Шпиндельные узлы с гидродинамическими опорами. Гидродинамические подшипники Применение газодинамических подшипников

Применяются в шлифовальных станках.

На схеме приведен многоклиновый гидродинамический подшипник. F 1 , F 2 , F 3 – силы от действия масляных клиньев.

Создаются несколько клиновых зазоров, куда вращающимся валом увлекается масло. Возникает результирующая гидродинамическая сила F д , которая воспринимает внешнюю нагрузку F в любом направлении.

Клиновые зазоры создаются с помощью башмаков, самоустанавливающихся от внешней нагрузки.

1 – башмаки; 2 – опоры

Самоустановка башмаков достигается их поворотом на сферических опорах.

Рассчитывают длину башмака вдоль оси шпинделя, длину его по дуге и максимально допустимую нагрузку на один башмак.

Кроме этого, расчет гидродинамических подшипников сводится к определению нагрузочной способности F g подшипника и определению жесткости подшипника.

,

к – число вкладышей.

,

где - жесткость слоя смазки;

- жесткость элементов и сопряжений конструкции.

Недостатки гидродинамических опор : изменение положения оси шпинделя при изменении частоты его вращения.

Гидростатические подшипники.

Обеспечивают высокую точность вращения, обладают демфирующей способностью, высокой долговечностью, высокой нагрузочной способностью при любой частоте вращения шпинделя.

Различают осевые и радиальные гидростатические подшипники.

Осевой гидростатический подшипник.

Насос нагнетает масло под давлением, которое заполняет зазоры как показано на схеме. Образуется масляной слой, исключающий контакт сопряженных поверхностей при неработающем шпинделе.

Радиальный гидростатический подшипник.

По окружности располагаются полости – карманы, куда через дроссели подается масло от насоса. При приложении внешней нагрузки F вал занимает смещенное положение: h 1 > h 2 . Это приводит к повышению давления в одних карманах и понижению в противоположных. Разность давлений создает результирующую силу, воспринимающую внешнюю нагрузку F .

Расчет гидростатических подшипников сводится к определению нагрузочной способности F с , жесткости масляного слоя , расхода масла и потерь на трение.

,

где е – относительное смещение шпинделя в опоре;

Δ – диаметральный зазор Δ =(0,0008÷0,001)∙Д (мм);

Д – диаметр шейки шпинделя,

l – расстояние между опорами;

Р н – давление нагнетаемое насосом.

- жесткость слоя смазки.

[мм 3 /с] – расход масла.

где μ – динамическая вязкость масла (1÷10)∙10 3 Па 3 ∙с.

l 0 =0,1∙Д – размеры перемычек, ограничивающих карманы.

- потери на трение.

Р Т – потери на трение в рабочем зазоре.

Р Q – потери на прокачивание масла.

Недостатки гидростатических опор : сложная система питания и сбора масла.

Применение : шпинделя особо точных станков и тяжело-нагруженных станков с низкой частотой вращения, где образовывается масляной слой за счет гидродинамического эффекта.

Опоры с газовой смазкой.

По конструкции аналогичны гидростатическим опорам, только вместо масла используется сжатый воздух под давлением Р =0,3÷0,4 МПа.

Преимущества : малые потери на трение.

Недостаток : малая нагрузочная способность.

Применение : прецизионные станки небольших размеров.

Привод подач станков.

В гидродинамическом подшипнике отсутствует прямой контакт между трущимися поверхностями, так как зазор между ними под действием гидродинамических сил заполняется смазывающей жидкостью.

Использование гидродинамического подшипника позволяет заменить трение скольжения на жидкостное трение , и снизить потери энергии.

В гидродинамическом подшипнике нагрузку воспринимает и передает на опору тонкий слой жидкости.

Условия возникновения жидкостного трения

Для работы гидродинамического подшипника необходимо создание гидродинамического слоя смазки, для этого нужно обеспечить следующие условия:

  • смазывающая жидкость должна удерживаться в зазоре (например между валом и корпусом подшипника)
  • в смазывающей жидкости должно поддерживаться давление достаточное для уравновешивания нагрузки
  • жидкость должна полностью разделять скользящие поверхности, а значит ее слой должен быть выше, чем сумма шероховатостей поверхностей
  • толщина слоя жидкости должна быть больше минимального значения

Принцип работы гидродинамического подшипника

Рассмотрим схему работы гидродинамического подшипника.

Вал установлен в корпусе заполненном маслом с зазором, под действием нагрузки прижимается к нижней поверхности корпуса. Получается, что в начальном положении вал расположен в корпусе с эксцентриситетом.

При вращении вала, небольшой слой жидкость за счет адсорбции приходит в движение и увлекается вслед за поверхностью вала. Последующие слои также могут увлекаться во вращательное движение за счет вязкости рабочего масла. Получается, что вал выполняет роль насоса, создавая поток рабочей жидкости, и нагнетая ее в клиновидную щель между корпусом и валом. В результате воздействия вращающегося вала масло стремится заполнить клиновидную щель и поднять вал, с другой стороны этому препятствует нагрузка действующая на вал.

