Сооружения для охлаждения оборотной воды и принцип их работы. Охлаждение воды в оборотных системах водоснабжения Схемы использования воды

В системах оборотного водоснабжения происходит повторное (многократное) использование части воды. При этом техническая вода нагревается. Перед повторным использованием температура воды должна быть снижена в соответствии с требованиями техно­логии. Снижение температуры технической воды достигается в спе­циальных охлаждающих устройствах (охладителях).

По способу отвода теплоты охладители подразделяются на испарительные и поверхностные (радиаторные). В испарительном охладителе отвод теплоты достигается в результате испа­рения при непосредственном контакте с воздухом, в поверхностном - вода движется в трубках, омываемых с внешней стороны воздухом.

Выбор типа охладителя производится на основе технико-эконо­мического сравнения по минимуму приведенных затрат с учетом, показателей работы всей заводской системы технического водо­снабжения. При сопоставлении вариантов учитываются гидрологи­ческие и метеорологические условия применительно к району строи­тельства системы водоснабжения.

Испарительные охладители могут быть представлены: прудами-охладителями (водохранилища-охладители), брызгальными бассей­нами и градирнями башенного или вентиляторного типов.

Пруды и водохранилища-охладители обладают рядом несомнен­ных достоинств. Они обеспечивают более низкие температуры охлаждения воды в течение года; являются регуляторами поверх­ностного стока; просты в эксплуатации и могут обеспечить водой оборотное водоснабжение любого крупного завода. Однако созда­ние водохранилищ-охладителей сопряжено со значительными капи­тальными затратами как на основное сооружение, так и на строи­тельство очистных сооружений.

Брызгальные бассейны требуют сравнительно небольших капиталовложений и применяются при небольших расходах техниче­ской воды (до 300м 3 /ч). Обладают плохой охлаждающей способ­ностью и допускают большие потери воды.

Башенные градирни используются в системах оборотного водо­снабжения с расходами воды до 100-10 3 м 3 /ч. Благодаря организо­ванному движению воздуха обеспечивается устойчивое охлаждение и более низкая температура воды, чем в брызгальном бассейне. К недостаткам нужно отнести высокие капитальные затраты.

Вентиляторные градирни обеспечивают наиболее глубокое и ста­бильное охлаждение технической воды. Затраты на строительство оказываются меньше, чем у башенных. Большой расход электро­энергии и возможность образования туманов и обледенения суще­ственно влияют на выбор варианта водоснабжения с вентиляторными градирнями. Их применение оказывается экономически обоснованным, когда требуется низкая и стабильная температура охлаждаемой воды (холодильные и компрессорные станции, произ­водственные технологии в районах с жарким климатом).



Некоторые характеристики испарительных охладителей приве­дены в табл. 2.7.

Табл. 2.7. Характеристика испарительных охладителей

Применение радиаторных охладителей позволяет сократить до минимума потери воды в системе оборотного водоснабжения. Вода в «сухих» градирнях не засоряется пылью окружающего воздуха и солями (минерализация воды), как это имеет место в градирнях «мокрого» типа. «Сухие» градирни имеют больший объем по сравне­нию с «мокрыми», так как интенсивность теплообмена в них ниже. Их применение может быть оправдано невозможностью восполне­ния потерь воды в системах охлаждения.

Охлаждение воды в испарительных охладителях всегда сопро­вождается ее потерями вследствие испарения (снижение темпера­туры воды на 6 °С в системах испарительного охлаждения сопряжено с потерями воды до 1 %). Потери воды подсчитываются по формуле

DV = DV исп + DV ун

где DV исп - доля испарившейся воды, DV ун - доля уноса с воз­духом за пределы охладителя от циркуляционного расхода (табл. 2.8).



Табл. Величина уноса воды DV ун

Значение DV исп определяется по формуле

DV исп = kDT,

где k - коэффициент, учитывающий долю теплоотдачи испарением от общего коэффициента теплоотдачи (испарение и конвекция), % (табл. 2.9); DT - абсолютная величина перепада температур, °С.

Табл. 2.9. Значение коэффициента k

В результате испарения в охладителе части воды повышается концентрация минеральных солей, растворенных в оборотной воде. При этом соли временной жесткости MgCO 3 и СаСО 3 (главным образом СаСО 3) выпадают на поверхности устройства, что ухуд­шает его эксплуатационные показатели и резко снижает коэффи­циент теплопередачи. Для предотвращения этого явления произво­дится непрерывная продувка системы оборотного водоснабжения, т. е. удаление из нее части циркулирующей воды и восполнение свежей водой из природного источника водоснабжения. Продувку осуществляют водой из глубинных слоев охладителя. Тогда урав­нение солевого баланса имеет вид

С д (DV исп + DV ун + DV прод) = С ц (DV ун + DV прод), (2.3)

где С д, С ц - концентрация солей жесткости в добавочной и цирку­лирующей воде соответственно, мг-экв/л; DV исп, DV ун - потери воды с испарением и уносом, %; DV прод - объемная доля удаляе­мой воды по отношению к циркулирующей, %.

Если принять для циркуляционной системы С ц на уровне макси­мально допустимой (СНиП II - 31-74), то выражение (2.3) можно переписать в виде

С д (DV исп + DV ун + DV прод) = С у max (DV ун + DV прод),---------

Из равенства (2.4) находят значение DV прод, выраженное в про­центах. Однако нужно помнить, что регулирование солевого балан­са системы оборотного водоснабжения путем непрерывной продувки эффективно лишь в случае, когда С д <<С ц ma х. Во всех остальных ситуациях применяют способы снижения жесткости воды путем реагентной обработки, табл.2.10.

Табл. Способы реагентного умягчения технической воды

Наряду с выпадением солей жесткости в системах оборотного водоснабжения могут откладываться продукты кислородной кор­розии, механические взвеси, биологические организмы, содержа­щиеся в природной воде. Для борьбы с биологическим обрастанием применяют обработку циркуляционной воды хлором. Хлорирование ведется периодически по 30 мин с интервалами в З...12ч дозами 1,5...7,5 мг/л (в зависимости от качества воды). При обрастании системы водорослями воду обрабатывают медным купоросом 2...3 раза в месяц по 1...2 ч дозами 4...6 мг/л. При бактериальном обрастании наряду с обработкой медным купоросом делают хлори­рование воды дозами 2 мг/л при продолжительности хлорирования 30...40 мин.

11.31. Тип и размеры охладителя должны приниматься с учетом:

расчетных расходов воды;

расчетной температуры охлажденной воды, перепада температур воды в системе и требований технологического процесса к устойчивости охладительного эффекта;

режима работы охладителя (постоянный или периодический);

расчетных метеорологических параметров;

условий размещения охладителя на площадке предприятия, характера застройки окружающей территории, допустимого уровня шума, влияния уноса ветром капель воды из охладителей на окружающую среду;

химического состава добавочной и оборотной воды и др.

11.32. Область применения охладителей воды надлежит принимать по табл. 39.

Таблица 39

Примечание. Показатели в таблице даны для воды, поступающей на охладитель, с температурой не более 45°С.

11.33. Технологические расчеты градирен и брызгальных бассейнов надлежит производить исходя из среднесуточных температур атмосферного воздуха по сухому и влажному термометрам (или относительной влажности воздуха) по замерам в 7, 13 и 19 ч за летний период года по многолетним наблюдениям при обеспеченности 1-10%. Для тепловых и атомных электростанций расчеты надлежит производить исходя из среднесуточных температур атмосферного воздуха, по сухому и влажному термометрам за летний период среднего и жаркого года. Выбор обеспеченности производится в зависимости от категории водопотребителя по табл. 40.



