Способ повышения силы тяги и кпд воздушного винта и устройство для осуществления способа. Классификация воздушных винтов Как выращивают кристаллы для лопастей двигателя самолета

Назначение и виды авиационных силовых установок.

Силовая установка предназначена для создания силы тяги, необходимой для преодоления лобового сопротивления и обеспечения поступательного движения самолета.

Сила тяги создается установкой, состоящей из двигателя, движителя (винта) и систем, обеспечивающих работу двигательной установки (топливная система, система смазки, охлаждения и т.д.).

В настоящее время в транспортной и военной авиации широкое распространение получили турбореактивные и турбовинтовые двигатели. В спортивной, сельскохозяйственной и различного назначения вспомогательной авиации пока еще применяются силовые установки с поршневыми авиационными двигателями внутреннего сгорания, которые преобразует тепловую энергию сгорающего топлива в энергию вращения воздушного винта..

На самолетах Як-18Т, Як-52 и Як-55 силовая установка состоит из поршневого двигателя М-14П и воздушного винта изменяемого шага В530ТА-Д35.

На многих спортивных самолётах используются двигатели Rotax:

КЛАССИФИКАЦИЯ ВОЗДУШНЫХ ВИНТОВ

Винты классифицируются:

по числу лопастей - двух-, трех-, четырех- и многолопастные;

по материалу изготовления - деревянные, металлические, смешанные;

по направлению вращения (смотреть из кабины самолета по направлению полета) - левого и правого вращения;

по расположению относительно двигателя - тянущие, толкающие;

по форме лопастей - обычные, саблевидные, лопатообразные;

по типам - фиксированные, неизменяемого и изменяемого шага.

Воздушный винт состоит из ступицы, лопастей и укрепляется на валу двигателя с помощью специальной втулки.

Винт неизменяемого шага имеет лопасти, которые не могут вращаться вокруг своих осей. Лопасти со ступицей выполнены как единое целое.

Винт фиксированного шага имеет лопасти, которые устанавливаются на земле перед полетом под любым углом к плоскости вращения и фиксируются. В полете угол установки не меняется.

Винт изменяемого шага имеет лопасти, которые во время работы могут при помощи гидравлического или электрического управления или автоматически вращаться вокруг своих осей и устанавливаться под нужным углом к плоскости вращения.

Рис. 1 Воздушный двухлопастный винт неизменяемого шага

Рис. 2 Воздушный винт В530ТА Д35

По диапазону углов установки лопастей воздушные винты подразделяются:

на обычные, у которых угол установки изменяется от 13 до 50°, они устанавливаются на легкомоторных самолетах;

на флюгируемые - угол установки меняется от 0 до 90°;

на тормозные или реверсные винты, имеют изменяемый угол установки от -15 до +90°, таким винтом создают отрицательную тягу и сокращают длину пробега самолета.

К воздушным винтам предъявляются следующие требования:

винт должен быть прочным и мало весить;

должен обладать весовой, геометрической и аэродинамической симметрией;

должен развивать необходимую тягу при различных эволюциях в полете;

должен работать с наибольшим коэффициентом полезного действия.

На самолетах Як-18Т, Як-52 и Як-55 установлен обычный веслообразный деревянный двухлопастный тянущий винт левого вращения, изменяемого шага с гидравлическим управлением В530ТА-Д35 (Рис. 2).

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНТА

Лопасти при вращении создают такие же аэродинамические силы, что и крыло. Геометрические характеристики винта влияют на его аэродинамику.

Рассмотрим геометрические характеристики винта.

Форма лопасти в плане - наиболее распространенная симметричная и саблевидная.


Рис. 3. Формы воздушного винта: а - профиль лопасти, б - формы лопастей в плане

Рис. 4 Диаметр, радиус, геометрический шаг воздушного винта

Рис. 5 Развертка винтовой линии

Сечения рабочей части лопасти имеют крыльевые профили. Профиль лопасти характеризуется хордой, относительной толщиной и относительной кривизной.

Для большей прочности применяют лопасти с переменной толщиной - постепенным утолщением к корню. Хорды сечений лежат не в одной плоскости, так как лопасть выполнена закрученной. Ребро лопасти, рассекающее воздух, называется передней кромкой, а заднее - задней кромкой. Плоскость, перпендикулярная оси вращения винта, называется плоскостью вращения винта (Рис. 3).

Диаметром винта называется диаметр окружности, описываемой концами лопастей при вращении винта. Диаметр современных винтов колеблется от 2 до 5 м. Диаметр винта В530ТА-Д35 равен 2,4 м.

Геометрический шаг винта - это расстояние, которое движущийся поступательно винт должен пройти за один свой полный оборот, если бы он двигался в воздухе как в твердой среде (Рис. 4).

Угол установки лопасти винта - это угол наклона сечения лопасти к плоскости вращения винта (Рис. 5).

Для определения, чему равен шаг винта, представим, что винт движется в цилиндре, радиус г которого равен расстоянию от центра вращения винта до точки Б на лопасти винта. Тогда сечение винта в этой точке опишет на поверхности цилиндра винтовую линию. Развернем отрезок цилиндра, равный шагу винта Н по линии БВ. Получится прямоугольник, в котором винтовая линия превратилась в диагональ этого прямоугольника ЦБ. Эта диагональ наклонена к плоскости вращения винта БЦ под углом . Из прямоугольного треугольника ЦВБ находим, чему равен шаг винта:

(3.1)

Шаг винта будет тем больше, чем больше угол установки лопасти . Винты подразделяются на винты с постоянным шагом вдоль лопасти (все сечения имеют одинаковый шаг), переменным шагом (сечения имеют разный шаг).

Воздушный винт В530ТА-Д35 имеет переменный шаг вдоль лопасти, так как это выгодно с аэродинамической точки зрения. Все сечения лопасти винта набегают на воздушный поток под одинаковым углом атаки.

Если все сечения лопасти винта имеют разный шаг, то за общий шаг винта считается шаг сечения, находящегося на расстоянии от центра вращения, равном 0,75R, где R-радиус винта. Этот шаг называетсяноминальным, а угол установки этого сечения - номинальным углом установки .

Геометрический шаг винта отличается от поступи винта на величину скольжения винта в воздушной среде (см. Рис. 4).

