Схемы тиристорных регуляторов мощности. Стабилизатор температуры паяльника Как сделать регулятор температуры для паяльника

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://сайт/


Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.


Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.


Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.


На картинке видно, что куда поступает и откуда выходит.


В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.



Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.


При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.


Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.

Регулятор мощности на симисторе КУ208Г.


VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.



На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.

Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод - катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре КУ202Н.


VS1 – КУ202Н



Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.


Регулятор мощности на маломощном тиристоре.



Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.


VD1... VD4 – 1N4007


Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.


Конструкция и детали.


Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».


Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.


Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.


Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.


Так выглядят регуляторы мощности, которые я использую много лет.


Get the Flash Player to see this player.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.


Дополнительный материал.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.



Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3


Для того, чтобы упростить проведение паяльных работ и улучшить их качество домашнему мастеру или радиолюбителю может пригодится простой регулятор температуры для жала паяльника. Именно такой регулятор и решил собрать для себя автор.

Впервые схема подобного устройства была замечена автором в журнале «Юный техник» начала 80-х годов. По данным схемам автор собрал несколько экземпляров таких регуляторов и пользуется ими до сих пор.

Для сборки устройства регулирования температуры жала паяльника автору понадобились следующие материалы:
1) диод 1N4007, хотя подойдет и любой другой, для которого допустима сила тока 1 А и напряжение 400-60 В
2) тиристор КУ101Г
3) элетролитический конденсатор 4.7 мкф рабочее напряжение которого от 50 В до 100 В
4) резистор 27 – 33 кОм, мощность которого от 0,25 до 0,5 ватт
5) переменный резистор 30 или 47 кОм СП-1 с линейной характеристикой
6) корпус блока питания
7) пара разъемов с отверстиями под штыри диаметром 4 мм

Описание изготовления устройства для регулирования температуры жала паяльника:

Для того, чтобы лучше понять схему устройства, автор нарисовал каким образом осуществляется размещение деталей и их взаимное соединение.



Перед началом сборки устройства автор изолировал и отформовал выводы деталей. На выводы тиристора были надеты трубки длинной около 20 мм, а на выводы резистора и диода трубки длинной 5 мм. Чтобы было более удобно работать с выводами деталей, автор предложил использовать цветную ПВХ изоляцию, которую можно снять с любых подходящих проводов, после чего прикрепить на термоусадку. Далее используя в качестве наглядного пособия приведенный рисунок и фотографии, необходимо аккуратно загнуть проводники и при этом не повредить изоляцию. Затем все детали крепятся на выводах переменного резистора, при этом объединяясь в схему которая содержит четыре точки пайки. Следующим шагом проводники каждого из компонентов устройства заводятся в отверстия на выводах переменного резистора и аккуратно припаивается. После чего автор укоротил выводы радиоэлементов.



Затем автор соединил вместе выводы сопротивления, управляющего электрода тиристора и плюсовой провод конденсатора и зафиксировал их при помощи паяльника. Так как корпус тиристора является анодом, то автор решил изолировать его для безопасности.

Чтобы придать конструкции готовый вид, автор воспользовался корпусом блока питания с сетевой вилкой. Для этого было просверлено отверстие на верхней грани корпуса. Диаметр отверстия составил 10 мм. В это отверстие была установлена резьбовая часть переменного резистора и зафиксирована при помощи гайки.

Чтобы подключать нагрузку автор использовал два разъёма с отверстиями под штыри диаметром 4 мм. Для этого на корпусе были размечены центры отверстий расстояние между которыми 19 мм, и в просверленные отверстия диаметром 10 мм установлены разъемы, которые автор так же зафиксировал гайками. Далее автор соединил вилку корпуса собранную схему и выходные разъемы, а места спайки защитил с помощью термоусадки.


Потом автор подобрал подходящую по размерам ручку из изоляционного материала нужной формы и размера, для того, чтобы закрыть ею и ось и гайку.
Затем автор собрал корпус и надежно зафиксировал ручку регулятора.

После чего приступил к тестированию устройства. В качестве нагрузки для тестирования регулятора автор использовал лампу накаливания 20-40 Ватт. Важно, чтобы при вращении ручки яркость лампы изменялась достаточно плавно. У автора получилось добиться изменения яркости лампы от половины до полного накала. Таким образом при работе с мягкими припоями, к примеру ПОС-61, используя паяльник ЭПСН 25, автору достаточно 75 % мощности. Для того чтобы получить такие показатели ручка регулятора должна быть расположена примерно на середине хода.