Таблица 40

При отсутствии данных о среднесуточных температурах и влажности атмосферного воздуха с указанной обеспеченностью следует принимать средние температуры и влажности в 13 ч для наиболее жаркого месяца согласно СНиП 2.01.01-82 с добавлением к температуре воздуха по влажному термометру 1-3°С при неизменной величине влажности в зависимости от категории водопотребителя.

11.34. Технологические расчеты градирен должны выполняться по методике, учитывающей тепломассообмен в активной зоне охлаждения и аэродинамические сопротивления градирни, или по графикам, составленным на основании экспериментов.

11.35. Технологические расчеты охлаждающей способности брызгальных бассейнов и открытых градирен должны выполнятся по экспериментальным графикам.

11.36. Технологические расчеты радиаторных градирен должны выполняться по методике, принятой для расчета теплообменных аппаратов с оребренными трубами, охлаждаемых воздухом.

11.37. Технологические расчеты водохранилищ-охладителей для тепловых и атомных электростанций должны выполняться исходя из среднемесячных гидрологических и метеорологических факторов среднего года с учетом теплоаккумулирующей способности водохранилища, графиков нагрузки и ремонта оборудования. Для летнего периода среднего и жаркого года обеспеченностью 10 % проверяется мощность оборудования, устанавливаются пределы и длительность ограничения мощности по максимальным суточным температурам охлаждающей воды. При использовании для охлаждения воды существующих водоемов другого назначения необходимо учитывать особенности пространственного формирования температурного режима в естественных условиях и при сбросе подогретой воды.

11.38. При наличии в оборотной воде примесей, агрессивных по отношению к материалам конструкций градирен и брызгальных бассейнов, должны предусматриваться обработка воды или защитные покрытия конструкций.

11.39. Глубина воды в брызгальных бассейнах и водосборных резервуарах градирен должна приниматься не менее 1,7 м, расстояние от уровня воды до борта бассейна или резервуара - не менее 0,3 м.

Для градирен, располагаемых на покрытиях зданий, допускается устройство поддонов с глубиной воды не менее 0,15 м.

11.40. Водосборные резервуары градирен и брызгальные бассейны должны оборудоваться отводящими, спускными и переливными трубопроводами, а также сигнализацией минимального и максимального уровней воды. На отводящем трубопроводе надлежит предусматривать сороудерживающую решетку с прозорами не более 30 мм.

Днища водосборных резервуаров и брызгальных бассейнов должны иметь уклон не менее 0,01 в сторону приямка со спускной трубой.

11.41. На подающем и отводящем трубопроводах брызгальных бассейнов следует предусматривать запорные устройства для выключения бассейнов на период очистки и ремонта.

11.42. Вокруг водосборных резервуаров градирен и брызгальных бассейнов следует предусматривать водонепроницаемое покрытие шириной не менее 2,5 м с уклоном от сооружений, обеспечивающим отвод воды, выносимой ветром из входных окон градирен и брызгальных бассейнов.

Градирни

11.43. Градирни надлежит применять в системах оборотного водоснабжения, требующих устойчивого и глубокого охлаждения воды при высоких удельных гидравлических и тепловых нагрузках.

При необходимости сокращения объемов строительных работ, маневренного регулирования температуры охлажденной воды, автоматизации для поддержания заданной температуры охлажденной воды или охлаждаемого продукта следует применять вентиляторные градирни.

На застроенных территориях следует преимущественно применять вентиляторные градирни на покрытиях зданий.

В южных районах допускается применять поперечно-точные вентиляторные градирни.

В районах с ограниченными водными ресурсами, а также для предотвращения загрязнения оборотной воды токсичными веществами и защиты окружающей среды от их воздействия следует рассматривать возможность применения радиаторных (сухих) градирен или смешанных (сухих и вентиляторных) градирен.

11.44. Для обеспечения наиболее высокого эффекта охлаждения оборотной воды надлежит применять градирни с пленочным оросителем.

При наличии в оборотной воде жиров, смол и нефтепродуктов следует применять градирни с капельным оросителем; при наличии взвешенных веществ, образующих отложения, не смываемые водой, - брызгальные градирни.

11.45. Оросители надлежит предусматривать в виде блоков, конструкция и расстановка которых должны обеспечивать равномерное распределение потоков воды и воздуха по площади градирни.

11.46. Систему распределения воды надлежит принимать напорной трубчатой, допускается применение лотков. При установке разбрызгивающих сопел факелами, направленными вниз, расстояние от сопел до оросителя следует принимать 0,8-1 м, при направлении факелов вверх - 0,3-0,5 м.

11.47. Расположение сопел на трубах распределительной системы должно обеспечивать равномерное распределение воды по площади градирни над оросителем.

11.48. Для предотвращения выноса из градирни капель воды в зоне воздухораспределителя надлежит устанавливать ветровые перегородки, а над водораспределительными системами - водоуловительные устройства.

11.49. Конструкция и расстановка водоуловительных устройств должны обеспечивать отсутствие сквозных вертикальных щелей (оптическую плотность) по всей площади градирни, при этом вынос капель воды не должен превышать: 0,1-0,2 % расхода оборотной воды при отсутствии в ней токсичных веществ, 0,05 % - при наличии токсичных веществ.

В вентиляторных градирнях водоуловительные устройства надлежит размещать на расстоянии не менее 0,5 диаметра вентилятора от его рабочего колеса.

11.50. При расположении градирен на покрытиях зданий необходимо предусматривать жалюзи на воздуховходных окнах градирен.

11.51. Конструкция обшивки каркаса градирни должна исключать возможность подсасывания наружного воздуха.

11.52. Вентиляторные градирни надлежит принимать секционными с забором воздуха с двух сторон или односекционными с забором воздуха по всему периметру.

11.53. Площадь входных окон градирни должна составлять 34-45 % площади градирни в плане.

11.54. Форму градирен в плане следует принимать: у секционных вентиляторных градирен - квадратную или прямоугольную с соотношением сторон не более 4:3, у односекционных и башенных - круглую, многоугольную или квадратную.

11.55. Для предотвращения обледенения градирен в зимнее время необходимо предусматривать возможность повышения тепловой и гидравлической нагрузок за счет отключения части секций или градирен, уменьшения подачи холодного воздуха в ороситель.

11.56. Для поддержания необходимой температуры охлажденной воды в зимнее время следует предусматривать устройства для сброса теплой воды в водосборный резервуар градирни.

11.57. Конструкции градирен надлежит принимать:

каркас - из железобетона, стали или дерева;

обшивку - из дерева, асбестоцементных или пластмассовых листов;

ороситель - из дерева, асбестоцемента или пластмассы;

водоуловительные устройства - из дерева, пластмассы или асбестоцемента;

водосборные резервуары - из железобетона.

Деревянные конструкции должны быть антисептированы невымываемыми антисептиками, при применении древесины мягколиственных пород - модифицированы (пропитаны специальными растворами).

Металлические конструкции должны быть защищены антикоррозионными покрытиями согласно СНиП 2.03.11-85.

Железобетонные конструкции должны выполняться из марок бетона по морозостойкости и водопроницаемости, указанных в п. 14.24.

