Спектрофотометр для чего используется. Спектрофотометры. Технические характеристики и особенности моделей

Фотометрические исследования проводят с помощью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определенным веществом окрашенное соединение. Если раствор сравнения при этом остается бесцветным и, следовательно, не поглощает лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду.

Устройство и принцип действия фотометрических приборов рассмотрим на примере колориметра фотоэлектрического концентрационного КФК-2 и спектрофотометра СФ-46.

Однолучевой фотометр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания 100-5% (D = 0-1,3). Основная абсолютная погрешность измерения пропускания 1%.

Принципиальная оптическая схема фотоколориметра КФК-2 представлена на рис. 2.2.

Свет от галогенной малогабаритной лампы (1) проходит последовательно через систему линз, теплозащитный (2), нейтральный (3), выбранный цветной (4) светофильтры, кювету с раствором (5), попадает на пластину (6), которая делит световой поток на два: 10% света направляется на фотодиод при измерениях в области спектра 590-540 нм) и 90% - на фотоэлемент (при измерениях в области спектра 315-540 нм).

Характеристики светофильтров представлены в табл. 2.1.

Фотометр фотоэлектрический КФК-3 предназначен для измерения коэффициентов пропускания и оптической плотности прозрачных жидкостных растворов и прозрачных твердых образцов, а также для измерения скорости изменения оптической плотности вещества и определения концентрации вещества в растворах после предварительной градуировки фотометра. Принципиальная оптическая схема фотометра КФК-3 представлена на рис. 2.3.

Нить лампы (1) изображается конденсором (2) в плоскости диафрагмы Д1 (0,8 х 4,0), заполняя светом щель диафрагмы. Далее диафрагма Д1 изображается вогнутой дифракционной решеткой (4) и вогнутым зеркалом (5) в плоскости такой же щелевой диафрагмы Д 2 (0,8 х 4,0). Дифракционная решетка (6) и зеркало создают в плоскости диафрагмы Д 2 растянутую картину спектра. Поворачивая дифракционную решетку вокруг оси параллельной штрихам решетки, выделяют щелью диафрагмы Д 2 излучение любой длины волны от 315 до 990 нм. Объектив (7, 8) создает в кюветном отделении слабо светящийся пучок света и формирует увеличенное изображение щели Д 2 перед линзой (10). Линза (10) сводит пучок света на приемнике (11) в виде равномерно освещенного светового кружка. Для уменьшения влияния рассеянного света в ультрафиолетовой области спектра за диафрагмой Д1 установлен световой фильтр (3), который работает в схеме при измерениях в спектральной области 315-400 нм, а затем автоматически выводится. В кюветное отделение (между объективом 7, 8 и линзой 10) устанавливаются прямоугольные кюветы (9).

Фотометр предназначен для применения в сельском хозяйстве, медицине, на предприятиях водоснабжения, в металлургической, химической, пищевой промышленности и других областях. Пределы измерения коэффициента пропускания - 0,1-100%, оптической плотности - 0-3%.

Спектрофотометр СФ-46 предназначен для измерения спектральных коэффициентов пропускания жидких и твердых веществ в области спектра от 190-1100 нм.

Спектрофотометр СФ-46 - стационарный прибор, рассчитанный на эксплуатацию в лабораторных помещениях, без повышенной опасности поражения электрическим током.

Диапазон измерения спектральных коэффициентов пропускания от 1 до 100%.

Абсолютная погрешность измерения не превышает 1%, а стандартное отклонение пропускания - не более 0,1%.

В основу работы спектрофотометра СФ-46 положен принцип измерения отношения двух световых потоков: потока, прошедшего через исследуемый образец, и потока, падающего на исследуемый образец (или прошедшего через контрольный образец).

Световой пучок от осветителя попадает в монохроматор через входящую щель и разлагается дифракционной решеткой в спектр. В монохроматический поток излучения, поступающий из выходной щели в кюветное отделение, поочередно вводятся контрольный и исследуемый образцы. Излучение, прошедшее через образец, попадает на катод фотоэлемента в приемно-усилительном блоке. Электрические сигналы на резисторе, включенном в анодную цепь фотоэлемента, пропорциональны потокам излучения, падающим на фотокатод.