Поступь воздушного винта - это действительное расстояние, на которое движущийся поступательно винт продвигается в воздухе вместе с самолетом за один свой полный оборот. Если скорость самолета выражена в км/ч, а число оборотов винта в секунду, то поступь винта Н п можно найти по формуле

(3.2)

Поступь винта несколько меньше геометрического шага винта. Это объясняется тем, что винт как бы проскальзывает в воздухе при вращении ввиду низкого значения плотности его относительно твердой среды.

Разность между значением геометрического шага и поступью воздушного винта называетсяскольжением винта и определяется по формуле

S = H - H n . (3.3)

СКОРОСТЬ ДВИЖЕНИЯ И УГОЛ АТАКИ ЭЛЕМЕНТА ЛОПАСТИ ВИНТА

К аэродинамическим характеристикам воздушных винтов относятся угол атаки и тяга воздушного винта.

Углом атаки элементов лопасти винта называется угол между хордой элемента и направлением его истинного результирующего движения W (Рис. 6).

Рис. 6 Угол установки и угол атаки лопастей: а - угол атаки элемента лопасти, б - скорости элемента лопасти

Каждый элемент лопасти совершает сложное движение, состоящее из вращательного и поступательного. Вращательная скорость равна

Где n с - обороты двигателя.

Поступательная скорость -это скорость самолета V . Чем дальше элемент лопасти находится от центра вращения воздушного винта, тем больше вращательная скорость U .

При вращении винта каждый элемент лопасти будет создавать аэродинамические силы, величина и направление которых зависят от скорости движения самолета (скорости набегающего потока) и угла атаки.

Рассматривая Рис. 6, а, нетрудно заметить, что:

Когда воздушный винт вращается, а поступательная скорость равна нулю (V =0), то каждый элемент лопасти винта имеет угол атаки, равный углу установки элемента лопасти ;

При поступательном движении воздушного винта угол атаки элемента лопасти винта отличается от угла наклона элемента лопасти винта (становится меньше его);

Угол атаки будет тем больше, чем больше угол установки элемента лопасти винта;

Результирующая скорость вращения элемента лопасти винта W равна геометрической сумме поступательной и вращательной скоростей и находится по правилу прямоугольного треугольника

(3.5)

Чем больше вращательная скорость, тем больше угол атаки элемента лопасти воздушного винта. И наоборот, чем больше поступательная скорость воздушного винта, тем меньше угол атаки элемента лопасти воздушного винта.

В действительности картина получается сложнее. Так как винт засасывает и вращает воздух, отбрасывает его назад, сообщая ему дополнительную скорость v , которую называют скоростью подсасывания. В результате истинная скорость W" будет по величине и направлению отличаться от скорости подсасывания, если их сложить геометрически. Следовательно, и истинный угол атаки " будет отличаться от угла (Рис. 6, б).

Анализируя вышесказанное, можно сделать выводы:

при поступательной скорости V =0 угол атаки максимальный и равен углу установки лопасти винта;

при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла установки;

при большой скорости полета угол атаки лопастей может стать отрицательным;

чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;

если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается и может стать отрицательным.

Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.

Сила тяги винта возникает в результате действия аэродинамической силы R на элемент лопасти винта при его вращении (Рис.1).

Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению Х элемента лопасти винта.

Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р .

Тяга винта зависит от диаметра винта Д , числа оборотов в секунду n , плотности воздуха и подсчитывается по формуле (в кгс или Н)

Где - коэффициент тяги винта, учитывающий форму лопасти в плане, форму профиля и угла атаки, определяется экспериментально. Коэффициент тяги воздушного винта самолетов Як-18Т, Як-52 и Як-55 - В530ТА-Д35 равен 1,3.

Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.

Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.

Сила сопротивления вращению определяется по формуле

(3.7)

Где Сх л - коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;

W - результирующая скорость, м/с;

S л - площадь лопасти;

К - количество лопастей.


Рис.1 Аэродинамические силы воздушного винта.

Рис. 2. Режимы работы воздушного винта

Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:

М тр в r в (3.8)

Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле

(3.9)

Где N e -эффективная мощность двигателя.

Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. , а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X = R . Это режим нулевой тяги (Рис. , б).

При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или авторотацией (Рис. , в).

При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. , г).

Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.

На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.

ЗАВИСИМОСТЬ ТЯГИ ВИНТА ОТ СКОРОСТИ ПОЛЕТА.

С увеличением скорости полета углы атаки лопасти винта, неизменяемого шага и фиксированного, быстро уменьшаются, тяга винта падает. Наибольший угол атаки лопасти винта будет на скорости полета, равной нулю, при полных оборотах двигателя.

Соответственно уменьшается тяга воздушного винта до нулевого значения и далее становится отрицательной. Раскручивается вал двигателя. Чтобы предупредить раскрутку винта, уменьшают обороты двигателя. Если двигатель не дросселировать, то может произойти его разрушение.

Зависимость тяги винта В530ТА-Д35 от скорости полета изображена на графике Рис. 7. Для его построения замеряют тягу воздушного винта при разных скоростях. Полученный график называется характеристикой силовой установки по тяге.

Рис. 7 Характеристика силовой установки М-14П по тяге (для Н=500 м) самолетов Як-18Т, Як-52 и Як-55 с воздушным винтом В530ТА-Д35

ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА.

Выясняя зависимость тяги от скорости полета, рассматривалась работа винта на неизменной высоте при постоянной плотности воздуха. Но при полетах на разных высотах плотность воздуха влияет на тягу воздушного винта. С увеличением высоты полета плотность воздуха падает, соответственно пропорционально будет падать и тяга винта (при неизменных оборотах двигателя). Это видно при анализе формулы (3.6).

ТОРМОЗЯЩИЙ МОМЕНТ ВИНТА И КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ.

Как ранее рассматривалось, тормозящий момент винта противодействует крутящему моменту двигателя.

Для того чтобы винт вращался с постоянными оборотами, необходимо, чтобы тормозящий момент М т, равный произведению
, был равен крутящему моменту двигателя М кр, равному произведению F d ,. т.е. М т =М кр или =F d (Рис. 8).

Рис. 8 Тормозящий момент воздушного винта и крутящий момент двигателя

Если это равенство будет нарушено, то двигатель будет уменьшать обороты или увеличивать.

Увеличение оборотов двигателя приводит к увеличению М кр и наоборот. Новое равновесие устанавливается на новых оборотах двигателя.

