройку устройства на конкретном станке, вид контроля и уровень сигнала от датчика (например, тока); 2) анкеты инструмента, содержащие постоянные данные о характеристиках конкретных инструментов; 3) программу контроля, составляемую для каждой обрабатываемой заготовки. Данные вводят с помощью клавиатуры; для отображения информации служит экран дисплея или цифровое табло.


Рис. 12.5. Схема мониторинга с индикатором контакта: 1 - индикатор контакта; 2 - заготовка (деталь); 3 - пульт управления; 4 - устройство ввода информации; 5 - терминалы; 6 - головной компьютер управления; 7 -

счетчик; 8 - импульсные линейки

К устройствам подсистемы контроля качества (рис. 12.6) относятся приборы активного контроля (ПАК), применяемые в условиях массового и крупносерийного производства, и датчики касания, используемые в условиях серийного производства.

При необходимости автоматического контроля размеров, формы и точности установки заготовки и (или) обработанной детали на разных

Рис. 12.6. Типовые схемы управления точностью обработки при использовании ПАК (о) и автоподналадки (6)

стадиях обработки используют ПАК, которые могут быть расположены как в рабочей зоне станка (рис. 12.6, а), так и с автоматическим цикловым управлением. При этом в системе управления станка организованы два потока информации. Первый обеспечивает процесс обработки по заданной программе, второй используется для корректировки уровня настройки. Оператор также участвует в управлении процессом обработки, его задачей является корректировка уровня настройки станков и средств активного контроля. Во втором потоке информации имеются два контура управления: контур / относится к системе автоматического регулирования посредством ПАК или автоподналадчика (рис.

12.6, б), контур II - к системе ручной корректировки процесса обработки с использованием обычного измерительного

прибора. На схемах условно обозначены: ТО - технологическая операция; ИО - исполнительный орган станка; МП -механизм подналадки станка; А

  • - автоподналадчик; Э - эталон; ИП - измерительный прибор; Оп
  • - оператор.

ля шероховатости обработанной

Для размерного контроля заготовки и (или) детали (а в отдельных случаях для контро-поверхности) на станках с ЧПУ и ГПМ служат измерительные головки (ИГ) (иногда

называемые индикаторами контакта). ИГ (рис. 12.7), состоящая из щупа в комплекте с электронным блоком и устройством беспроводной передачи сигналов (обычно на ИК - лучах), располагается в инструментальном магазине, откуда манипулятор перемещает ее в шпиндель (на сверлильно-фрезерно-расточных станках) или револьверную головку (на токарных станках).

Рис. 12.7. Измерительная головка: 1- наконечник щупа; 2 - щуп; 3 -

передаточный механизм; 4 - механизм уравновешивания щупа; 5 - электрический контакт; 6 - блок-формирователь сигнала касания; 7 - сигнал, направленный в электронный блок или к передатчику

При относительном перемещении наконечника щупа и контролируемой поверхности происходит их касание. Щуп отклоняется от исходного положения,

размыкается электрический контакт внутри ИГ, и сигнал касания, формируемый

специальной схемой, поступает через электронный блок в УЧПУ, где полученные данные сравниваются с заданными значениями соответствующего параметра.

Аналогичные ИГ служат для контроля припусков и базирования заготовки, для промежуточного контроля заготовок на станке в процессе обработки и выходного контроля обработанной детали на станке. При этом с целью определения расстояния между двумя плоскостями измеряют координаты трех точек на каждой из них и вычисляют их разность. Для определения положения центра отверстия измеряют координаты трех точек в радиальном сечении и затем рассчитывают координаты центра окружности, проходящей через эти три точки (все указанные процедуры осуществляются автоматически.

При конструировании обрабатывающего оборудования ПАК и ИГ обычно не проектируют; их разработкой занимаются специальные проектные организации. Конструктор-разработчик оборудования встраивает серийно выпускаемый или специальный прибор в оборудование. Однако он должен позаботиться о разработке алгоритмов совместного функционирования станка и устройства контроля (измерение, расчеты, рекомендации принятия решений).

Стабильность процесса обработки на современных станках с программным управлением позволяет не встраивать в них измерительные устройства, а использовать установленную в цехе координатную измерительную машину (КИМ) для периодического контроля качества обработки. В этом случае оператор станка или наладчик устанавливает обработанную деталь на КИМ, измеряет контролируемые параметры и в зависимости от полученных результатов направляет деталь на дополнительную обработку или последующую технологическую операцию, а при необходимости производит подналадку станка.

Подсистема контроля за функционированием механизмов станка (рис. 12.8) включает в себя ряд измерительных устройств, фиксирующих отклонения от нормы (например, перегрев движения главного привода фиксируется термодатчиком). На выходе этих устройств формируются

Рис. 12.8. Структура подсистемы контроля за функционированием механизмов; ИУ, ИУ 2 ... ИУ„ -измерительные устройства; Д -датчик; ПОС - первичная обработка сигнала; УСО -устройство сбора и обработки информации; УПР - устройство принятия решений; УРР -устройство реализации решений

нормированные сигналы, которые поступают в устройство сбора и обработки информации, откуда передаются в устройство принятия решений. Здесь с учетом дополнительной информации принимается определенное решение, реализуемое в дальнейшем в виде соответствующих команд.

По своей структуре микропроцессорные устройства идентичны современным УЧПУ и отличаются от них только составом модулей для связи с внешним устройством, наличием датчиков обратной связи и измерительных устройств.

Подсистема диагностирования состояния механизмов должна обеспечивать функционирование станка с минимальным участием оператора. Существуют устройства для диагностирования гидроприводов станков, подшипников качения, редукторов, коробок подач и других аналогичных устройств.

Контроль и компенсация типовых деформационных узлов станка позволяют обеспечивать точность обработки при длительном функционировании. Так, из-за нагрева шпиндельный узел смещается, что приводит к снижению точности обработки. Компенсация в данном случае базируется на периодическом измерении фактических смещений деталей узла в пространстве. С помощью ИГ, установленной на шпинделе станка, измеряют положение эталонной поверхности на его столе или с помощью ИГ для контроля инструмента, установленной на столе станка, измеряют положение эталонной оправки в шпинделе. Разность результатов последовательных измерений определяет смещение шпинделя за соответствующий промежуток времени. Ввод этой величины в память УЧПУ позволяет корректировать перемещения, заданные в управляющей программе, и тем самым компенсировать влияние тепловых деформаций.

Подобные диагностические системы проектирует конструктор станка, обычно из серийно выпускаемых или специальных элементов, хотя в отдельных случаях необходимо разрабатывать специальные диагностические устройства. В качестве подобных устройств часто используются сильфонные мебранные реле.