Усилитель постоянного тока с коэффициентом усиления, близким к единице, обеспечивает передачу сигналов на вход микропроцессорной системы (МПС), которая по команде оператора поочередно измеряет и запоминает напряжения UТ, U 0 и U, пропорциональные темновому току фотоэлемента, потоку, прошедшему через исследуемый образец. После измерения МПС рассчитывает коэффициент пропускания исследуемого образца по формуле

В режиме определения оптической плотности образца МПС начислит оптическую плотность по формуле

Значение измеренной величины высвечивается на цифровом фотометрическом табло.

На рис. 2.4 представлена структурная схема, а на рис. 2.5 - оптическая схема спектрофотометра СФ-46.


Излучение от источника (1 или Г) падает на зеркальный конденсатор (2), который направляет его на плоское поворотное зеркало (3) и дает изображение источника излучения в плоскости линзы (4), расположенной вблизи входной щели (5) монохроматора.

Прошедшее через входную щель излучение падает на вогнутую дифракционную решетку (6) с переменным шагом и криволинейным штрихом. Решетка изготовляется на сферической поверхности, поэтому, помимо диспергирующих свойств, она обладает свойством фокусировать спектр. Применение переменного шага и криволинейного штриха значительно уменьшает аберрационное искажение вогнутой дифракционной решетки и позволяет получить высокое качество спектра во всем рабочем спектральном диапазоне.

Дифракционный пучок фокусируется в плоскости выходной щели (7) монохроматора, расположенной над входной щелью (5). Сканирование осуществляется поворотом дифракционной решетки, при этом монохроматическое излучение различных длин волн проходит через выходную щель (7) и линзу (8), контрольный или исследуемый образец, линзу (9) и с помощью поворотного зеркала (10) попадает на светочувствительный слой одного из фотоэлементов (11 или 12).

Для обеспечения работы спектрофотометра в широком диапазоне спектра используются два фотоэлемента два источника излучения сплошного спектра.

Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется для измерения в области спектра от 186 до 700 нм, кислородно-цезиевый фотоэлемент - для измерения в области спектра от 600 до 1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим фотоэлементом, указывается в паспорте.

Спектрофотометры предназначены для измерения коэффициента пропускания, оптической плотности и концентрации веществ в жидких пробах и могут быть применены в лабораториях различного профиля.

Выбор приборов для проведения спектрофотометрических методик довольно-таки широк. Приборы отличаются, прежде всего спектральным диапазоном (видимая область спектра или область, включающая УФ), спектральной шириной щели, погрешностью и воспроизводимостью установки длины волны, наличием сканирования спектров, комплектацией, типом установки длины волны (ручная или автоматическая — программная) и т.д.

Производители спектрофотометров и основные модели

Среди приборов, продающихся на российском рынке, можно выделить следующие модели и производителей:

(модели В-1100, УФ-1100, УФ-1200, УФ-3000, УФ-3100, УФ-3200, УФ-6100). Производятся в Китае по заказу и под контролем российской компании «Промышленные экологические лаборатории».

— Спектрофотометры серии ПЭ (ПЭ-5300ВИ, ПЭ-5400ВИ, ПЭ-5400УФ). Приборы производятся российской компанией «ЭКРОСХИМ».

— Спектрофотометр КФК-3-01 (Концентрационный фотоэлектрический фотометр). Данный прибор производится Загорским оптико-механическим заводом (ЗОМЗ) и является усовершенствованной моделью КФК-3, который применялся практически в любой лаборатории СССР.

— Спектрофотометр КФК-3КМ производства «ЮНИКО-СИС», Россия.

— Спектрофотометры СФ-56 и СФ-2000 для работы в диапазоне 190–1100 нм. Приборы производятся российской компанией «ОКБ Спектр»

— Спектрофотометры UNICO (модели 1201, 1205, 2100, 2800, 2802, 2802S, 2804, 2100UV). Производитель United Products & Instruments, Inc.», США, дистрибьютор в России — компания «ЮНИКО-СИС»

— Спектрофотометры LEKI (модели SS1104, SS1207, SS1207 UV, SS2107, SS2107UV, SS2109UV, SS2110UV). Приборы производятся MEDIORA, Финляндия, дистрибьютором в России является компания «Лабораторное оборудование и приборы».

Все указанные приборы внесены в реестр средств измерения и могут быть использованы в аккредитованной лаборатории.