Использование: в области охлаждения оборотной воды в оборотных системах водяного охлаждения закрытой теплообменной аппаратуры и может быть использовано в коксохимической, нефтехимической, химической, теплоэнергетической и других отраслях промышленности. Сущность: изобретение направлено на повышение эффективности охлаждения оборотной воды за счет разделения потоков направляемой на охлаждение нагретой воды по температуре и подачи их на разные по высоте уровня градирни. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для охлаждения воды и может быть использовано в любой отрасли промышленности, где применяется закрытая теплообменная аппаратура, в которой материальные потоки охлаждаются водой. Известно техническое решение согласно которому нагретая вода, поступающая в градирню из теплообменной аппаратуры, делится в ней или перед ней на два потока, один из которых перед контактом с воздухом проходит через рубашку, размещенную в нижней части градирни, для предотвращения в зимнее время обмерзания окон и приямка градирни. Другой поток сразу поступает в градирню на контактирование с воздухом. Известно также техническое решение, взятое авторами в качестве прототипа, согласно которому оборотная система водяного охлаждения закрытой теплообменной аппаратуры включает градирню, соединенную с закрытой теплообменной аппаратурой одним трубопроводом, по которому нагретая вода из теплообменников поступает в градирню для охлаждения на один уровень по высоте одним потоком Недостатком обоих известных технических решений является низкая эффективность охлаждения оборотной воды. Задачей предполагаемого изобретения является повышение эффективности охлаждения оборотной воды в оборотной системе водяного охлаждения закрытой теплообменной аппаратуры. Это достигается тем, что в оборотной системе водяного охлаждения закрытой теплообменной аппаратуры, включающей градирню, связанную с теплообменными аппаратами трубопроводом подачи нагретой воды в градирню и трубопроводом подачи охлажденной воды из градирни в теплообменные аппараты, градирня связана с теплообменными аппаратами, объединенными по температуре нагретой воды в группы и/или с единичными теплообменными аппаратами с разной температурой нагретой воды, причем каждая группа теплообменных аппаратов или единичные теплообменные аппараты с разной температурой нагретой воды соединены с градирней отдельными турбопроводами подачи в нее нагретой воды от каждой группы теплообменных аппаратов или от единичных теплообменных аппаратов и указанные трубопроводы нагретой воды подключены к градирне на разных уровнях, при этом трубопроводы подачи нагретой воды от групп теплообменных аппаратов с более высокой температурой нагретой воды присоединены к градирне на более высоком уровне по ее высоте, чем трубопроводы от групп или единичных теплообменных аппаратов с более низкой температурой нагретой воды. Задача решается также за счет того, что все трубопроводы нагретой воды, поступающей из групп теплообменных аппаратов или единичных теплообменных аппаратов на разные по высоте уровни градирни, соединены друг с другом попарно двумя трубопроводами-перемычками, на каждом из которых и на трубопроводах нагретой воды установлена запорная трубопроводная арматура, причем те концы трубопроводов-перемычек, через которые при переключении потоков вода отводится из трубопроводов нагретой воды, присоединены к ним в точках, находящихся между установленной на трубопроводах нагретой воды трубопроводной арматурой и теплообменной аппаратурой, а те концы трубопроводов-перемычек, через которые вода поступает в трубопроводы нагретой воды, присоединены к ним в точках, расположенных между градирней и трубопроводной арматурой. Установка нескольких трубопроводов для подачи нагретой в теплообменной аппаратуре до разных температур воды от теплообменных аппаратов в градирню с присоединением этих трубопроводов к градирне на разных по высоте уровнях и подача на более высокий уровень по высоте градирни нагретой оборотной воды с более высокой температурой, чем температура оборотной воды, отводимой от других групп теплообменных аппаратов на более низкие уровни градирни, позволяет повысить эффективность охлаждения оборотной воды (в силу определенных закономерностей теплофизического процесса охлаждения воды в градирне). При этом уровень по высоте градирни, на который выведен трубопровод нагретой воды, должен быть тем выше, чем выше температура воды, направляемой по этому трубопроводу. Установка трубопроводов-перемычек, соединяющих между собой трубопроводы, по которым нагретая в теплообменной аппаратуре оборотная вода поступает на охлаждение в градирню, и трубопроводной запорной арматуры на трубопроводах нагретой воды и трубопроводах-перемычках позволяет переключать с одного уровня градирни по высоте на другой потоки нагретой оборотной воды при изменении ее температуры на выходе из теплообменных аппаратов с целью восстановления первоначального распределения потоков нагретой воды на разных уровнях градирни таким образом, чтобы на более высокий уровень градирни поступала нагретая оборотная вода с более высокой температурой, чем поток оборотной воды, поступающий на более низкий уровень. А это, в свою очередь, повышает эффективность охлаждения воды в оборотной системе. Переключение потоков нагретой оборотной воды с одного уровня градирни по высоте на другой уровень (с более высокого на более низкий и наоборот) обеспечивается так, что те, образующиеся в результате врезки трубопроводов-перемычек в трубопроводы нагретой воды отверстия, через которые вода отводится из трубопроводов нагретой воды, находятся между установленной на них трубопроводной арматурой и теплообменной аппаратурой, а те отверстия, через которые при переключении потоков вода по трубопроводам-перемычкам поступает в трубопроводы нагретой воды, находятся между установленной на них трубопроводной арматурой и градирней. Предложенное решение поясняется схемой оборотной системы водяного охлаждения закрытой теплообменной аппаратуры, представленной на чертеже. Оборотная система включает градирню 1 и три группы теплообменных аппаратов 2-4, соединенные с градирней трубопроводами 5-7, по которым нагретая вода из теплообменных аппаратов поступает на разные уровни по высоте градирни, трубопроводы-перемычки 8-13, трубопроводную арматуру 14-16 (установленную на трубопроводах 5-7) и насос 17 подачи охлажденной воды в теплообменные аппаратуры 2-4 по трубопроводу 18. Теплообменные аппараты объединены в группы 2-4 по температуре нагретой воды на выходе из них. В группу 2 включены теплообменники с наиболее высокой температурой нагретой воды на выходе из них, в группу 4 с наиболее низкой. Трубопроводы 5-7 попарно соединены двумя трубопроводами-перемычками: трубопроводы 5 и 6 соединены трубопроводами-перемычками 8 и 9; трубопроводы 5 и 7 соединены трубопроводами-перемычками 10 и 11; трубопроводы 6 и 7 соединены трубопроводами-перемычками 12 и 13. На каждом из трубопроводов 5-7 имеется трубопроводная арматура (задвижка или вентиль) 14-16, расположенная между местом врезки в трубопроводы 5-7 концов трубопроводов-перемычек 8-13 таким образом, что по одну сторону от трубопроводной арматуры 14-16, между нею и теплообменной аппаратурой 2-4, врезаны те концы трубопроводов-перемычек, через которые вода в случае изменения ее температуры на выходе из теплообменных аппаратов при переключении потоков отводится из одного трубопровода нагретой воды в другой, а по другую сторону от трубопроводной арматуры, между нею и градирней, врезаны те концы трубопроводов-перемычек, через которые вода поступает в трубопровод нагретой воды. На каждом трубопроводе-перемычке также установлена трубопроводная арматура. Эффективность предложенного решения иллюстрируется следующими примерами. Пример 1. Охлаждение оборотной воды осуществляется в вентиляторной градирне 1 высотой 20 м (см. чертеж). Нагретая вода с температурой 80 o C по трубопроводу 5 из группы теплообменников 2 в количестве 800 м 3 /ч поступает на верхний уровень градирни (находящийся на отметке 15,5 м, или на 2,5 м выше уровня подачи в градирню нагретой воды по трубопроводу 6). По трубопроводу 6 в градирню поступает оборотная нагретая вода с температурой 40 o C в количестве 2550 м 3 /ч из групп теплообменников 3. Группа теплообменников 4 временно отключена от охлаждаемых материальных потоков и от градирни 1. Температура охлажденной воды в трубопроводе 18 после градирни равна 23 o C. Температура оборотной воды после градирни в оборотной системе, работающей по схеме, соответствующей прототипу равна 27 o C. Таким образом, температура охлажденной воды согласно предложенному техническому решению на 4 o ниже, чем по прототипу Следовательно, эффективность предложенного решения выше, чем эффективность решения по прототипу. Пример 2. Температура оборотной воды на выходе из теплообменников 2 понизилась с 80 до 35 o C (одновременно ее расход увеличился от 500 м 3 /ч до 2400 м 3 /с), а температура нагретой оборотной воды, поступающей в градирню из теплообменников 3 по трубопроводу 6, повысилась с 40 до 68 o C (одновременно расход ее уменьшился от 2500 м 3 /ч до 780 м 3 /с). В этом случае переключают потоки таким образом, что в результате переключения нагретая оборотная вода от теплообменников 3 поступает на верхний уровень градирни по трубопроводу 5 (точнее по его участку, расположенному между запорной арматурой и градирней), а оборотная вода от теплообменников 2 поступает на нижний уровень градирни по трубопроводу 6 (точнее по его участку, расположенному между запорной арматурой и градирней). Для этого закрывают задвижку 14 на трубопроводе 5 и задвижку 15 на трубопроводе 6 и открывают задвижки на трубопроводах-перемычках 8 и 9. Температура охлажденной воды в результате переключения потоков снизилась от 28 до 24 o C, то есть на 4 o C. Таким образом, предложенное решение, включающее группирование (объединение) теплообменных аппаратов по температуре нагретой воды и соединение каждой из указанных групп теплообменных аппаратов (или единичных теплообменников) отдельными трубопроводами нагретой воды с гардирней, выведенными на разные ее уровни по высоте так, что уровень этот тем выше, чем выше температура нагретой воды, а также соединение каждой пары трубопроводов нагретой воды двумя трубопроводами-перемычками позволяет существенно повысить эффективность охлаждения оборотной воды в оборотной системе водяного охлаждения закрытой теплообменной аппаратуры по сравнению с известным решением. Предлагаемое изобретение применимо в тех оборотных системах водяного охлаждения закрытой теплообменной аппаратуры, которые включают не менее двух групп или двух единичных теплообменных аппаратов, отличающихся друг от друга теплотехническими характеристиками охлаждаемых материальных потоков, а следовательно, и температурой нагретой оборотной воды (что в производственных условиях наблюдается достаточно часто).