МОЩНОСТЬ, ПОТРЕБНАЯ НА ВРАЩЕНИЕ ВОЗДУШНОГО ВИНТА

Эта мощность затрачивается на преодоление сил сопротивления вращению винта.

Формула для определения мощности воздушного винта (в л. с.) имеет вид:

(3.10)

Где - коэффициент мощности, зависящий от формы воздушного винта, числа лопастей, угла установки, формы лопасти в плане, от условия работы воздушного винта (относительной поступи)

Из формулы (3.10) видно, что потребная мощность для вращения воздушного винта зависит от коэффициента мощности, от скорости и высоты полета, оборотов и диаметра воздушного винта.

С увеличением скорости полета уменьшается угол атаки элемента лопасти воздушного винта, количество отбрасываемого назад воздуха и его скорость, поэтому уменьшается и потребная мощность на вращение воздушного винта. С увеличением высоты полета плотность воздуха уменьшается и потребная на вращение воздушного винта мощность также уменьшается.

С увеличением оборотов двигателя увеличивается сопротивление вращению воздушного винта и потребная мощность на вращение воздушного винта увеличивается.

Воздушный винт, вращаемый двигателем, развивает тягу и преодолевает лобовое сопротивление самолета, самолет движется.

Работа, производимая силой тяги воздушного винта за 1 сек. при движении самолета, называется тягой или полезной мощностью воздушного винта.

Тяговая мощность воздушного винта определяется по формуле

(3.11)

Где Р в - тяга, развиваемая воздушным винтом; V-скорость самолета.

С увеличением высоты и скорости полета тяговая мощность воздушного винта уменьшается. При работе воздушного винта, когда самолет не движется, развивается максимальная тяга, но тяговая мощность при этом равна нулю, так как скорость движения равна нулю.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ВОЗДУШНОГО ВИНТА.

ЗАВИСИМОСТЬ КПД ОТ ВЫСОТЫ И СКОРОСТИ ПОЛЕТА

Часть энергии вращения двигателя затрачивается на вращение воздушного винта и направлена на преодоление сопротивления воздуха, закрутку отбрасываемой струи и др. Поэтому полезная секундная работа, или полезная тяговая мощность винта, n b , будет меньше мощности двигателя N e , затраченной на вращение воздушного винта.

Отношение полезной тяговой мощности к потребляемой воздушным винтом мощности (эффективной мощности двигателя) называется коэффициентом полезного действия (кпд) воздушного винта и обозначается . Он определяется по формуле

(3.12)

Рис. 9 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 10 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 11 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

Величина КПД воздушного винта зависит от тех же факторов, что и тяговая мощность воздушного винта.

КПД всегда меньше единицы и достигает у лучших воздушных винтов величины 0,8...0,9.

Np - потребная мощность.

Для уменьшения скорости вращения воздушного винта в двигателе применяется редуктор.

Степень редукции подбирается таким образом, чтобы на номинальном режиме концы лопастей обтекались дозвуковым потоком воздуха.

Рис. 12 Характеристики по мощности двигателя М-14П самолетов Як-52 и Як-55

Рис. 13 Примерный вид кривой изменения располагаемой мощности в зависимости от скорости полета

Рис. 14 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

График зависимости располагаемой эффективной мощности от скорости полета для самолетов Як-52 и Як-55 изображен на Рис. 9.

График Рис. 10 называется характеристикой силовой установки по мощности.

При V=0, Np=0; при скорости полета V=300 км/ч, Np= =275 л.с. (для самолета Як-52) и V=320 км/ч, Np=275 л. с. (для самолета Як-55), где Np - потребная мощность.

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 11.

Рис. 15 Высотная характеристика двигателя М-14П на режимах 1 - взлетный, 2- номинальный 1, 3 - номинальный 2, 4 - крейсерский 1; 5 - крейсерский 2

С увеличением высоты эффективная мощность падает вследствие уменьшения плотности воздуха. Характеристика изменения ее для самолетов Як-52 и Як-55 от высоты полета Н изображена на Рис. 11.

ВИНТЫ ИЗМЕНЯЕМОГО ШАГА

Для устранения недостатков воздушных винтов неизменяемого шага и фиксированного применяется воздушный винт изменяемого шага (ВИШ). Основоположником теории ВИШ является Ветчинкин.

ТРЕБОВАНИЯ К ВИШ:

ВИШ должен устанавливать на всех режимах полета наивыгоднейшие углы атаки лопастей;

Снимать с двигателя номинальную мощность на всем рабочем диапазоне скоростей и высот;

Сохранять максимальное значение коэффициента полезного действия на возможно большем диапазоне скоростей.

Лопасти ВИШ либо управляются специальным механизмом, либо устанавливаются в нужное положение под влиянием сил, действующих на воздушный винт. В первом случае это гидравлические и электрические воздушные винты, во втором - аэродинамические.

Гидравлический винт - воздушный винт, у которого изменение угла установки лопастей производится давлением масла подаваемого в механизм, находящийся во втулке винта.

Электрический винт - воздушный винт, у которого изменение угла установки лопастей производится электродвигателем, соединенным с лопастями механической передачей.

Аэромеханический винт - воздушный винт, у которого изменение угла установки лопастей производится автоматически - аэродинамическими и центробежными силами.

Наибольшее распространение получили гидравлические ВИШ. Автоматическое устройство в винтах изменяемого шага предназначено для сохранения постоянными заданных оборотов воздушного винта (двигателя) путем синхронного изменения угла наклона лопастей при изменении режима полета (скорости, высоты) и называется регулятором постоянства оборотов (РПО).


Рис. 16 Работа воздушного винта изменяемого шага В530ТА-Д35 при разных скоростях полета

РПО совместно с механизмом поворота лопастей изменяет шаг винта (угол наклона лопастей) таким образом, чтобы обороты, заданные летчиком с помощью рычага управления ВИШ, при изменении режима полета оставались неизменными (заданными).

При этом следует помнить, что обороты будут сохраняться до тех пор, пока эффективная мощность на валу двигателя N e будет больше мощности, потребной для вращения воздушного винта при установке лопастей на самый малый угол наклона (малый шаг).

На Рис. 16 показана схема работы ВИШ.

При изменении скорости полета от взлетной до максимальной в горизонтальном полете угол установки лопастей возрастает от своего минимального значения мин до максимального макс (большой шаг). Благодаря этому углы атаки лопасти изменяются мало и сохраняются близкими к наивыгоднейшим.