Технические характеристики и особенности моделей

Ниже будут рассмотрены основные технические характеристики, особенности и цена наиболее популярных моделей спектрофотометров.

Спектрофотометры B-1100 и УФ-1100 серии Эковью

Выпускаются с 2016 года и пришли на смену снятым с производства спектрофотометрам серии ПЭ Промэколаб. Приборы серии ПЭ Промэколаб работают во многих лабораториях и хорошо себя зарекомендовали. Пришедшие на смену модели Эковью обладают улучшенными техническими характеристиками и усовершенствованным программным обеспечением.

Особенности:

  • Наличие цветного дисплея
  • Спектральный диапазон (модель B-1100), нм: от 315 до 1050;
  • Спектральный диапазон (модель УФ-1100), нм: от 200 до 1050;

Ориентировочная цена спектрофотометра B-1100 – 75000,00 руб. , УФ-1100 – 148000,00 руб.

и УФ-1200 серии Эковью

Приборы отличаются от моделей В-1100 и УФ-1100 улучшенными характеристиками, дополнительными функциями программного обеспечения. наличием большого цветного сенсорного экрана, что является уникальным для приборов данного класса. Также приборы снабжены специальными шаговыми двигателями, снижающими шумность работы. Как и в моделях предыдущей серии приборы оснащены системой самокалибровки и не требуется использования специальных контрольных светофильтров.

Особенности:

  • Наличие цветного сенсорного дисплея и интуитивно-понятного интерфейса;
  • Передача данных на внешнее устройство хранения
  • Перенос градуировочных кривых между однотипными проборами
  • Возможность сохранения результатов измерений в памяти прибора
  • Наличие системы подсказок оператору, которая облегчает работу на приборе
  • Автоматическая (программная) установка длины волны
  • Большое кюветное отделение, позволяющее использовать кюветы с длиной оптического пути до 100 мм.
  • Система автоматической юстировки длины волны (нет необходимости в контроле точности пробора с помощью светофильтров)
  • Наличие USB-разъема

Основные технические характеристики:

  • Спектральный диапазон (), нм: от 315 до 1050;
  • Спектральный диапазон (модель УФ-1200), нм: от 190 до 1050;
  • Диапазон измерений спектральных коэффициентов направленного пропускания, %: от 0, 1 до 99;
  • Диапазон показаний спектральных коэффициентов направленного пропускания, %: от 0 до 200;
  • Диапазон показаний оптической плотности, Б: от -0,3 до 3,0;
  • Погрешность установки длин волн, нм, не более: ±1,0
  • Спектральная ширина щели, нм: 4,0

Ориентировочная цена спектрофотометра B-1200 – 115000,00 руб., УФ-1200 – 198000,00 руб.

Спектрофотометры серии ПЭ

Компания «Экросхим» (бывшая «Экохим») выпускает спектрофотометры ПЭ-5300ВИ, ПЭ-5400ВИ и ПЭ-5400УФ. Приборы предназначены для проведения спектрофотометрических методик в видимой и УФ области спектра. Приборы имеют регистрационное удостоверение на медицинское изделие (РУ) и могут быть использованы в медучреждениях.

Спектрофотометр ПЭ-5300ВИ

Прибор имеет ручную установку длины волны с точностью 2 нм, предназначен для измерения в видимой области спектра, в базовой комплектации снабжен трехпозиционным кюветодержателем на стандартные кюветы КФК (ширина 24 мм), при использовании дополнительных переходников (входят в комплект поставки) возможна работа с кюветами европейского типа (ширина 10 мм). Большое кюветное отделение позволяет работать с кюветами с длиной оптического пути до 100 мм. Возможна комплектация кюветодержателем на 4 кюветы шириной 10 мм (европейский стандарт) длиной оптического пути от 5 до 50 мм. Наличие USB разъема для подключения ПК.

Основные технические характеристики:

  • Спектральный диапазон: 325-1000 нм.
  • Погрешность установки длины волны, не более: ±2 нм.
  • Воспроизводимость установки длины волны, не более: 1 нм.
  • Пределы допускаемой абсолютной погрешности при измерении спектральных коэффициентов направленного пропускания, не более: ±0,5 %Т.
  • Диапазон измерений оптической плотности: от 3,000 до 0,000;

Ориентировочная цена спектрофотометра ПЭ-5300ВИ — 75000,00 руб.