Формула изобретения

1. Оборотная система водяного охлаждения закрытой теплообменной аппаратуры, включающая градирню, связанную с теплообменными аппаратами трубопроводом подачи нагретой воды в градирню и трубопроводом подачи охлажденной воды из градирни в теплообменные аппараты, отличающаяся тем, что градирня связана с теплообменными аппаратами, объединенными по температуре нагретой воды в группы, и/или с единичными теплообменными аппаратами с разной температурой нагретой воды, причем каждая группа теплообменных аппаратов или единичные теплообменные аппараты с разной температурой нагретой воды соединены с градирней отдельными трубопроводами подачи в нее нагретой воды от каждой группы теплообменных аппаратов или от единичных теплообменных аппаратов и указанные трубопроводы нагретой воды подключены к градирне на разных уровнях, при этом трубопроводы подачи нагретой воды от групп теплообменных аппаратов или единичных теплообменных аппаратов с более высокой температурой нагретой воды присоединены к градирне на более высоком уровне по ее высоте, чем трубопроводы от групп или единичных теплообменных аппаратов с более низкой температурой нагретой воды. 2. Система по п.1, отличающаяся тем, что все трубопроводы нагретой воды, поступающей из групп теплообменных аппаратов или единичных теплообменных аппаратов на разные по высоте уровни градирни, соединены друг с другом попарно двумя трубопроводами-перемычками, на каждом из которых и на трубопроводах нагретой воды установлена запорная трубопроводная арматура, причем те концы трубопроводов-перемычек, через которые при переключении потоков вода отводится из трубопроводов нагретой воды, присоединены к ним в точках, находящихся между установленной на трубопроводах нагретой воды трубопроводной арматурой и теплообменной аппаратурой, а те концы трубопроводов-перемычек, через которые вода поступает в трубопроводы нагретой воды, присоединены к ним в точках, расположенных между градирней и трубопроводной арматурой.

Классификация

-испарительные

-поверхностные (радиаторные)

ИСПАРИТЕЛЬНЫЙ ТИП ОХЛАДИТЕЛЕЙ ОБОРОТНОГО ПРОМВОДОСНАБЖЕНИЯ

Испарительные охладители

По способу подвода к ним воздуха делятся на:

-открытые (водохранилища-охладители, брызгальные бассейны, гардирни) – движение воздуха происходит ветром и естественной конвекцией.

-башенные (башенные градирни) – движение воздуха за счет естественной тяги создаваемой высокой натяжной башней.

-вентиляторные (вентиляторные градирни) – принудительная подача воздуха с помощью нагнетательных или отсасывающих вентиляторов.

Водохранилища – охладители

По назначению, расположению и условием питания различают следующие группы:

А) регулирующие водохранилища на водотоках. Используются для охлаждения циркуляционной воды и для многолетнего регулирования стока.

Б) Водохранилища на водотоках без регулирования стока

В) Водохранилища на естественных озерах и прудах

Г) Наливные водохранилища вне водотока с подпиткой из ближайших рек

Проектирование основных сооружений водохранилища-охладителя

Проектирование дамб, водосбросов и каналов производят по нормам проектирования гидротехнических сооружений.



Место расположения водосбросных, водозаборных, струераспределительный и струенаправляющих сооружений выбирают исходя из условий получения необходимой площади активной зоны(w акт) , на основе технико-экономических расчетов.

Струенаправляющие и струераспределяющие сооружения выполняют в виде водосливов, мостов, труб, консольных водосбросов, фильтрующих дамб из каменной наброски.

Наиболее рациональным сооружением для забора воды из водохранилища глубиной более 4-5м – называется глубинный водозабор , обеспечивающий прием воды из придонных слоев. Его преимущества:

Достигается наиболее низкая температура забора воды.

Предотвращается или значительно сокращается захват биологических загрязнений

Резко уменьшается захват рыбы и мольков

Достигается наиболее рациональная продувка водохранилища

Обеспечивается бесперебойная подача воды потребителю при шуговых (ледяная крошка) явлениях без принятия мер по обогреву водозаборов.

Брызгальные бассейны

Основным элементом брызгального бассейна является брызгальное устройство – это система сопл, разбрызгивающих под напором подводимую к ним воду. При этом суммарная поверхность капель должна быть достаточной для охлаждения воды при ее испарении. Происходящий процесс достаточно сложен, что затрудняет разработку теоретических методов их теплового расчета. Для определения температуры охлажденной воды используют эмпирические зависимости.

Брызгальные устройства располагают над искусственным бассейном или над естественным водосливом. Иногда для дополнительного охлаждения над водохранилищем-охладителем при его ограниченных размерах. Применяется два основных типа сопл:

-центробежные - вода проходит по спирали, разбрызгивается под действием центробежной силы. Выполняются из ковкого чугуна или пластмассы.



-щелевые - из отрезков газовых труб на конце которых деляют прорези в виде щели, образующиеся зубцы отгибают к оси, чтобы получился конус с небольшим отверстием в вершине.

Конструкция сопла и величина напора воды пред ними определяют поверхность охлаждения водяного факела. При повышении напора она увеличивается из-за удлинения траектории полета капель, уменьшая их диаметр. Однако увеличение напора повышает затраты на электроэнергию и увеличивает унос капель ветром за пределы бассейна.

Сопла располагаются на высоте 1,2-1,5 м над уровнем воды по одному или группами по 3-5 шт на определенном расстоянии.

Распределительные трубопроводы присоединяют к коллектору.

Трубопроводы изготавливают из стали и прокладывают над или под уровнем воды. При прокладке под водой упрощается конструкция опор и устраняется опасность обледенения в зимнее время, но усложняется ремонт и наблюдение за ними.