Работа ВИШ на взлете характерна тем, что на взлете используется вся мощность двигателя - развивается наибольшая тяга. Это возможно при условии, что двигатель развивает максимальные обороты, а каждая часть лопасти винта развивает наибольшую тягу, имея наименьшее сопротивление вращению.

Для этого необходимо, чтобы каждый элемент лопасти воздушного винта работал на углах атаки, близких к критическому, но без срыва воздушного потока. На Рис. 16, а видно, что угол атаки лопасти перед взлетом (V =0) за счет перетекания воздуха со скоростью V немного отличается от угла наклона лопасти на величину ф мин. Угол атаки лопасти соответствует величине максимальной подъемной силы.

Сопротивление вращению достигает в этом случае величины, при которой мощность, расходуемая на вращение винта, и эффективная мощность двигателя сравниваются и обороты будут неизменными. С увеличением скорости угол атаки лопастей воздушного винта уменьшается (Рис. 16, б). Уменьшается сопротивление вращению и воздушный винт как бы облегчается. Обороты двигателя должны возрастать, но РПО удерживает их за счет изменения угла атаки лопастей постоянными. По мере увеличения скорости полета лопасти разворачиваются на больший угол ср .

При выполнении полета на максимальной скорости ВИШ также должен обеспечивать максимальное значение тяги. При полете на максимальной скорости угол наклона лопастей имеет предельное значение р макс (Рис. 16, в). Следовательно, при изменении скорости полета происходит изменение угла атаки лопасти, при уменьшении скорости полета угол атаки увеличивается - винт затяжеляется, при увеличении скорости полета угол атаки уменьшается - винт облегчается. РПО автоматически переводит лопасти винта на соответствующие углы.

При увеличении высоты полета мощность двигателя уменьшается и РПО уменьшает угол наклона лопастей, чтобы облегчить работу двигателя, и наоборот. Следовательно, РПО удерживает обороты двигателя с изменением высоты полета постоянными.

При заходе на посадку воздушный винт устанавливается на малый шаг, что соответствует оборотам взлетного режима. Это дает возможность летчику при выполнении всевозможных маневров на глиссаде посадки получить взлетную мощность двигателя при увеличении оборотов до максимальных.

Г. В. Махоткин

Проектирование воздушного винта

Воздушный винт завоевал репутацию незаменимого движителя для быстроходных плавсредств, эксплуатируемых на мелководных и заросших акваториях, а также для аэросаней-амфибий, которым приходится работать на снегу, на льду и на воде. И у нас и за рубежом накоплен уже немалый опыт применения воздушных винтов на скоростных малых судах и амфибиях . Так, с 1964 г. в нашей стране серийно выпускаются и эксплуатируются аэросани-амфибии (рис. 1) КБ им. А. Н. Туполева. В США несколько десятков тысяч аэролодок, как их называют американцы, эксплуатируются во Флориде.


Проблема создания быстроходной мелкосидящей моторной лодки с воздушным винтом продолжает интересовать и наших судостроителей-любителей. Наиболее доступна для них мощность 20-30 л. с. Поэтому рассмотрим основные вопросы проектирования воздушного движителя с расчетом именно на такую мощность.

Тщательное определение геометрических размеров воздушного винта позволит полностью использовать мощность двигателя и получить тягу, близкую к максимальной при имеющейся мощности. При этом особую важность будет иметь правильный выбор диаметра винта, от которого во многом зависит не только КПД движителя, но и уровень шума, прямо обусловленный величиной окружных скоростей.

Исследованиями зависимости тяги от скорости хода установлено, что для реализации возможностей воздушного винта при мощности 25 л. с. необходимо иметь его диаметр - около 2 м. Чтобы обеспечить наименьшие энергетические затраты, воздух должен отбрасываться назад струей с большей площадью сечения; в нашем конкретном случае площадь, ометаемая винтом, составит около 3 м². Уменьшение диаметра винта до 1 м для снижения уровня шума уменьшит площадь, ометаемую винтом, в 4 раза, а это, несмотря на увеличение скорости в струе, вызовет падение тяги на швартовах на 37%. К сожалению, компенсировать это снижение тяги не удается ни шагом, ни числом лопастей, ни их шириной.

С увеличением скорости движения проигрыш в тяге от уменьшения диаметра снижается; таким образом, увеличение скоростей позволяет применять винты меньшего диаметра. Для винтов диаметром 1 и 2 м, обеспечивающих максимальную тягу на швартовах, на скорости 90 км/ч величины тяги становятся равными. Увеличение диаметра до 2,5 м, увеличивая тягу на швартовах, дает лишь незначительный прирост тяги на скоростях более 50 км/ч. В общем случае каждому диапазону эксплуатационных скоростей (при определенной мощности двигателя) соответствует свой оптимальный диаметр винта. С увеличением мощности при неизменной скорости оптимальный по КПД диаметр увеличивается.

Как следует из приведенного на рис. 2 графика, тяга воздушного винта диаметром 1 м больше тяги водяного гребного винта (штатного) подвесного мотора «Нептун-23» или «Привет-22» при скоростях свыше 55 км/ч, а воздушного винта диаметром 2 м - уже при скоростях свыше 30-35 км/ч. Расчеты показывают, что на скорости 50 км/ч километровый расход топлива двигателя с воздушным винтом диаметром 2 м будет на 20-25% меньше, чем наиболее экономичного подвесного мотора «Привет-22».

Последовательность выбора элементов воздушного винта по приводимым графикам такова. Диаметр винта определяется в зависимости от необходимой тяги на швартовах при заданной мощности на валу винта. Если эксплуатация мотолодки предполагается в населенных районах или районах, где существуют ограничения по шуму, приемлемый (на сегодня) уровень шумов будет соответствовать окружной скорости - 160-180 м/с. Определив, исходя из этой условной нормы и диаметра винта, максимальное число его оборотов, установим передаточное отношение от вала двигателя к валу винта.

Для диаметра 2 м допустимое по уровню шума число оборотов будет около 1500 об/мин (для диаметра 1 м - около 3000 об/мин); таким образом, передаточное отношение при числе оборотов двигателя 4500 об/мин составит около 3 (для диаметра 1 м - около 1,5).