Спектрофотометр ПЭ-5400ВИ и ПЭ-5400УФ

Приборы имеет автоматическую (программную) установку длины волны с точностью 1 нм, предназначены для измерения в видимой и УФ области спектра, в базовой комплектации снабжены четырехпозиционным кюветодержателем на стандартные кюветы КФК (ширина 24 мм), при использовании дополнительных переходников (входят в комплект поставки) возможна работа с кюветами европейского типа (ширина 10 мм). Большое кюветное отделение позволяет работать с кюветами с длиной оптического пути до 100 мм. Возможна комплектация кюветодержателем на 6 кювет толщиной 10 мм с длиной оптического пути от 5 до 50 мм.

В приборах серии ПЭ-5400 предусмотрена возможность сканирования спектра с использованием специального программного обеспечения SC5400 поставляемого отдельно. Наличие USB разъема для подключения ПК.

Основные технические характеристики:

  • Спектральный диапазон (для модели ПЭ-5400ВИ): 315-1000 нм.
  • Спектральный диапазон (для модели ПЭ-5400УФ): 190-1000 нм.
  • Спектральная ширина щели: 4 нм.
  • Погрешность установки длины волны: не более ±1 нм.
  • Воспроизводимость установки длины волны: ± 0,5 нм.
  • Пределы допускаемой абсолютной погрешности при измерении спектральных коэффициентов направленного пропускания, не более: ±0,5 %Т (315-1000 нм) и ±1,0 %Т (190-315 нм).
  • Диапазон измерения оптической плотности: от 3,000 до 0,000;
  • Диапазон измерения коэффициента направленного пропускания: от 0,0 до 100,0%.

Ориентировочная цена спектрофотометра ПЭ-5400ВИ — 109000,00 руб., ПЭ-5400УФ — 167000,00 руб.

Спектрофотометр КФК-3-01-«ЗОМЗ» (фотометр фотоэлектрический)

Прибор выпускается одним из старейших предприятий оптической отрасли «Загорским оптико-механическим заводом». Завод был основан в 1935 году и выпускал известные всем химикам спектрофотокалориметры КФК-2 и КФК-3.

КФК-3-01 представляет собой малогабаритный универсальный спектрофотометр, предназначенный для анализа жидких растворов с использованием спектрофотометрических методик в видимой области спектра.

Прибор выпускается в трех вариантах исполнения: КФК-3-01-«ЗОМЗ» — базовая модель; КФК-3-02-«ЗОМЗ» — прибор с термостатируемым кюветным отделением; КФК-3-03-«ЗОМЗ» — фотометр с проточной кюветой с насосом и внешним термостатом для подготовки проб.

Прибор снабжен кюветодержателем для установки кювет с длиной оптического пути 1-100 мм. Фотометры КФК-3-«ЗОМЗ» имеют регистрационное удостоверение на медицинское изделие (РУ) и могут быть использованы в медицинской практике.

Основные технические характеристики:

  • Спектральный диапазон: 315-990 нм;
  • Погрешность установки длины волны ±3 нм
  • Выделяемый спектральный интервал, нм, не более: 5 нм;
  • Диапазон измерения коэффициента пропускания, %: 1-100
  • Диапазон измерения оптической плотности, Б: 0-3
  • Диапазон измерений концентрации, ед. конц. 0,001-9999
  • Погрешность измерения коэффициента пропуская ±0,5%

Ориентировочная цена спектрофотометра КФК-3-01-«ЗОМЗ» — 73000,00 руб.

Спектрофотометр КФК-3КМ

Спектрофотометр работает в видимой области спектра (325-1000 нам), измеряет оптическую плотность, коэффициент пропускания и концентрацию растворов и предназначен для реализации широкого круга спектрофотометрических методик. Прибор выпускается в России из импортных комплектующих, имеет яркий и необычный дизайн.

По возможностям и основным характеристикам полностью заменяет ФЭК, КФК-2, КФК-3, КФК-5.