Размеры и расположение брызгальных устройств определяется расходом охлаждаемой воды и плотностью орошения, то есь расходом воды на 1м2 площади брызгального устройства. Плотность орошения 0,8-1,3м/ч.

Для эффективного продувания ветром распределительные линии брызгальных устройств размещают параллельно направлению господствующих ветров. Расстояние между крайними соплами на одной линии менее до 45м.

Бассейн состоит не менее чем из двух секций, глубина воды порядка 1,5м, превышение бровки не менее 0,3м. Одежда откосов и дна бассейна должна предотвращать фильтрацию через них воды. При слабоводопроницаемых грунтах – облицовка из ж/б плит или слой асфальтобетона. При сильно водопроницаемых грунтах по подготовке из бетона укладывают слой гидроизоляции, сверху – бетонные или ж/б плиты. Вокруг бассейна – асфальтированная площадка шириной 3-5м, с уклоном в сторону от бассейна.

Градирни

Необходимая для охлаждения воды площадь ее соприкосновения создается на оросителях. Оросители бывают:

-капельный Такой ороситель состоит из большого числа деревянных реек треугольного или прямоугольного сечения расположенных ярусами. При падении капель с верхних реек на нижние образуется факел мелких брызг создающий большую поверхность воды с воздухом.

-пленочный состоит из щитов установленных вертикально или под небольшим углом. Вода стекает по поверхности щитов, образуя пленку 0,3-0,5мм. Щиты выполняют или из отдельных досок на некотором расстоянии друг от друга или сплошные из хорошо смачивающихся материалов. Для создания сплошной пленки ни нижней кромке щита делают треугольные вырезы (фестоны), которые сосредотачивают стекающую воду в струйки и растягивают пленку по поверхности щита. Предпочтительнее капельного, но на его изготовление идет больше материалов.

-комбинированные (или капельно-пленочные) при конструировании оросителя стремятся к улучшению сопротивления воздуха так как это увеличивает расход воздуха через градирню и ускоряет процесс охлаждения воды.

Иногда вместо оросителей применяют высоконапорные разбрызгивающие сопла, но они менее эффективны из-за меньшей площади контакта воды с воздухом.

В поперечноточном оросителе воздух проходит горизонтально поперек стекающих вниз пленок или падающих капель воды.

В противоточном – воздух движется вверх навстречу стекающей воды.

Распространены оросители из плоских или волнистых асбестоцементных листов с каркасом из сборного ж/б-на и пластмассовые оросители.

Во избежание обледенения оросителей зимой уменьшают поступление воздуха в градирню или обливают теплой водой участки оросителя вблизи воздухо-входных окон.

Виды градирен

Открытые градирни

Бывают двух типов:

Брызгальные. Небольшой брызгальный бассейн огражденный со всех сторон железобетонными решетками, которые препятствуют большому выносу брызг воды за пределы градирни. Разбрызгивающие сопла небольшой пропускной способности на высоте 4-5 м над уровнем воды в бассейне и направляются вниз. Плотность орошения: 1,5 – 3м/(ч*м2).

С капельным оросителем имеют оросители из деревянных брусков между жалюзийными стенками. Водораспределительное устройство состоит из системы труб с соплами. Плотность орошения 2-4м/(ч*м2).

Башенные градирни

Выполняют в виде вытяжных башен для создания естественной тяги за счет разности удельного веса наружного воздуха, поступающего в градирню и нагретого увлажненного воздуха, выходящего из градирни. При противоточных оросителях вытяжные башни сооружают над ними. Поперечноточные оросители расположены кольцом вокруг башни.

Площадь сечения должна быть не менее 30-40% от площади оросителя. Башни малых и средних по производительности градирен могут быть: цилиндрическими, формы усеченного конуса или формы усеченной многогранной пирамиды. Башни крупных градирен в виде оболочек гиперболической формы, которые наиболее рациональны по условиям устойчивости и внутренней аэродинамики. Применяют каркасно-обшивные и монолитные башни.

В каркасно-обшивных каркас выполняют из стальных элементов и сварки, а обшивку из деревянных щитов асбестоцементных волнистых листов или листового алюминия.

Обычно башни опираются на рамную конструкцию которую называют колоннадой, между стойками которой проходит воздух. Под оросителями градирни устраивают водосборный резервуар из монолитного ж/б с гидроизоляцией внутренней поверхности. Охлажденная вода подается по стоякам в водораспределительное устройство, размещаемого в центре градирни.

Вентиляторные градирни

Два основных типа:

Башенные – оборудованные вентиляторами большой производительности с использованием естественной тяги воздуха. В башенных градирнях вентиляторы устанавливают в горловине башни.

Секционные – из стандартных секций, обслуживаемых вентиляторами.

Для уменьшения уноса капель за пределы градирни применяют водоуловительные жалюзийные решетки. Воздух выходит с одной или двух сторон. Каждая секция оборудуется отсасывающим или нагнетательным вентилятором. Отсасывающие вентиляторы, устанавливаемые над оросителем, обеспечивают более равномерное распределение воздуха не обмерзает зимой так как находится в зоне теплого воздуха. Нагнетательные устанавливают на входном отверстии градирни у ее основания.

Вентиляторные градирни – удобно, но дорого.

Потери воды в охладителях

При охлаждении воды в испарительных охладителях часть ее теряется на испарение, величина потерь определяется по формуле в % от циркуляционного расхода:

k – коэффициент учитывающий долю теплоотдачи испарению в общем процессе теплоотдачи в охладителе (см табл)

Dt- перепад температур, градус

Кроме потерь на испарение часть воды уносится с воздухом в виде капель за пределы градирни, процесс называется– капельный унос.

Потери на унос в % от циркуляционного расхода составляют:

Брызгальные бассейны с пропускной способностью до 500м/ч: 2-3%,

Более 500м/ч: 1,5-2%;

Открытые и брызгальные градирни: 0,5-1,5%,

Башенные градирни: 0,5 – 1%,

Вентиляторные градирни при наличии водоуловителей 0,3-5%.

Выбор типа охладителя

Производится на основе технико-экономического уравнений различных типов, в них учитывают:

Показатели работы снабжаемого водой оборудования

Требования технологии промышленных предприятий к температуре охлаждающей воды

Гидрологические условия

Метеорологические условия

Геологические условия

Топографические условия

Качество и стоимость добавочной воды

Открытые градирни

Небольшие размеры, особенно при малых расходах воды

Применяют, когда не требуется постоянной температуры охлажденной воды

Низкий охладительный эффект

Башенные градирни

Обеспечивают более устойчивое охлаждение и более низкие температуры воды

Компактно размещаются на площадке промпредприятия

Могут применяться при различных расходах воды

Высокая строительная стоимость и сложность сооружения

(обычно применяются для крупных промышленных предприятий)

Вентиляторные градирни

Обеспечивают наиболее глубокое и стабильное охлаждение воды

В летнее время охлаждает до более низких температур чем другие охладители

Возможно регулирование температуры воды путем изменения частоты вращения или отключения отдельных вентиляторов

Имеют обычно меньшую строительную стоимость, компактно размещаются на площадке промпредприятия

Большой расход электроэнергии

Сложность эксплуатации механического и электрического оборудования

Увлажненный воздух из градирен распространяется низко над землей, образуя туман и вызывая обледенение окружающих строений

Целесообразно применение, когда технологические процессы предприятия не требуют низкой и стабильной температуры охлаждаемой воды, а также в районах с жарким и влажным климатом

Роль воды на предприятии

На предприятии вода расходуется на:

-технологические нужды. Используется как правило для вспомогательных целей и в состав продукции входит лишь на некоторых производствах в небольших количествах. В соответствии с ролью, выполняемой водой в системах производственного водоснабжения делятся на 4 категории:

1. вода для охлаждения оборудования и продукта в теплообменных аппаратах без соприкосновения с продуктом. Вода только нагревается и практически не загрязняется.