Все, кто умеет пользоваться паяльником старается бороться с явлением перегрева жала и вследствие этого ухудшения качества пайки. Для борьбы с этим не очень приятным фактом предлагаю вам собрать одну из простых и надежных схем регулятора мощности паяльника своими руками.

Для ее изготовления вам понадобится проволочный переменный резистор типа СП5-30 либо аналогичный и жестяная коробка из-под кофе. Просверлив, по центру дна банки отверстие и устанавливаем там резистор, и осуществляем разводку

Данный и очень простой девайс повысит качество пайки а также сможет защитить жало паяльника от разрушения из-за перегрева.

Гениальное - просто. По сравнению с диодом переменный резистор не проще и ненадежнее. Но паяльник с диодом слабоват, а резистор позволяет работать без перекала и без недокала. Где взять мощный, подходящий по сопротивлению переменный резистор? Проще найти постоянный, а выключатель, применяемый в "классической" схеме, заменить на трехпозиционный

Дежурный и максимальный нагрев паяльника дополнится оптимальным, соответствующим среднему положению переключателя. Нагрев резистора по сравнению с снизится, а надежность работы повысится.

Еще одна очень простая радиолюбительская разработка, но в отличии от первых двух с более высоким КПД

Резисторные и транзисторные регуляторы - неэкономичные. Повысить КПД можно так же, включением диода. При этом достигается более удобный предел регулирования (50-100%). Полупроводниковые приборы можно разместить на одном радиаторе.

Напряжение с выпрямительных диодов поступает на параметрический стабилизатор напряжения, состоящий из сопротивления R1, стабилитрона VD5 и емкости С2. Созданное им девяти вольтовое напряжение используется для питания микросхемы счетчика К561ИЕ8.

Кроме того ранее выпрямленное напряжение, через емкость C1 в виде полупериода с частотой 100 Гц, проходит на вход 14 счетчика.

К561ИЕ8 это обычный десятичный счетчик, поэтому, с каждым импульсом на входе CN на выходах будет последовательно устанавливаться логическая единица. Если переключатель схемы переместим, на 10 выход, то с появлением каждого пятого импульса осуществится обнуление счетчика и счет начнется повторно, а на выводе 3 логическая единица установится только на время одного полупериода. Поэтому, транзистор и тиристор будут открываться только через четыре полупериода. Тумблером SA1 можно регулировать количество пропущенных полупериодов и мощность схемы.

Диодный мост используем в схеме такой мощности, чтобы она соответствовала мощности подключенной нагрузки. В качестве нагревательных приборов можно применить таких как электроплитка, ТЭН и т.п.

Схема очень простая, и состоит из двух частей: силовой и управляющей. К первой части относится тиристор VS1, с анода которого идет регулируемое напряжение на паяльник.

Схема управления, реализована на транзисторах VT1 и VT2, управляет работой ранее упомянутого тиристора. Она получает питание через параметрический стабилизатор, собранный на резисторе R5 и стабилитроне VD1. Стабилитрон предназначен для стабилизации и ограничения напряжения, питающего конструкцию. Сопротивление R5 гасит лишнее напряжение, а переменным сопротивлением R2 настраивается выходное напряжение.

В качестве корпуса конструкции, возьмем обычную розетку. Когда будете покупать, то выбирайте, чтобы она была сделана из пластмассы.

Этот регулятор управляет мощностью от ноля до максимума. HL1 (неоновая лампа МН3… МН13 и т.п) – линеаризует управление и одновременно выполняет функцию индикатора индикатором. Конденсатор С1 (емкостью 0,1 мкф)– генерирует пилообразный импульс и реализует функцию защиты цепи управления от помех. Сопротивление R1 (220 кОм) – регулятор мощности. Резистор R2 (1 кОм) – ограничивает ток протекающий через анод - катод VS1 и R1. R3 (300 Ом) – ограничивает ток через неонку HL1 () и управляющий электрод симистора.

Регулятор собран в корпусе от блока питания советского калькулятора. Симистор и потенциометр закреплены на стальном уголке, толщиной 0,5мм. Уголок привинчен к корпусу двумя винтами М2,5 с применением изолирующих шайб. Сопротивления R2, R3 и неонка HL1 помещены в изолирующую трубку (кембрик) и закреплены с помощью навесного монтажа.