Особенности:

  • Простота использования, интуитивно-понятный интерфейс;
  • Подключается к компьютеру через порт RS-232C (COM-порт) и работа со специализированным ПО.
  • Наличие регистрационного удостоверения на медицинскую технику (РУ) , прибор может использоваться в медицинских учреждениях;
  • Удобная 10-и значная клавиатура;
  • Функция программирования для создания и сохранения градуировочных графиков;
  • Работа с кювета от 5 до 100 мм стандартной толщины (24 мм, стандартные кюветы для КФК);
  • Наличие переходников под кюветы европейского стандарта шириной 10 мм;
  • Энергонезависимая память для сохранения измерений.

Основные технические характеристики:

  • Спектральный диапазон: 325-1000 нм
  • Ширина спектральной щели: 5 нм
  • Погрешность установки длины волны, не более 2 нм
  • Повторяемость установки длины волны — 1нм
  • Диапазон измерений коэффициента пропускания (Т): 0-125%
  • Диапазон измерения оптической плотности (А): -0,1-2,5
  • Погрешность определения коэффициента пропускания, не более 1.0%Т

Ориентировочная цена спектрофотометра КФК-3-КМ — 80000,00-85000,00 руб. Цена прибора зависит от курса доллара.

Фотометрические исследования проводят с помощью фотоколориметров и спектрофотометров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определенным веществом окрашенное соединение. Если раствор сравнения при этом остается бесцветным и, следовательно, не поглощает лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду.

Устройство и принцип действия фотометрических приборов рассмотрим на примере фотоэлектрических концентрационных колориметров КФК-2, КФК-3 и спектрофотометра СФ-46.

Однолучевой фотометр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания - 5-100 % (D = 0-1,3). Основная абсолютная погрешность измерения пропускания - 1 %.

Принципиальная оптическая схема фотоколориметра КФК-2 представлена на рис. 2.16.

Свет от галогенной малогабаритной лампы проходит последовательно через систему линз, теплозащитный 2, нейтральный 3, выбранный цветной 4 светофильтры, кювету 5 с раствором, попадает на пластину 6, которая делит световой поток на два: 10 % света направляется на фотодиод (при измерениях в области спектра 590-980 нм) и 90 % - на фотоэлемент (при измерениях в области спектра 315-540 нм).

Характеристики светофильтров представлены в табл. 2.2.

Рис. 2.16.

  • 1 - источник света; 2 - теплозащитный светофильтр;
  • 3 - нейтральный светофильтр; 4 - цветной светофильтр;
  • 5 - кювета с исследуемым раствором или раствором сравнения;
  • 6 - пластина, которая делит световой поток на два потока;
  • 7 - фотодиод; 8 - фотоэлемент

Таблица 2.2

Спектральные характеристики светофильтров к фотоколориметру КФК-2

Маркировка на диске

Маркировка

светофильтра

Длина волны, соответствующая максимуму пропускания, нм

(рис. 2.17) предназначен для выполнения химических анализов растворов. Его принципиальная оптическая схема представлена на рис. 2.18.

Нить лампы 1 изображается конденсором 2 в плоскости диафрагмы Д, заполняя светом щель диафрагмы. Далее диафрагма Д изображается вогнутой дифракционной решеткой 4 и вогнутым зеркалом 5 в плоскости такой же щелевой диафрагмы Д.,. Дифракционная решетка 6 и зеркало создают

Рис. 2.17.


Рис. 2.18.

  • 1 - нить лампы; 2 - конденсор; 3 - световой фильтр;
  • 4 - вогнутая дифракционная решетка; 5 - вогнутое зеркало;
  • 6 - дифракционная решетка; 7,8 - объектив; 9 - кюветы;
  • 10 - линза; 11 - приемник

в плоскости диафрагмы Д 2 растянутую картину спектра. Поворачивая дифракционную решетку вокруг оси, параллельной штрихам решетки, щелью диафрагмы Д., выделяют излучение любой длины волны от 315 до 990 нм. Объектив 7, 8 создает в кюветном отделении слабо светящийся пучок света и формирует увеличенное изображение щели Д 2 перед линзой 10. Линза 10 сводит пучок света на приемнике 11 в виде равномерно освещенного светового кружка. Для уменьшения влияния рассеянного света в ультрафиолетовой области спектра за диафрагмой Д 1 установлен световой фильтр 3, который работает в схеме при измерениях в спектральной области 315-400 нм, а затем автоматически выводится. В кю- ветное отделение (между объективом 7,8 и линзой 10) устанавливаются прямоугольные кюветы 9.