2. Как среда, поглощающая и транспортирующая примеси (без нагрева): обогащение полезных ископаемых, гидротранспортирование. Загрязняется механическими и растворенными примесями.

3. В качестве охладителя транспортной среды и поглотителя примесей: улавливание и очистка газа, гашение кокса и прочее. Вода нагревается и загрязняется.

4.Для растворения реагентов, получения пара. В основном входит в технологическом продукт и лишь часть загрязняется.

-хозяйственно-питьевые нужды;

-полив территории и зеленых насаждений;

-пожаротушение.

Требования к качеству воды

Хозяйственно-питьевая соответсвует СанПиН. Качество воды на пожаротушение не регламентируется.

Качество воды на производтсвенные нужды устанавливается в конкретном случае в зависимости от назначения воды, требования технологического процесса сырья, и применяемого оборудования готового продуктопроизводства. Главное при технологическом нормировании качества воды – условия применения воды в системах производственного водоснабжения, чтобы вода не нарушала технологического процесса и санитарно-технического состояния рабочих мест. В соответствии с этим выдвигаются следующие требования:

Должна быть безвредной для персонала

Должна иметь хорошие органолептические свойства

Не должна ухудшать качества продукции

Не должна вызывать коррозию аппаратуры, трубопроводов и сооружений

Не должна давать карбонатных и других солевых отложений

Не должна способствовать биологическим и другим видам обрастаний

Не должна снижать технико-экономические показатели производственного процесса

Не должна создавать аварийные ситуации

Требования могут быть различными в зависимости от вида производства!

Обезжелезивание воды

Железо в природе встречается в виде ионов 2+ и 3+ в виде компонентов и взвеси неорганического и органического происхождения.

В подземных водах при отсутствии растворенного кислорода находится в виде иона 2+, в поверхностных в виде коллоидов и высокодисперсных и гуматных органических компонентов. При рН до 4,5 железо находится чаще всего в виде ионов, при рН более 4,5: Fe 2+ -> Fe 3+ -> Fe(OH) 3 ¯.

Скорость окисления возрастает при наличии в воде катализаторов. Катализаторами могут быть:

Ионы Cu 2+ Mg 2+ PO4 3- ,

При контакте воды с оксидами марганца или уже образовавшимся Fe(OH)3

C повышением рН.

Методы обезжелезивания: реагентные и безреагентные. (Безраегентные – без участия кислорода воздуха).

Метод обезжелезивания выбирается технологическим анализом, пробного обезжелезивания и пробной установки непосредственно у источника.

По результатам опытного обезжелезивания с учетом опыта существующих выбирают метод который дает лучший эффект при наименьших затратах.

Безреагентные :

1.Упрощенной аэрации – разбрызгивание с определенной высоты обрабатываемой воды над обычным скорым фильтром или промежуточным резервуаром. Происходит окисление Fe 2+ с образованием Fe(OH)3. С применением безнапорных и напорных фильтров.

2. Метод интенсивного аэрирования – применяется если первый метод не дает необходимого эффекта. Способствует интенсивному удалению угольной кислоты. Применяются: установки с барботажем воздуха, брызгальные установки, вакуум-эжекционный аппарат.

3. Обезжелезивание в пласте – Виредокс. (см лекции) В зависимости от пород возможна кальватация (забивание пор породы) поверхности водоупора и не дает не обходимого расхода.

Реагентные:

1.Обработка сильными окислителями. Используется для разрушения комплексных соединений железа. Необходимо обеспечить определенное время контакта воды с окислителем. Используют контактные камеры

2.Подщелачивание (чаще с использованием извести – известкование) При введении щелочи возрастает рН (более 7) и железо удаляется быстрее. Окисление производится кислородом! Применяется для удаления из воды высококонцентрированных устойчивых форм железа, что достигается после разрушения железо-органических комплексов.

3.Метод фильтрования через модифицированную загрузку. Основан на том, что процесс окисления железа значительно ускоряется в присутствии оксидов марганца. Модифицированную загрузку получают из обычной (например, кварцевый песок) обработкой перманганатом калия. В результате образовавшаяся пленка является катализатором окисления железа.

4.Метод ионного обмена. Отличие от предыдущих в том, что основан не на окислении, а на замещении ионов. Используется для обезжелезивания и умягчения воды – кальциевый катионит Са[кат] 2 .

ОХЛАЖДАЮЩИЕ УСТРОЙСТВА. СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ.

Классификация

Использование воды в охлаждении в промышленных целях по масштабам превосходит все остальные виды потребления. В оборотной системе водоснабжения промышленных предприятий более 80% всей циркулирующей воды нагревается и подлежит последующему охлаждению до исходной температуры перед последующим применением. Для этого используются охлаждающие устройства, которые охлаждают до температур отвечающим оптимальным технико-экономическим показателям работы.

Понижение температуры в охладителе происходит за счет передачи тепла воздуху. По способу передачи тепла охладители делятся на

-испарительные – охлаждают воду испарением при непосредственном контакте с воздухом, при этом испарение 1% воды снижает температуру на 6 градусов.

-поверхностные (радиаторные) – охлаждение происходит за счет передачи тепла воздуха через стенку трубок – радиаторов, внутри которых она проходит без контакта с воздухом.

Испарительные охлаждают и увлажняют, радиаторные только охлаждают!

Так как теплоемкость и влагоемкость воздуха не велика, то для охлаждения требуется интенсивный воздухообмен. Для снижения 40 градусов до 30 при температуре воздуха 25 градусов на 1м3 охлаждаемой воды к испарительному охладителю нужно подвести 1000м3 воздуха а к радиаторному 5000м3.

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

Установки охлаждения оборотной воды (УООВ)


НАЗНАЧЕНИЕ

Установка охлаждения оборотной воды (далее именуемая «УООВ») предназначена для охлаждения технологической воды в системах оборотного водоснабжения энергопотребляющего оборудования (теплообменные аппараты компрессорных установок, конденсаторы холодильных машин, кондиционеры, термопласт-автоматы, станки, поточные линии, технологическое оборудование в промышленности, радиоэлектронное оборудование и т. п.).

N и Q – поток энергии и теплоты от внешних источников;

Q1 – поток теплоты, переданный воде при осуществлении рабочего процесса;

Q2 – поток теплоты, рассеянный в атмосфере при охлаждении воды в градирне УООВ.

Рабочие процессы в энергопотребляющем оборудовании, как правило, требуют отведения и рассеяния в окружающей среде тепловых потоков (рис.1). Сначала через теплообменные аппараты и охлаждаемые узлы оборудования пропускают наиболее эффективный промежуточный теплоноситель – воду. Вода в них нагревается. Для того, чтобы многократно использовать одну и ту же воду в замкнутом контуре оборотного водоснабжения, ее необходимо охладить. Имеется только один способ это сделать – рассеять тепловой поток в атмосферном воздухе. Применение УООВ позволяет не только решить данную задачу, но и значительно снизить энергозатраты и потребление сетевой воды.

2. УСЛОВИЯ ЭКСПЛУАТАЦИИ

2.1 Климатическое исполнение У1 по ГОСТ 15150-69:

    предельные рабочие температуры воздуха от +45 до -50°С; относительная влажность воздуха в наиболее теплый и влажный период 80% при 20°С в течение шести месяцев; содержание пыли в воздухе не более 0,01 г/м3; присутствие в воздухе липких и волокнистых веществ не допускается; тип атмосферы II - промышленная (содержание сернистого газа от 20 до 250 мг/м2сут., или 0,025 до 0,31 мг/м3; хлориды менее 0,3 мг/м2сут.).