При помощи графика на рис. 3 вы сможете определить величину тяги воздушного винта, если уже выбраны диаметр винта и мощность двигателя. Для нашего примера выбран двигатель самой доступной мощности - 25 л. с., а диаметр винта - 2 м. Для этого конкретного случая величина тяги равна 110 кг.

Отсутствие надежных редукторов является, пожалуй, самым серьезным препятствием, которое предстоит преодолеть. Как правило, цепные и ременные передачи, изготовленные любителями в кустарных условиях, оказываются ненадежными и имеют низкий КПД. Вынужденная же установка прямо на вал двигателя приводит к необходимости уменьшения диаметра и, следовательно, снижению эффективности движителя.

Для определения ширины лопасти и шага следует воспользоваться приводимой номограммой рис. 4. На горизонтальной правой шкале из точки, соответствующей мощности на валу винта, проводим вертикаль до пересечения с кривой, соответствующей ранее найденному диаметру винта. От точки пересечения проводим горизонтальную прямую до пересечения с вертикалью, проведенной из точки, лежащей на левой шкале числа оборотов. Полученное значение определяет величину покрытия проектируемого винта (покрытием авиастроители называют отношение суммы ширин лопастей к диаметру).

Для двухлопастных винтов покрытие равно отношению ширины лопасти к радиусу винта R. Над значениями покрытий указаны значения оптимальных шагов винта. Для нашего примера получены: покрытие σ=0,165 и относительный шаг (отношение шага к диаметру) h=0,52. Для винта диаметром 1 м σ=0,50 м и h=0,65. Винт диаметром 2 м должен быть 2-лопастным с шириной лопасти, составляющей 16,5% R, так как величина покрытия невелика; винт диаметром 1 м может быть 6-лопастным с шириной лопасти 50:3=16,6% R или 4-лопастным с шириной лопастей 50:2 = 25% R. Увеличение числа лопастей даст дополнительное уменьшение уровня шума.

С достаточной степенью точности можно считать, что шаг винта не зависит от числа лопастей. Приводим геометрические размеры деревянной лопасти шириной 16,5% R. Все размеры на чертеже рис. 5 даны в процентах радиуса. Например, сечение D составляет 16,4% R, расположено на 60% R. Хорда сечения разбивается на 10 равных частей, т. е. по 1,64% R; носок разбивается через 0,82% R. Ординаты профиля в миллиметрах определяются умножением радиуса на соответствующее каждой ординате значение в процентах, т. е. на 1,278; 1,690; 2,046 ... 0,548.

ТЕОРИЯ ВОЗДУШНОГО ВИНТА

Введение

Воздушный винт преобразует мощность вращения двигателя в поступательную силу тяги. Воздушный винт отбрасывает назад воздушную массу, при этом создается реактивная сила, толкающая самолёт вперёд. Тяга винта равна произведению массы воздуха на ускорение, приданное ей винтом.

Определения

Лопасть воздушного винта – это несущая поверхность, похожая на крыло самолёта. Такие определения, как хорда, кривизна профиля, относительная толщина профиля, относительное удлинение аналогичны определениям в отношении крыла самолёта.

Угол установки лопастей винта ( blade angle или pitch )

Это угол между хордой лопасти и плоскостью вращения. Угол установки уменьшается от корня лопасти к законцовке, потому что окружная скорость сечения лопасти растёт от комля к законцовке. Угол установки лопасти измеряют в сечении, расположенном в 75% от её длины, отсчитывая от комля.

Шаг винта ( geometric pitch )

Это расстояние, которое бы прошёл винт за один полный оборот, если бы двигался через воздух с углом установки лопастей. (Можно представить шаг винта как движение болта, закручивающегося по резьбе, но дальше такой аналогией мы пользоваться не будем)

Геометрическая крутка лопасти ( blade twist )

Сечения лопасти, расположенные ближе к её законцовке, за один оборот проходят больший путь. Чтобы шаг винта был одинаковый для всех сечений лопасти, угол установки сечений постепенно уменьшается от комля к законцовке.

Угол установки лопастей на многих винтах может меняться. Когда угол установки лопастей маленький, говорят, что винт на режиме малого шага (fine pitch), и когда, наоборот – на режиме большого шага (coarse pitch).

Поступь винта (effective pitch или advance per revolution)

В полёте, винт не проходит расстояние, равное шагу винта, за один оборот. Реальное расстояние, проходимое винтом, зависит от скорости самолёта и называется поступью винта.

Скольжение винта ( slip )

Разница между шагом и поступью винта называется скольжением винта.

Угол наклона винтовой линии ( helix angle )

Это угол между реальной траекторией сечения воздушного винта и плоскостью вращения.

Угол атаки(α)

Траектория движения сечения лопасти в воздухе определяет направление набегающего потока воздуха. Угол между хордой сечения лопасти и направлением набегающего потока является углом атаки сечения лопасти. На угол атаки влияет окружная скорость сечения (скорость вращения винта) и истинная скорость самолёта.

Воздушный винт фиксированного шага ( fixed pitch propeller )

На рисунках показана работа воздушного винта фиксированного шага при изменении условий полёта. Увеличение истинной скорости самолёта при неизменной скорости вращения винта (окружной скорости сечения) уменьшает угол атаки винта. Увеличение скорости вращения винта на постоянной истинной скорости полёта увеличивает угол атаки винта.

Аэродинамические силы, возникающие на воздушном винте

Лопасть винта представляет собой несущую поверхность, похожую на крыло самолёта. Когда она движется через воздух на некотором угле атаки, то на ней создаются аэродинамические силы так же, как и на крыле. Между поверхностями лопасти возникает перепад давления. Та поверхность лопасти, где создаётся большее давление, называется рабочей поверхностью лопасти (pressure face или thrust face). Когда винт создаёт прямую тягу, то рабочей является задняя (плоская) поверхность лопасти. Перепад давлений создаёт полную аэродинамическую силу, которую можно разложить на две составляющие, тягу и силу сопротивления вращению.

Тяга воздушного винта

Тяга - это компонент полной аэродинамической силы, перпендикулярный плоскости вращения. Сила тяги неравномерно создаётся по длине лопасти. Она минимальна на законцовке лопасти, где перепад давления между поверхностями исчезает, также уменьшается в комле из-за малой окружной скорости. Тяга создаёт изгибающий момент на каждой лопасти, стремясь погнуть их законцовками вперёд. (Сила равная и противоположная по направлению тяге винта отбрасывает воздух назад.)