При создании достаточного для того, чтобы приподнять вал, и обеспечить протекание масла по всей окружности наступает равновесное состояние.

Гидродинамический подшипник с клиновыми расточками вкладыша


Для обеспечения высоких антивибрационных свойств используют гидродинамический подшипник с клиновыми расточками, в котором цапфа вала опирается на несколько масляных клиньев. Это снижает вероятность возникновения вибраций.

Расчет гидродинамического подшипника

Условие обеспечения жидкостного трения:

H≥1,1(R z1 +R z2 +y)

  • где h - толщина слоя смазки
  • R z1 шероховатость детали 1
  • R z2 шероховатость детали 2
  • y - стрела прогиба шипа (вала)

Наименьшее отношение относительного эксцентриситета можно вычислить по формуле:

Х=1-(h/0,5s)

  • где s - средний зазор
  • х - относительный эксцентриситет х = e / 0,5 s

Необходимую вязкость жидкости, при которой удастся достичь режима жидкостного трения можно определить по формуле:

μ=PΨ 2 /ωldФр

  • l - длина вала, м
  • d - диаметр вала, м
  • ω - угловая скорость вращения вала
  • P - величина нагрузки
  • Ψ - относительный зазор Ψ = s/d
  • Фр - безразмерный коэффициент несущей способности

При работе гидродинамического подшипника скольжения масло будет нагреваться, а значит его вязкость будет изменяться. Зависимость вязкости от температуры рабочей жидкости отражена в . В случае если начальная температура масла неизвестна расчет производят методом последовательных приближений, задаваясь начальным значением - 50 °С.

Достоинства гидродинамических подшипников

  • высокий ресурс
  • низкий уровень шума
  • малые вибрации при работе
  • демпфирование ударных нагрузок

Недостатки гидродинамических подшипников

  • возможность работы только при высоких частотах вращения
  • влияние температуры на режим работы, характеристики

Гидродинамический подшипник – это машиностроительный узел. Основная нагрузка внутри этого элемента приходится на тонкий слой, состоящий из изолирующей смазывающей жидкости. В конструкцию она нагнетается при помощи смазываемого вала. Такие изделия часто называются ещё гидравлическими.

Об особенностях применения механизма

Это достаточно надёжные и простые конструкции, благодаря чему они и получили такое широкое распространение. Состоят они всего из двух элементов: внешнее и внутреннее кольцо тороидальной формы. В местах стыков имеются уплотнения с максимальной герметичностью. Изделия отличаются минимальными эксплуатационными затратами, либо вообще полным их отсутствием. Кроме того, при изготовлении они предъявляют более низкие требования к качеству и точности работы, по сравнению с шарико-, роликоподшипниками. И шума такие подшипники издают меньше, чем обычные подшипники качения. То же самое касается вибраций, их уровень минимален. В ряде случаев такие конструкции обладают неплохими вибродемпфирующими свойствами.

Есть ли недостатки?

Они не обходятся без своих недостатков, как и другие механизмы. Потери энергии у этих деталей бывают значительными. Они обычно зависят от температурных режимов в окружающей среде. Очень сложно рассчитать оптимальный температурный уровень, при котором негативное воздействие сведётся к минимуму. При внештатных ситуациях именно гидродинамические подшипники чаще подвержены авариям, чем другие узлы. Они так же чувствительны к неточности при изготовлении валов, других аксессуаров в системе. Это надо учитывать, ещё проводя первый расчёт.
В процессе эксплуатации есть вероятность утечки рабочей среды. Потому часто устанавливают две и больше цапфы с обеих сторон, чтобы возможные утечки предотвратить.

Немного о принципе действия

Такие подшипники в общем случае делятся на несколько видов:
  1. Гидростатические.
  2. Газо- или гидродинамические. Расчёт у каждой разновидности будет своим.
Гидростатические подшипники отличаются от аналогов тем, что у них внешний насос поддерживает высокое давление внутри. Вода или масло используются в качестве рабочей жидкости. Необходимо нагнетать жидкость внутрь, используя ту самую силу внешнего насоса. Из-за этого есть энергия, которая подводится только к самому подшипнику, для остальных частей в системе она не имеет никакого значения. Но, если бы насоса не было, эта энергия уходила бы на то, чтобы преодолевать силу трения.