2.2 Загрязнение охлаждаемой воды должно находиться в пределах обычных величин, характерных для технической воды оборотных циклов, показатель рН = 6…8.

2.3 Максимальная температура подаваемой на охлаждение воды непосредственно в УООВ: + 500С. Для охлаждения воды с температурой выше 500С необходимо согласование с предприятием-изготовителем. Предельная минимальная температура воды на выходе из УООВ: + 210С.

Примечание: Использование УООВ для охлаждения сильно загрязненных (в том числе маслами), подкисленных и щелочных вод должно быть согласовано с предприятием-изготовителем.

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1 Основные параметры приведены в табл.1.

3.2 Питание электродвигателей вентиляторов - от трехфазной сети напряжением 380 В, частотой 50 Гц. Электродвигатели имеют климатическое исполнение У2 и степень защиты IP54 по ГОСТ 14254-96. УООВ комплектуются односкоростными и многоскоростными электродвигателями вентиляторов. Перечень штатных электродвигателей приведен в табл. 2.

3.3 Тип вентиляторов - осевые серии ВО 06-300.

3.4 Установка может иметь моноблочную или раздельную сборку.

3.5 Блок-охладитель установки может быть изготовлен из нержавеющей стали.

Таблица 1


Основные показатели

Модель установки охлаждения оборотной воды

Расход охлаждаемой воды, м3/час

Тепловой поток,* кВт

Номинальное охлаждение воды,0С

Одноконтурное/двухконтурное

Количество форсунок, шт.

Количество вентиляторов, шт.

Диаметр рабочего колеса, мм

Частота вращения, об/мин

Установленная мощность электродвигателя, кВт






Расход воздуха, тыс. м3/час

Масса, кг

Габаритные размеры корпуса градирни, мм

2130х 2018х 3370

2227х 2938х 3367

Уровень звукового давления на расстоянии 10м, дБ(А)

* при температуре смоченного термометра 190С, относительной влажности 60% и охлаждении воды на 100С; пересчет на другие условия осуществляется по запросу.


Выбор УООВ и других элементов системы должен быть увязан в проекте с объектом охлаждения. В проекте также должны быть предусмотрены мероприятия по переводу системы на условия зимней эксплуатации. Если объект охлаждения относится к объектам высокой степени ответственности или особых условий эксплуатации, то в проекте должны быть предусмотрены резервные УООВ и разработаны специальные мероприятия по поддержанию работоспособности системы в зимний период.

Ответственность за обеспечение работоспособности УООВ в зимних условиях несет заказчик.

Таблица 2

Модель установки

Марки электродвигателя,

мощность, кВт/частота вращения, об/мин

Односкоростной электродвигатель

Многоскоростной электродвигатель

АИР63А4 0,25/1500

АИР80В6 1,1/1000

1,25/970 1,0/710

АИР80В4 1,5/1000

1,7/1420 1,0/710

АИР100L6 2.2/1000

1,8/960 1,32/710

3,0/1430 1,2/940 0,71/700

    наряду с указанными электродвигателями могут быть использованы электродвигатели иных моделей с соответствующими значениями мощности и частоты вращения, а также электродвигатели с частотным регулированием частоты вращения.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Установка охлаждения оборотного водоснабжения (УООВ) представляет собой систему, состоящую из следующих основных блоков:

    блок-охладитель (градирня), насосная группа, шкаф управления УООВ, емкость для оборотной воды, водяной фильтр с возможностью промывки фильтрующих элементов (дополнительная опция), устройства нехимической водоподготовки (дополнительная опция).

Градирни имеют прямоугольную форму с нижним боковым расположением вентиляторов.

Градирни моделей УООВ-4 … УООВ-16 состоят из неразъемного корпуса, вентилятора с электроприводом, бака для слива охлажденной воды, расположенного в нижней части корпуса, оросителя, каплеуловителя, водораспределительного коллектора с форсунками, входного и выходного (сливного) водяных патрубков.

Градирни моделей УООВ-24 … УООВ-350 являются составными и состоят из блока и бака, а в остальном комплектуются так же, как градирни моделей УООВ-4 … УООВ-16.

В градирне модели УООВ-350 вентиляторы крепятся на собственной раме и соединяются с диффузорами посредством гибкой вставки.

На всех моделях в баке над окнами диффузоров установлен наклонный козырек с отгибом вверх и гидравлическими уклонами от середины к боковым стенкам. Козырек служит для защиты оконных проемов от брызг и намерзания влаги в зимнее время на стенках проемов. В стандартном исполнении корпус градирни выполнен из нержавеющей стали марки 12Х18Н10Т. Трубчатый коллектор, несущая рама, вентиляторы с диффузорами могут быть изготовлены в двух вариантах: как из нержавеющей стали, так и из углеродистой стали с покраской.

Ороситель и каплеотделитель представляют собой пакеты гофрированных листов ПВХ толщиной 0,3 - 0,4 мм. Листы имеют косую гофру. Смежные листы уложены с встречным направлением гофры. В градирнях моделей УООВ-4 … УООВ-16 блок оросителя высотой 400 мм набирается из пакетов высотой 200 мм. В градирнях моделей УООВ–24 и УООВ-32 ороситель высотой 540 мм набирается из пакетов такой же высоты. В градирнях моделей УООВ-50…УООВ-350 ороситель высотой 940 мм набирается из пакетов высотой 400 и 540 мм.

Пакет каплеуловителя имеет толщину (в направлении потока воздуха) не менее 75 мм, ширина пакета 140 мм.

Пакеты оросителя укладываются на решетку внутри градирни над баком в один или в два слоя. Пакеты каплеуловителя укладываются на решетку, приваренную к водораспределительному коллектору между трубами коллектора и стенками корпуса. В моделях УООВ-50 … УООВ-350 укладываются два слоя каплеуловителя во взаимоперпендикулярных направлениях.

Охлаждаемая вода подается под давлением через входной патрубок в водораспределительный коллектор и распыляется цельнофакельными форсунками с углом распыла 120° на верхний торец пакета оросителя. Пройдя по каналам оросителя в виде пленки, вода струями стекает в бак. Воздух из окружающей среды подается вентилятором непосредственно в пространство под оросителем, проходит по каналам оросителя навстречу водяной пленке и через каплеуловитель покидает градирню.

Испарительное охлаждение воды происходит, главным образом, в каналах оросителя при противотоке воздуха и водяной пленки. Дополнительное охлаждение имеет место в баке и в пространстве между верхним срезом оросителя и форсунками. В жаркое время года при относительной влажности 50-60% минимальная температура охлажденной воды после градирни выше температуры “мокрого” термометра на 4-5°С. Для предотвращения значительного капельного уноса воды служит эффективный каплеуловитель. Затраты воды на испарение вместе с потерями через каплеуловитель (самые мелкие капли) составляет около 1% от расхода воды. Повышение относительной влажности воздуха против обычно нормируемых 50-60% сближает температуры воздуха по сухому и смоченному термометрам. При фиксированном расходе воздуха на 1 м3 воды это уменьшает долю испарительного охлаждения и повышает температурный уровень процесса в системе охлаждения относительно температуры окружающей среды.

Давление воды перед форсунками должно быть предусмотрено проектом системы водоснабжения. Количество форсунок в каждой модели указано в таблице 1.

Вентиляторы градирен могут быть укомплектованы двух - и трехскоростными электродвигателями (опция). В таблице 2 приведены марки одно-, двух - и трехскоростных электродвигателей для всех моделей градирен.

5. МЕРЫ БЕЗОПАСНОСТИ

5.1. При эксплуатации УООВ необходимо соблюдать правила технической эксплуатации электроустановок потребителей (ПТЭЭП) и межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ РМ-016-2001).