Момент сопротивления вращению

Сила сопротивления вращению винта на плече от оси вращения до точки приложения полной аэродинамической силы создаёт момент сопротивления вращению. Равный по величине и противоположный по направлению момент воздействует на самолёт, стремясь повернуть его относительно продольной оси. Также момент сопротивления вращению создаёт изгибающие моменты на лопастях воздушного винта, стремясь согнуть их против направления вращения.

Центробежный скручивающий момент лопасти ( centrifugal twisting moment )

Боковые составляющие центробежных сил «А» и «В» создают момент относительно оси изменения угла установки лопасти, стремясь уменьшить шаг винта.

Аэродинамический скручивающий момент лопасти ( aerodynamic twisting moment )

Поскольку центр давления расположен впереди оси изменения угла установки лопасти, то полная аэродинамическая сила создаёт момент, стремящийся увеличить шаг винта.

Аэродинамический момент противодействует центробежному скручивающему моменту, но слабее его.

Коэффициент полезного действия воздушного винта

Коэффициент полезного действия винта определяется отношением тяговой мощности и мощности, подведённой к винту от двигателя. Тяговая мощность винта определяется произведением тяги винта на истинную скорость самолёта, а мощность двигателя – произведением крутящего момента двигателя на угловую скорость вращения винта.

к. п. д. винта = тяговая мощность / мощность двигателя

Зависимость к. п. д. винта от скорости полёта

Выше было показано, что при увеличении скорости полёта угол атаки лопастей винта фиксированного шага уменьшается. Это приводит к уменьшению тяги винта. На некоторой скорости этот угол уменьшится настолько, что тяга винта уменьшится до нуля. Это значит, что к. п. д. винта тоже станет равным нулю.

Для воздушного винта фиксированного шага существует только одна скорость при которой лопасти будут обтекаться под наиболее выгодным углом атаки и к. п. д. винта будет максимальным. (при постоянной угловой скорости вращения)

При дальнейшем уменьшении скорости самолёта угол атаки лопастей увеличивается. Тяга винта увеличивается, но произведение тяги на скорость (тяговая мощность) начинают падать. На нулевой скорости тяга винта максимальна, но винт не производит полезной работы, поэтому его к. п. д. снова равен нулю.

Коэффициент полезного действия винта фиксированного шага сильно изменяется при изменении скорости полёта.

Как видно из рисунка, используя винт изменяемого шага (угла установки лопастей), можно добиться его эффективной работы в широком диапазоне скоростей полёта.

Винт фиксированного шага с возможностью изменения угла установки лопастей в ступице при обслуживании на земле.

Воздушный винт с возможностью выбора трёх фиксированных углов установки лопастей в полёте. Малый шаг винта устанавливается для взлёта, набора высоты и посадки. При крейсерском полёте винт устанавливается в положение большого шага. При отказе двигателя винт устанавливается во флюгерное положение.

Воздушный винт изменяемого шага (constant speed propellers).

На современных самолётах устанавливаются винты, которые автоматически выдерживают заданную частоту вращения, изменяя угол установки лопастей. Это позволяет сохранять высокий к. п. д. в широком диапазоне скоростей, улучшить характеристики взлёта и набора высоты и обеспечить экономию топлива в крейсерском полёте.

Воздушный винт изменяемого шага

На рисунке изображен типичный пульт управления винтом и двигателем на маленьких поршневых самолётах. Все рычаги находятся в положении для взлёта (крайнем переднем).

Регулятор скорости вращения винта настроен на максимальную скорость.

Перемещение среднего рычага назад приведёт к уменьшению скорости вращения винта.

Обратите внимание: Можно провести аналогию между рычагом управления скоростью вращения винта и рычагом коробки передач в автомобиле.

Максимальная скорость винта – первая передача в машине.

Минимальная скорость винта – пятая передача в машине.

На рисунке показаны условия работы воздушного винта в начале разбега по ВПП. Обороты винта максимальны, поступательная скорость мала. Угол атаки лопастей оптимален, винт работает с максимальным к. п. д. По мере роста скорости угол атаки лопастей будет уменьшаться. Это приведет к уменьшению тяги и силы сопротивления вращению. При постоянной мощности двигателя обороты двигателя начнут возрастать. Регулятор поддержания постоянной скорости вращения винта начнёт увеличивать угол установки лопастей винта, чтобы не допустить увеличения оборотов винта. Таким образом, угол атаки лопастей всё время будет удерживаться на оптимальных значениях.

На рисунке показаны условия работы винта при полёте на большой скорости. По мере роста истинной скорости полёта регулятор поддержания оборотов винта постоянно увеличивает угол установки лопастей, поддерживая постоянный угол атаки.

Рисунок показывает работу винта в крейсерском полёте. Оптимальные режимы мощности и скорости вращения винта указываются в руководстве по лётной эксплуатации. Обычно рекомендуется сначала уменьшить мощность двигателя, а затем уменьшить скорость вращения винта.

В течение всего полёта регулятор поддержания постоянных оборотов управляет углом установки лопастей винта, чтобы сохранить заданные обороты. По крайней мере, пытается этого достичь.

Если крутящий момент от двигателя пропадает (режим малого газа или отказ), то регулятор, стремясь поддержать обороты, уменьшает угол установки лопастей на минимум. Угол атаки лопастей становится отрицательным. Теперь полная аэродинамическая сила на винте направлена в противоположную сторону. Её можно разложить на отрицательную тягу винта и силу, стремящуюся раскрутить винт. Теперь воздушный винт будет крутить двигатель.

На двухмоторном самолёте при отказе одного двигателя, если винт отказавшего двигателя авторотирует, то очень сильно ухудшаются характеристики набора высоты, дальность полёта и затрудняется управление самолётом из-за дополнительного разворачивающего момента. Также вращение отказавшего двигателя может привести к его заклинению или пожару.

Флюгирование

При повороте лопастей винта на угол атаки нулевой подъёмной силы исчезает сила вращающая винт и винт останавливается. Лобовое сопротивление (отрицательная тяга) винта уменьшается до минимума. Это значительно повышает характеристики набора высоты (при отказе одного из двух двигателей), поскольку градиент набора высоты зависит от разности между тягой двигателей и лобовым сопротивлением.