Фотоэлектроколориметр КФК-3 имеет следующие технические характеристики:

  • - спектральный диапазон - 315-990 нм;
  • - спектральный интервал, выделяемый монохроматором фотометра - не более 7 нм;
  • - предел измерения коэффициента пропускания - 0,1-100%;
  • - предел измерения оптической плотности - 0-3;
  • - предел допускаемой основной абсолютной погрешности установки длины волны - 3 нм;
  • - напряжение сети переменного тока - 220 ± 22 В;
  • - частота сети переменного тока - 50-60 Гц;
  • - потребляемая мощность - не более 60 В х А;
  • - габаритные размеры - 500 мм х 360 мм х 165 мм;
  • - масса - 15 кг.

Спектрофотометр СФ-46 предназначен для измерения спектральных коэффициентов пропускания жидких и твердых веществ в области спектра 190-1100 нм. Диапазон измерения спектральных коэффициентов пропускания - от 1 до 100 %. Абсолютная погрешность измерения не превышает 1 %, а стандартное отклонение пропускания - не более 0,1 %.

Спектрофотометр СФ-46 - стационарный прибор, рассчитанный на эксплуатацию в лабораторных помещениях без повышенной опасности поражения электрическим током.

В основу работы спектрофотометра СФ-46 (рис. 2.19) положен принцип измерения отношения двух световых потоков: потока, прошедшего через исследуемый образец, и потока, падающего на исследуемый образец (или прошедшего через контрольный образец).


Рис. 2.19.

Световой пучок от осветителя попадает в монохроматор через входящую щель и разлагается дифракционной решеткой в спектр. В монохроматический поток излучения, поступающий из выходной щели в кюветное отделение, поочередно вводятся контрольный и исследуемый образцы. Излучение, прошедшее через образец, попадает на катод фотоэлемента в приемно-усилительном блоке. Электрические сигналы на резисторе, включенном в анодную цепь фотоэлемента, пропорциональны потокам излучения, падающим на фотокатод.

Усилитель постоянного тока с коэффициентом усиления, близким к единице, обеспечивает передачу сигналов на вход микропроцессорной системы (МПС), которая по команде оператора поочередно измеряет и запоминает напряжения U т, U Q и U, пропорциональные темновому току фотоэлемента, потоку, прошедшему через контрольный образец, и потоку, прошедшему через исследуемый образец. После измерения МПС рассчитывает коэффициент пропускания исследуемого образца по формуле

В режиме определения оптической плотности образца МПС начислит оптическую плотность по формуле D = -lgТ.

Значение измеренной величины высвечивается на цифровом фотометрическом табло.

На рисунке 2.20 представлена оптическая схема спектрофотометра СФ-46.


Рис. 2.20. Оптическая схема спектрофотометра СФ-46:

  • 1,1"- источники излучения; 2 - зеркальный конденсатор;
  • 3, 10 - поворотные зеркала; 4, 8, 9 - линзы; 5 - входная щель;
  • 6 - дифракционная решетка; 7 - выходная щель;
  • 11, 12 - фотоэлементы

Изучение от источника 1 или 1" падает на зеркальный конденсатор 2, который направляет его на плоское поворотное зеркало 3 и дает изображение источника излучения в плоскости линзы 4 , расположенной вблизи входной щели 5 монохроматора. Прошедшее через входную щель излучение падает на вогнутую дифракционную решетку 6 с переменным шагом и криволинейным штрихом. Решетка изготовляется на сферической поверхности, поэтому помимо диспергирующих свойств она обладает свойством фокусировать спектр. Применение переменного шага и криволинейного штриха значительно уменьшает аберрационное искажение вогнутой дифракционной решетки и позволяет получить высокое качество спектра во всем рабочем спектральном диапазоне.

Дифракционный пучок фокусируется в плоскости выходной щели 7 монохроматора, расположенной над входной щелью 5. Сканирование осуществляется поворотом дифракционной решетки, при этом монохроматическое излучение различных длин волн проходит через выходную щель 7 и линзу 8, контрольный или измеряемый образец, линзу 9 и с помощью поворотного зеркала 10 попадает на светочувствительный слой одного из фотоэлементов 11 или 12.

Для обеспечения работы спектрофотометра в широком диапазоне спектра используются два фотоэлемента и два источника излучения сплошного спектра.

Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется для измерения в области спектра от 186 до 700 нм, кислородно-цезиевый фотоэлемент - для измерения в области спектра от 600 до 1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим фотоэлементом, указывается в паспорте.

Устройство спектрофотометров и их характеристики могут значительно отличаться в зависимости от производителя и задач, для решения которых рассчитан прибор. Однако основные элементы конструкции у всех приборов сходны. Это источник света, монохроматор, кюветное отделение с образцом и регистрирующего детектора. В качестве источника света чаще всего используются ртутные или галогеновые лампы. Монохроматор - устройство для выделения из всего излучаемого спектра какой-то узкой его части (1-2 нм). Монохроматоры могут быть построены на основе разделяющих свет призм либо на основе дифракционной решетки. Также в некоторых приборах могут дополнительно применяться наборы светофильтров. Кюветное отделение может быть оборудовано механизмами для термостатирования, перемешивания, добавления вешеств непоспедственно в ходе процесса измерения. Для исследований малых объемов веществ может использоваться безкюветная технология, когда образец удерживается за счет сил поверхностного натяжения жидкости.

1 - источник световой энергии (видимая область); 2 - поворотный отражатель; 3 - источник световой энергии (ультрафиолетовая область); 4 - оптическая система, направляющая поток энергии на входную щель; 5 - входная щель; 6 - оптическая система, формирующая параллельный поток световой энергии; 7 - диспергирующий элемент (призма или дифракционная решетка); 8 - оптическая система, направляющая поток энергии на выходную щель; 9 - выходная щель; 10 - оптическая система, формирующая поток энергии, проходящий через кювету; 11 - кювета; 12 - фотоприемник; 13 - аналого-цифровой преобразователь; 14 - микро-ЭВМ; 15 - индикатор; 16 - пульт оператора; 17 - интерфейс связи с внешней ЭВМ и регистрирующим устройством

Поворотный отражатель (2) направляет поток световой энергии от одного из источников (1 или 3), через оптическую систему (4) на входную щель (5) монохроматора. С выхода монохроматора через щель (9) поступает монохроматический поток световой энергии с определенной длиной волны λ. Установка необходимой длины волны чаще всего осуществляется путем изменения угла падения полихроматического потока световой энергии по отношению к плоскости диспергирующего элемента (7). Оптическая система (10) формирует световой поток таким образом, чтобы при минимально допустимом объеме исследуемого раствора и многократной установке кюветы (11) в кюветное отделение геометрия потока не изменилась.

Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой.


ОСНОВНЫЕ УЗЛЫ СПЕКТРОФОТОМЕТРА

ИСТОЧНИК СВЕТА

Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета - от 200 до 390 нм.

Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380 - 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч.

В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм.

КЮВЕТЫ

Как известно исследуемый образец помещается в специальные приставки. Для каждого вида образцов они разные. Для твердых - это специальные зажимы, а при спектральных измерениях жидких образцов используются специальные контейнеры из кварцевого стекла, так называемые кюветы.

В большинстве спектрофотометров применяются стандартные кюветы, которые предназначены для такого размещения, которое предусматривает горизонтальную траекторию луча света. Основным недостатком подобных кювет является то, что только небольшая часть образца (около 10%) освещается измеряющим светом. В случае большой ценности образца или доступности его в небольшом объеме, можно использовать микрокюветы или ультрамикрокюветы с объемом 50 или даже 2,5 мкл. Кюветы очень маленьких объемов проявляют капиллярные свойства, и возникают проблемы с образованием пузырьков воздуха, что требует дегазации. Наконец, из таких кювет сложно извлечь обратно образец. Стандартные кюветы имеют внешние размеры: 12,5 12,5 45 мм, а внутренние - 10 10 мм. Кюветы с меньшим внутренним объемом, выпускаемые одним производителем имеют тот же внешний размер, что и стандартные, но внутренний, например 10 1,25 мм.

ДИСПЕРГИРУЮЩИЙ ЭЛЕМЕНТ

В спектрофотометрах в качестве диспергирующего элемента чаще всего используют призмы и дифракционные решетки.

Дифракционная решетка технологически более сложное изделие, чем призма. Большинство применяемых в настоящее время решеток изготовлены способом выжигания и голографического копирования и представляют собой пластины с большим числом параллельных штрихов - до нескольких сот на миллиметр.