5.3. Работы по обслуживанию УООВ должен проводить специально подготовленный персонал.

5.4. Запрещается проводить работы по обслуживанию УООВ без снятия напряжения с электродвигателей.

6. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ, МОНТАЖУ И РЕМОНТУ

6.1 Для обеспечения нормальной эксплуатации установок охлаждения на предприятии должна быть разработана соответствующая инструкция для обслуживающего персонала. Периодические осмотры установок рекомендуется производить не реже, чем один раз в месяц.

6.2 Для размещения установки при раздельном монтаже под блок-охладитель предусматривается металлический каркас, исходя из размеров блока-охладителя.

6.3 При размещении установок на площадке учитывают характер застройки окружающей территории, а также направление господствующих ветров зимой и летом.

6.4 В целях уменьшения диаметров и протяженности трубопроводов, установки располагают с максимальным приближением к потребителям воды.

6.5 Текущие ремонты установок необходимо проводить по мере необходимости, но не реже одного раза в год, по возможности, в летний период. В объем текущих ремонтов входят работы, не требующие остановки УООВ на длительный срок, а именно очистка и ремонт водораспределительного устройства, трубопровода, канализации, сопел, каплеуловителя и оросителя. При капитальном ремонте выполняются все виды работ, требующие длительного отключения установки: устранение повреждений оросителя, ремонт либо замена вентиляторной или насосной группы и т. п.

6.6 При длительном нахождении установки в нерабочем состоянии необходимо перед пуском проверить сопротивление изоляции. Если его величина менее 0,5 МОм, следует просушить электродвигатели током короткого замыкания при пониженном напряжении или наружным обогревом. Температура сушки не должна превышать 1000С.

6.7 Не рекомендуется регулировать работу УООВ при положительных температурах воздуха периодическим отключением нагнетающих вентиляторов. Подаваемая форсунками вода эжектирует воздух и выталкивает его через вентиляторные окна. При высокой гидравлической нагрузке, характерной для градирен УООВ (20-30 м3/ч/м2), электродвигатели вентиляторов могут быть подвергнуты в этом случае воздействию водяных струй, тогда как их защита IP54 – защита от водяных брызг со всех сторон. Проникновение внутрь корпуса или клеммной коробки капельной влаги приведет к выходу двигателя из строя. Кроме того, длительное пребывание неработающего двигателя в потоке насыщенного влажного воздуха создает эффект «насасывания» влаги, т. е. диффузии водяного пара внутрь корпуса через зазоры вокруг вала. При накоплении внутри некоторой «критической» массы влаги может наступить пробой изоляции.

6.8 При установке УООВ внутри помещений необходимо соблюдать следующие требования. Забор воздуха из помещения с одновременным выбросом его в помещение недопустим, т. к. на выходе из градирни влажность воздуха близка к 100%. Через короткое время работы градирня перестанет охлаждать воду, а ограждения помещения станут влажными. Нельзя забирать воздух из помещения и выбрасывать его за пределы помещения, поскольку через ворота, окна, из других помещений воздух будет затекать в том же количестве. Зимой это будет холодный воздух, на подогрев которого придется тратить энергию. При установке градирни в помещении потребуется теплоизолированный воздуховод для подачи воздуха с улицы и такой же воздуховод для вывода его на улицу. Для компенсации связанных с этим потерь давления может потребоваться дополнительный вентилятор.

7. ЭКСПЛУАТАЦИЯ УООВ В ЗИМНЕЕ ВРЕМЯ

В зимнее время крайне опасно обмерзание оросителя, т. к. это может привести к его деформации и обрушению. Обмерзание начинается обычно при температуре наружного воздуха ниже –10°С и происходит в местах, где подаваемый в установку холодный воздух соприкасается с относительно небольшим количеством теплой воды (в местах с пониженной плотностью орошения).

Поэтому в зимний период не следует допускать колебаний тепловой и гидравлической нагрузок, необходимо обеспечивать равномерное распределение охлаждаемой воды по площади оросителя и не следует допускать понижения плотности орошения на отдельных участках. В связи с относительно большими скоростями входящего воздуха плотность орошения в вентиляторных градирнях УООВ в зимнее время целесообразно поддерживать не менее 10 м3/м2час.

Для предупреждения большого обмерзания градирен необходимо уменьшать поступление в градирню холодного воздуха. Чем ниже температура входящего воздуха или меньше тепловая нагрузка на градирню, тем меньше должен быть расход воздуха. Критерием для определения необходимого расхода воздуха может служить температура охлажденной воды. Если расход поступающего воздуха регулировать таким образом, чтобы температура охлажденной воды в градирне была не ниже 12°С … 15°С, то обледенение градирен УООВ обычно бывает невелико и не выходит за пределы допустимого.

Для уменьшения подачи холодного воздуха в градирню можно установить на входных патрубках вентиляторов дросселирующие устройства (диафрагмы, дисковые щиты и т. д.). При наличии нескольких вентиляторов на одной градирне дросселирующие устройства должны быть одинаковыми на всех вентиляторах. Того же эффекта можно добиться, перекрывая равномерно сечение верхнего среза градирни. Перекрытие окон вентиляторов или верхнего среза градирни можно поставить в зависимость от температуры воды на выходе из градирни.

Для водооборотных систем, использующих несколько градирен, в зимнее время можно отключать часть из них, перебрасывая воду на оставленные в работе. Это помогает уменьшить обледенение градирен. Отключение градирни должно быть полным и протекать в следующей последовательности: отключается вода, после чего отключаются вентиляторы. Коллектор с форсунками должны быть продуты сжатым воздухом, вентиляторы с электродвигателями демонтированы, верхний срез градирни закрыт щитами.

Нагнетательные вентиляторы подвержены обмерзанию. Это может быть вызвано рециркуляцией уходящего из градирни воздуха, содержащего мелкие капли воды (унос) и пар, который конденсируется при смешении с холодным наружным воздухом. Неравномерное образование льда на лопастях может привести к разбалансировке и вибрации вентилятора.

Нельзя регулировать работу в зимнем режиме периодическим отключением нагнетающих вентиляторов, т. к. при отсутствии избыточного давления в градирне подаваемая вода эжектирует воздух и выталкивает его через вентиляторные окна. При этом воздух выносит мелкие капли воды, которые замерзают на лопастях и обечайках вентиляторов. Кроме того, отключение вентиляторов способствует насасыванию влаги в электродвигатель.

Устройство обогревающего трубопровода (шланга) по периметру обечайки вентилятора с подачей в него части нагретой воды помогает предотвратить обмерзание обечайки работающего вентилятора при рециркуляции воздуха и в отдельных случаях обмерзание вентиляторов при их отключении. Возможен обогрев обечайки и с помощью гибкого электрического обогревателя мощностью не более 1 кВт.

8. ГАРАНТИЯ

7.1 Предприятие-изготовитель гарантирует надежную и бесперебойную работу УООВ при условии соблюдения правил транспортировки, монтажа и эксплуатации.

7.2 Срок гарантии 24 месяца со дня ввода УООВ в эксплуатацию.

7.3 В случае выхода УООВ из строя в период гарантийного срока предприятие-изготовитель принимает претензии только при получении от заказчика акта с технически обоснованными указаниями характера неисправностей. В акте обязательна информация о датах поставки, монтажа, пуска в эксплуатацию, условиях хранения УООВ до монтажа (на открытом воздухе, под навесом, на складе), о температуре и качестве воды, поступающей на охлаждение, ссылка на проект системы оборотного водоснабжения с указанием проектной организации.

В случае выхода УООВ из строя в зимний период необходимо перечислить мероприятия, которые были предприняты для предотвращения обледенения градирни УООВ, расход и температуру воды на входе и выходе.