Также флюгирование лопастей винта уменьшает разворачивающий момент от отказавшего двигателя. Это улучшает управляемость самолёта и понижает минимальную эволютивную скорость при отказе двигателя V MC .

На однодвигательных самолётах флюгирование винта не предусматривается. Тем не менее, при отказе двигателя существует возможность существенно уменьшить отрицательную тягу винта. Для этого регулятор скорости вращения винта переводят на минимальную скорость. При этом винт будет установлен в положение максимального шага.

Это позволяет увеличить аэродинамическое качество самолёта, что уменьшит градиент потери высоты на планировании с отказавшим двигателем. Также уменьшатся обороты двигателя из-за уменьшения силы стремящейся раскрутить винт.

Если перевести регулятор оборотов винта на увеличение скорости вращения, то эффект будет противоположный.

Отбор мощности от двигателя на винт

Воздушный винт должен быть в состоянии воспринять всю мощность двигателя.

Также он должен работать с максимальным к. п. д. во всём эксплуатационном диапазоне самолёта. Критичным фактором является скорость обтекания законцовок лопастей. Если она приближается к скорости звука, то явления, связанные со сжимаемостью воздуха, приводят к уменьшению тяги и увеличению момента сопротивления вращению. Это значительно уменьшает к. п. д. винта и увеличивает его шумность.

Ограничение скорости обтекания законцовок лопастей накладывает ограничения на диаметр и угловую скорость вращения винта, а также на истинную скорость полёта.

Диаметр винта также ограничивается требованиями минимального зазора до поверхности аэродрома и фюзеляжа самолёта, а также необходимостью установить двигатель как можно ближе к фюзеляжу, чтобы уменьшить разворачивающий момент в случае его отказа. В случае если двигатель стоит далеко от продольной оси самолёта, то необходимо увеличивать вертикальное оперение, чтобы обеспечить балансировку самолёта при отказе двигателя на малой скорости. Всё вышесказанное показывает, что обеспечить, чтобы винт потреблял всю располагаемую мощность двигателя, одним только увеличением его диаметра нецелесообразно. Часто этого добиваются увеличением коэффициента заполнения воздушного винта.

Коэффициент заполнения воздушного винта ( solidity )

Это отношение фронтальной площади всех лопастей к площади ометаемой винтом.

Методы повышения коэффициента заполнения воздушного винта:

    Увеличение хорды лопастей. Это приводит к уменьшению относительного удлинения лопасти, что приводит к снижению к. п. д.

    Увеличение количества лопастей. Отбор мощности от двигателя увеличивается без увеличения скорости обтекания законцовок и уменьшения относительного удлинения лопастей. Увеличение числа лопастей более определённого количества (5 или 6) приводит к уменьшению к. п. д. винта.

Тяга винта создаётся отбрасыванием массы воздуха назад. Если чрезмерно увеличивать коэффициент заполнения воздушного винта, то будет уменьшаться масса воздуха, который может получить ускорение при прохождении через винт. Для эффективного увеличения числа лопастей используют соосные винты, вращающиеся на одной оси в противоположных направлениях.

Моменты и силы, создаваемые воздушным винтом

Винт создаёт моменты по всем трем осям самолёта. Причины возникновения этих моментов различны:

    кренящий момент реакции винта

    гироскопический момент

    спиральный момент от спутной струи

    момент, вызванный несимметричным обтеканием винта

Примечание: Большинство современных двигателей оснащено воздушными винтами вращающимися по часовой стрелке (если смотреть сзади). На некоторых двухмоторных самолётах на правый двигатель устанавливают винт, вращающийся против часовой стрелки, для устранения недостатков, связанных с появлением критического двигателя (см. главу 12).

Кренящий момент реакции винта

Поскольку винт вращается по часовой стрелке, то на самолёт действует равный по величине и противоположный по направлению момент.

При разбеге самолёта левый пневматик будет нести большую нагрузку, что создаст большее сопротивление качению. Поэтому самолёт будет иметь тенденцию к развороту влево. В полёте самолёт будет иметь тенденцию накрениться влево. Наиболее заметен этот момент будет при максимальной тяге винта и малой скорости полёта (малая эффективность рулей).

Кренящий момент реакции винта практически отсутствует у соосных винтов, вращающихся в противоположные стороны.

В оригинальном тексте написано, что у двухдвигательных самолётов с винтами, вращающимися в одну и ту же сторону, кренящий момент реакции винтов отсутствует до тех пор, пока не откажет один из двигателей. Это неверно. В теоретической механике сказано, что суммарный момент, действующий на твёрдое тело, равен алгебраической сумме моментов, лежащих в одной плоскости. То есть момент реакции винтов будет действовать на самолёт, не зависимо от количества работающих двигателей, и если все винты вращаются в одну и ту же сторону, то моменты будут складываться.

Гироскопический момент

Вращающийся воздушный винт имеет свойства гироскопа – стремится сохранить положение оси вращения в пространстве, а в случае приложения внешней силы – появляется гироскопический момент, стремящийся развернуть ось гироскопа в направлении, отличающемся на 90° от направления вынужденного вращения.

Направление действия гироскопического момента удобно определить, воспользовавшись следующим мнемоническим правилом. Представьте себя сидящим в кабине самолёта. Плоскость вращения двигателя (винта) изобразим окружностью, а направление вращения – стрелками по окружности.

Если из центра окружности провести одну стрелку в направлении движения носа самолёта, то вторая стрелка, направленная по касательной к окружности в направлении вращения двигателя (винта), покажет направление дополнительного (прецессионного) движения носа самолёта, вызванного действием гироскопического момента двигателя (винта).

Гироскопический момент появляется только при вращении самолёта по тангажу и по курсу.

У соосных винтов гироскопический момент отсутствует.

Спиральный момент от спутной струи

Воздушный винт отбрасывает назад закрученную струю воздуха, которая вращаясь вокруг фюзеляжа, изменяет обтекание киля. Поскольку винт вращается по часовой стрелке, то струя обтекает киль под углом слева, вызывая на нем боковую силу вправо.

Спиральный момент от спутной струи винта создаёт момент рыскания влево. Величина момента зависит от режима работы двигателя и оборотов воздушного винта.