T1: BT139 симистор, T2: BC547 транзистор, D1: DB3 динистор, D2 и D3: 1N4007 диод, C1: 47nF/400V, C2:220uF/25 В, R1 и R3: 470K, R2: 2K6, R4: 100R, P1: 2M2, Светодиод 5 мм красный.


Симистор BT139 применяется для регулировки фазы «резистивной» нагрузки нагревательного элемента паяльника. Красный светодиод является визуальным индикатором активности работы конструкции.

Основа схемы МК PIC16F628A, который и осуществляет ШИМ регулирование подводимой к главному инструменту радиолюбителя потребляемой мощности.


Если ваш паяльник большой мощностью от 40 ватт, то при пайке небольших радиоэлементов, особенно smd компонентов трудно подобрать момент времени, когда пайка будет оптимальной. А паять им smd мелочевку просто не возможно. Чтобы не тратить деньги на покупку паяльной станции, особенно если она вам нужна не часто. Предлагаю собрать к вашему главному радиолюбительскому инструменту эту приставку.

Из-за проблемы с электричеством люди все чаще покупают регуляторы мощности. Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы. Для того чтобы не допустить порчи имущества, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.

Типы регуляторов

В наше время на рынке можно увидеть огромное количество различных регуляторов как для всего дома, так и маломощных отдельных бытовых приборов. Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.

Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент имеет возможность пропускать ток как в прямом направлении, так и в обратном.

Эти компоненты можно наблюдать в различной бытовой технике начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.

Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой. При открытии P-N перехода симистора он пропускает небольшую часть полуволны и потребитель получает только часть номинальной мощности. То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.

К достоинствам этого элемента можно отнести:

В связи с вышесказанными достоинствами симисторы и регуляторы на их основе используются довольно часто.

Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифмашинки, которые изначально шли без плавной регулировки скорости.

Вот такой регулятор напряжения 220в своими руками можно собрать из следующих деталей:

  • R1 - резистор 20 кОм, мощностью 0,25 Вт.
  • R2 - переменный резистор 400−500 кОм.
  • R3 - 3 кОм, 0,25 Вт.
  • R4-300 Ом, 0,5 Вт.
  • C1 C2 - конденсаторы неполярные 0,05 Мкф.
  • C3 - 0,1 Мкф, 400 в.
  • DB3 - динистор.
  • BT139−600 - симистор необходимо подобрать в зависимости от нагрузки которая будет подключен. Прибор, собранный по этой схеме, может регулировать ток величиной 18А.
  • К симистору желательно применить радиатор, так как элемент довольно сильно греется.

Схема проверена и работает довольно стабильно при разных видах нагрузки .

Существует еще одна схема универсального регулятора мощности.

На вход схемы подается переменное напряжение 220 В, а на выходе уже 220 В постоянного тока. Эта схема имеет в своем арсенале уже больше деталей, соответственно и сложность сборки повышается. На выход схемы возможно подключить любой потребитель (постоянного тока). В большинстве домов и квартир люди стараются поставить энергосберегающие лампы. Не каждый регулятор справится с плавной регулировкой такой лампы, например, тиристорный регулятор использовать нежелательно. Эта схема позволяет беспрепятственно подключать эти лампы и делать из них своего рода ночники.

Особенность схемы заключается в том, что при включении ламп на минимум все бытовые приборы должны быть отключены от сети. После этого в счетчике сработает компенсатор, и диск медленно остановится, а свет будет продолжать гореть. Это возможность собрать симисторный регулятор мощности своими руками. Номиналы деталей нужных для сборки, можно увидеть на схеме.

Еще одна занимательная схема, которая позволяет подключить нагрузку до 5А и мощностью до 1000Вт.

Регулятор собран на базе симистора BT06−600. Принцип работы этой схемы заключается в открытии перехода симистора. Чем больше элемент открыт, тем больше мощность поступает на нагрузку. А также в схеме присутствует светодиод, который даст знать, работает устройство или нет. Перечень деталей, которые понадобятся для сборки аппарата:

  • R1 - резистор 3.9 кОм и R2 - 500 кОм своеобразный делитель напряжения, который служит для зарядки конденсатора С1.
  • конденсатор С1- 0,22 мкФ.
  • динистор D1 - 1N4148.
  • светодиод D2, служит для индикации работы устройства.
  • динисторы D3 - DB4 U1 - BT06−600.
  • клемы для подключения нагрузки P1, P2.
  • резистор R3 - 22кОм и мощностью 2 вт
  • конденсатор C2 - 0.22мкФ рассчитан на напряжение не меньше 400 В.