Основным преимуществом использования призмы в спектрофотометре является ее низкая стоимость.

Преимущество дифракционных решеток состоит в том, что они обеспечивают линейную дисперсию света на всем диапазоне видимого и УФ спектров. Отрицательным моментом применения дифракционных решеток является их высокая стоимость в сравнении с призмами и светофильтрами.

Одной из самых важных характеристик монохроматоров является полоса пропускания, выражаемая в единицах длин волн - нанометрах.

Если интерференционные фильтры дают ширину пропускания в диапазоне 6-20 нм, то призмы и дифракционные решетки дают более узкую полосу - менее 5 нм, а следовательно, и большую "чистоту" (монохромность) света, падающего на кювету с образцом. Полоса пропускания является одной из важнейших характеристик спектрофотометра. Уменьшение полосы пропускания влечет за собой повышение разрешающей способности спектрофотометра - значимой характеристики качества спектрофотометрических приборов.

МОНОХРОМАТОРЫ


Действие спектральных приборов - спектрофотометров - основано на том, что в некоторых физических системах условия прохождения света оказываются различными. Такие системы называются диспергирующими. Обычно в качестве диспергирующего элемента используют призму или дифракционную решетку. Устройства, позволяющие разделить полихроматический свет на монохроматический спектр излучения, называются монохроматорами.

Функциональная схема монохроматора с призмой.

-входная щель; 2-объектив, формирующий параллельный поток световой энергии; 3-призма; 4 - объектив, направляющий поток энергии на экран; 5 - экран; 6 - выходная щель

Щель (1), на которую падает полихроматический поток световой энергии, находится в фокальной плоскости линзы (2). Эта часть прибора называется коллиматором. Выходящий из объектива (2) параллельный поток световой энергии падает на призму (3). Вследствие дисперсии (обусловленной зависимостью показателя преломления от длины волны) свет различных длин волн выходит из призмы под разными углами. Если в фокальной плоскости линзы объектива (4) поставить экран (5), то линза сфокусирует параллельные потоки энергии для различных длин волн в разных местах экрана. Поворачивая призму (3), можно просканировать через щель (6) монохроматические потоки энергии во всем спектре излучения. Часто в качестве диспергирующего элемента используется дифракционная решетка, которая представляет собой стеклянную или металлическую пластину, на которой нанесены параллельные одинаковые штрихи, расположенные на строго одинаковых расстояниях друг от друга. На рисунке показана дифракционная решетка, состоящая из чередующихся параллельных друг другу щелей одинаковой ширины b, расположенных на одинаковом расстоянии a друг от друга. Сумма (a+b) является периодом этой структуры и называется постоянной решетки d.


Функциональная схема монохроматора с дифракционной решеткой.

- входная щель; 2 - объектив, формирующий параллельный поток световой энергии; 3 - дифракционная решетка; 4 - объектив, направляющий поток энергии на экран; 5 - экран; 6 - выходная щель

Через входную щель (1) полихроматический поток световой энергии линзой объектива (2) трансформируется в параллельный поток, который проходит через щели дифракционной решетки (3). В каждой точке на экране (5), расположенном в фокальной плоскости линзы объектива (4), соберутся те лучи, которые до линзы были параллельными между собой и распространялись под определенным углом Q к направлению падающей волны. Поэтому освещенность в точке Р на экране (5) определяется результатом интерференции вторичных волн, распространяющихся как от разных участков одной щели, так и от разных щелей. Существует направление, распространяясь по которому, вторичные волны от всех щелей будут приходить в точку Р в одной фазе и усиливать друг друга, и другое - когда волны не совпадают по фазе и ослабляют друг друга. Таким образом, на экране наблюдается чередование светлых и темных полос. Условие формирования максимумов от дифракционной решетки, то есть когда волны усиливают друг друга при интерференции, наблюдается тогда, когда разность хода равна целому числу волн. Зависимость формирования максимумов различных длин волн от угла Q дифракционной решетки выражается формулой: d*sinQ = k - 1, где k= 0, 1, 2.

Если на решетку падает свет разных длин волн, то максимумы для различных длин волн располагаются под различными углами Q к первоначальному направлению распространения света. Поэтому дифракционная решетка разлагает полихроматический свет в дифракционный спектр и употребляется как диспергирующий прибор.