Гидродинамический подшипник устроен несколько иначе . Жидкость увлекается в пространство между элементами трения за счёт вращения специального вала, который находится внутри конструкции. Можно сказать, что система сама обеспечивает собственную смазку. Это своеобразная разновидность подшипника скольжения. Масляный клин становится достаточно толстым за счёт следующих элементов:
  • Свободная подача смазки.
  • Достаточная скорость вращения.
  • Геометрия.
Контактное трение исключается полностью, в любых рабочих режимах. Расчёт благодаря этому становится точнее. Эти подшипники всегда устроены так, что вращение вала способствует более глубокому проникновению жидкости внутрь. В другие направления вода уходит так же за счёт вращения этого элемента. Но слой жидкости будет недостаточно толстым, если сам вал вращается недостаточно активно. Это означает, что детали будут слишком активно контактировать друг с другом.
Срок службы подшипника уменьшается, если такое происходит достаточно часто. И энергия уходит в больших количествах. Для предотвращения подобных проблем часто ставят дополнительный внешний насос, либо вторичный подшипник. Они включаются в работу в момент запуска, либо торможения системы. Расчёт это так же берёт во внимание.
Антифрикционные и износостойкие материалы способны уменьшать износ деталей. Иногда валы окружаются не обычными жёсткими втулками, а несколькими упругими лепестками. Используется и разрезное кольцо из пружинящей фольги, на упругой опоре. Такая конструкция помогает равномерно распределить нагрузку по всем деталям.

Какие ошибки механики допускают чаще всего во время ремонта?

  1. Они часто используют тормозные жидкости, параметры которых для этих систем не подходят.
  2. Внутрь механизма во время работы попадает грязь.
  3. Используются смазки или чистящие средства, способные повредить соединение.
  4. Неправильно проводится прокачка системы. Например, много раз нажимают на педаль сцепления во время прокачки. В руководстве по ремонту всегда написано, что это надо делать только один раз.
  5. Попытка прокачки внутренних цилиндров вручную. Из-за этого детали просто ломаются.
  6. Устанавливают новое уплотнения, хотя элементы старого ещё остались внутри. Из-за этого гидравлическая жидкость не может течь в обратном направлении. Что приводит к утечкам, повреждению нового механизма.
  7. Перетягиваются фиксирующие болты.
  8. Неравномерная установка уплотнения. Из-за этого цилиндр начинает наклоняться. Расчёт становится неточным.

Подшипники скольжения и их расчёт

Характер трения – основной параметр, который влияет на расчёт . Трение скольжения бывает трёх основных разновидностей:
  • Жидкостное.
  • Смешанное
  • Граничное.
Сами подшипники бывают радиальными и упорными, это тоже необходимо учитывать. У радиальных подшипников в конструкции всего три или четыре сегмента. Опора заправляется маслом с помощью гидродинамической системы. От этого расчет тоже зависит. Что касается смазки для подшипников, то чаще всего выбирают марку Л. Главное требование к подшипникам – чтобы их сегменты могли свободно менять своё положение, в любом из доступных направлений. Тогда давление внутри опоры не будет слишком большим. Это надо учитывать, проводя расчёт.

Ещё о некоторых особенностях подшипников скольжения

По сравнению с подшипниками качения, подшипники скольжения проще и доступнее в изготовлении. Они обладают бесшумностью, постоянным параметром жёсткости. В режиме любой смазки долгое время работают практически без износа. Расчёт индивидуальный на это не влияет. Но система смазки у них достаточно сложная для обеспечения жидкостного трения, для некоторых это серьёзный недостаток. Кроме того, они требуют обязательного применения цветных металлов. Среди минусов стоит отметить так же увеличенные размеры в осевом направлении, повышенные пусковые моменты.

О конструкциях и материалах

Подшипник скольжения – это корпус и вкладыш, собранные в одной конструкции. Она более простая, чем у тех же подшипников качения. Корпус выпускается разъёмным или цельным. Разъёмные корпуса скрепляются болтами или шпильками. В виде втулки выполняется вкладыш. Если корпус неразъёмный, эта деталь будет выглядеть как две отдельные половинки, верхняя и нижняя. Втулка просто запрессовывается в корпус. Самоустанавливающиеся подшипники используют, если есть вероятность появления повреждений на валу, либо при невозможности точного монтажа механизма. Или используются скольжения.

При изготовлении конструкции скольжения используются следующие материалы:

  • Пластмасса
  • Чугун
  • Бронза
Особенно востребованными стали лёгкие антифрикционные разновидности материалов скольжения. У некоторых моделей вкладыши стоят деревянные. Лучше брать другие материалы. Иногда выпускаются вкладыши, которые могут долгое время работать без смазки. Рабочие поверхности подшипников скольжения обладают различной геометрией. В разных условиях применяются такие формы:
  • Сферические.
  • Плоские.
  • Конические.
  • Цилиндрические. Это тоже важно для тех, кто проводит расчёт.
Сферические и конические формы применяются реже всего. Они удобны лишь при определённых условиях, когда нагрузки направлены на определённую часть механизма. Минимальный износ валов, минимум потерь на трение – главное требование к подшипникам скольжения. Прочности и жёсткости должно хватать для того, чтобы механизм мог работать в самых жёстких условиях. Достаточными должны быть и размеры поверхностей. Их должно хватать для создания эффективной системы по отводу тепла. Тогда возникающее при работе давление будет восприниматься без крайних реакций.