Симисторы и тиристоры с успехом используются в качестве пускателей. Иногда необходимо запустить очень мощные тэны, управлять включением сварочного мощного оборудования, где сила тока достигает 300−400 А. Механическое включение и выключение с помощью контакторов уступает симисторному пускателю из-за быстрого износа контакторов, к тому же при механическом включении возникает дуга, которая также пагубно влияет на контакторы. Поэтому целесообразным будет использовать симисторы для этих целей. Вот одна из схем.

Все номиналы и перечень деталей указаны на Рис. 4. Достоинством этой схемы является полная гальваническая развязка от сети, что обеспечит безопасность в случае повреждения.

Нередко в хозяйстве необходимо выполнить сварочные работы. Если есть готовый инверторный сварочного аппарата, то сварка не представляет особых трудностей, поскольку в аппарате присутствует регулировка тока. У большинства людей нет такого сварочного и приходится пользоваться обычным трансформаторным сварочным, в котором регулировка тока осуществляется путем смены сопротивления, что довольно неудобно.

Тех, кто пробовал использовать в качестве регулятора симистор, ждет разочарование. Он не будет регулировать мощность. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Но существует выход из этой ситуации. Следует подать на управляющий электрод однотипный импульс или подавать на УЭ (управляющий электрод) постоянный сигнал, пока не будет проход через ноль. Схема регулятора выглядит следующим образом:

Конечно, схема довольно сложная в сборке, но такой вариант решит все проблемы с регулировкой. Теперь не нужно будет пользоваться громоздким сопротивлением, к тому же очень плавной регулировки не получится. В случае с симистором возможна довольно плавная регулировка.

Если существуют постоянные перепады напряжения, а также пониженное или повышенное напряжение, рекомендуется приобрести симисторный регулятор или по возможности сделать регулятор своими руками. Регулятор защитит бытовую технику, а также предотвратит ее порчу.

Поскольку процесс пайки связан с расплавлением припоя, необходимо всегда выдерживать оптимальную температуру нагрева. Учитываются следующие факторы:

  • Температура плавления припоя (от 150 до 320 градусов);
  • Термостойкость элементов, на которых производится пайка. Многие радиокомпоненты просто выходят из строя при продолжительном нагреве, а изоляция проводов теряет свои свойства;
  • Площадь рассеивания контактов. При соединении массивных элементов, необходимо иметь запас по температуре и мощности.

Если вы просто спаиваете провода, достаточно знать мощность паяльника и примерную температуру плавления припоя. Критерий простой – быстрый или медленный нагрев.

А вот при монтаже печатных плат или ремонте электроприборов – неверно выбранная температура паяльника может вылиться в приобретение дорогостоящих радиодеталей, которые будут повреждены высокой температурой.

Температура паяльника для пайки – как подобрать

  1. Если монтаж не связан со специфическими радиодеталями, чувствительными к перегреву – степень нагрева жала должна на 10 градусов превышать температуру плавления припоя. Причем не точку начала расплава – а именно температуру устойчивого нахождения в жидком состоянии;
  2. Если планируется соединять контакты с большой площадью и массой – повышается не величина нагрева, а мощность паяльника. Маломощный прибор с высокой температурой все равно не справится с рассеиванием. Компенсируют массу детали соответствующим размером рабочего жала. А для его разогрева требуется мощность, а не градусы;
  3. В паспорте радиокомпонентов обычно указывается максимально допустимое значение нагрева корпуса. Это относится и к температуре пайки. Опять же, сделайте выбор в пользу мощности, а не повышения градуса. Надо стараться, чтобы время контакта жала и детали было минимальным. Припой должен расплавиться, а корпус оставаться не перегретым.

Для различных условий работы выпускаются паяльники электрические с регулировкой температуры.

Не имеет значения конструктивное исполнение, регулятор может быть встроенным в корпус или выполнен в виде отдельного блока. Главное – вы знаете, насколько горячее жало у инструмента.