Уменьшить спиральный момент можно с помощью:

    используя соосные винты

    установкой фиксированного компенсатора на руль направления

    установкой двигателя с небольшим отворотом оси винта вправо

    установкой киля под небольшим углом влево

Момент, вызванный несимметричным обтеканием винта

В полёте ось винта отклонена от направления набегающего потока на угол атаки. Это приводит к тому, что опускающаяся лопасть обтекается под большим углом атаки, чем поднимающаяся. Правая часть воздушного винта будет создавать большую тягу, чем левая. Таким образом, будет создаваться момент рыскания влево.

Наибольшую величину этот момент будет иметь на максимальном режиме работы двигателя и максимальном угле атаки.

Влияние атмосферных условий

Изменения в атмосферном давлении и/или температуре приводят к изменению плотности воздуха.

Это влияет на:

    мощность двигателя при неизменном положении дроссельной заслонки

    момент сопротивления вращению винта.

Увеличение плотности воздуха приводит к увеличению обоих этих параметров, но мощность двигателя увеличивается в большей степени.

Влияние плотности воздуха на работу двигателя с винтом фиксированного шага

Увеличение плотности приводит к росту оборотов винта и наоборот.

Влияние плотности воздуха на момент сопротивления вращению (потребный крутящий момент двигателя) винта фиксированного шага

Увеличение плотности приводит к росту момента сопротивления вращению винта и наоборот.

отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя
N: (η) = PV/N
(Р - , V - поступательная ).
При таких скоростях полёта, когда на лопастях воздушного винта не возникает местных сверхзвуковых течений, основные потери связаны с индуктивным сопротивлением (индуктивные потери) и профильным сопротивлением. Индуктивные потери минимальны, если винт создаёт за собой поле скоростей, совпадающее с описываемой винтом твёрдой винтовой поверхностью. смещающейся с пост, скоростью в направлении своей оси. Такое или близкое к нему поле скоростей обеспечивается соответствующим выбором распределения циркуляции скорости вдоль лопасти (то есть выбором формы лопасти).
При больших дозвуковых скоростях полёта, когда на лопасти образуются области со сверхзвуковым течением, замыкаемые скачками уплотнений, существенным становится (волновые потери). Эффективным способом уменьшения волновых потерь является использование профилей с возможно большими значениями критических Маха чисел и сверхкритических профилей, а также отгиб лопасти назад (саблевидные лопасти) аналогично стреловидному крылу. Отгиб вперёд (обратная стреловидность) здесь эффекта не даёт вследствие роста относительной скорости обтекания с увеличением радиуса и смешения замыкающего скачка уплотнения к задней кромке. С ростом числа Маха полёта (η) воздушных винтов с широкими гонкими саблевидными лопастями (винтовентиляторов) уменьшается значительно меньше, чем (η) винтов с обычными узкими лопастями, хотя индуктивные потери одинаковы.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Коэффициент полезного действия воздушного винта" в других словарях:

    коэффициент полезного действия воздушного винта Энциклопедия «Авиация»

    коэффициент полезного действия воздушного винта - коэффициент полезного действия воздушного винта — отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя N: η = PV/N (P — тяга винта, V — поступательная скорость … Энциклопедия «Авиация»

    коэффициент полезного действия винта - к.п.д. винта Безразмерная величина, характеризуемая отношением эффективной мощности воздушного винта к мощности воздушного винта. [ГОСТ 21664 76] Тематики винты воздушные авиационных двигателей Синонимы к.п.д. винта … Справочник технического переводчика

    воздушный винт Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    - (пропеллер), лопастный движитель, преобразующий мощность (крутящий момент) двигателя в тягу, необходимую для поступательного движения летательных аппаратов, аэросаней, глиссеров, судов на воздушной подушке. Воздушные винты бывают тянущие –… … Энциклопедия техники

    авиация Энциклопедия «Авиация»

    авиация - Рис. 1. Изменение приведённой «вредной» площади манёвренных истребителей по годам. авиация (франц. aviation, от лат. avis птица) широкое понятие, связанное с полётами в атмосфере аппаратов тяжелее воздуха. А. включает необходимые технические… … Энциклопедия «Авиация»

Воздушный винт в кольце

Самодеятельные конструкторы аэросаней, аэроглиссеров, самолетов и других транспортных средств, использующих воздушные винты, часто решают дилемму получения приемлемой тяги при малых габаритах винтомоторной установки. Одним из способов повышения тяги без увеличения диаметра винта является увеличение количества лопастей. Так увеличение количества лопастей с 2-х до 4-х приводит к увеличению тяги винта на 70-80%. Но в данном случае уменьшается КПД винта, поэтому требуется двигатель с в два раза большей мощностью. Одним из способов увеличения статической тяги винта без повышения мощности двигателя является применение кольцевой насадки. При этом статическая тяга увеличивается в 1,2 раза, что равносильно увеличению диаметра винта на 30%.

Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создается зона пониженного давления, за винтом - повышенного. Вращение лопастей воздушного винта приводит к тому, что отбрасываемые им массы воздуха приобретают окружные и радиальные направления и на это расходуется часть энергии подводимой к винту.

Комплекс воздушный винт - направляющая насадка обладает рядом специфических преимуществ, связанных с действием насадки:

    1. Возникающая вокруг профиля насадки циркуляция набегающего потока разгружает винт, перекладывая часть упора комплекса на насадку.

    2. При работе комплекса в косом потоке насадка формирует поле скоростей перед винтом, выравнивая его практически соосно винту, сохраняя величину скорости натекания. В результате скос натекающего потока мало влияет на винт.

    3. Разница давлений на нагнетающей и засасывающей сторонах лопастей винта без насадки, обуславливающая полезное действие винта, уменьшается вследствие перетекания у концов лопастей (как на крыле самолета). Наличие насадки препятствует такому перетеканию, практически исключает концевые потери и повышает, таким образом, КПД комплекса.

В целом КПД комплекса может на 20 % превысить КПД винта без насадки.

Насадка представляет собой кольцо охватывающее гребной винт. Сечению насадки вдоль оси винта придается крыльевой профиль, обращенный выпуклой поверхностью к винту (рис.1).

Благодаря скосу потока воздуха профиль насадки обтекается под некоторым углом атаки. В результате возникают подъемная сила Cy и сила тяги P . Эффективность насадки существенно зависит от режима работы пропульсивного комплекса. Так, при разбеге, когда винт создает большой упор при низкой скорости самолета, скос потока на входе насадки достаточно велик, что приводит к разгрузке лопастей. Профильное сопротивление насадки при низкой скорости невелико. Однако на высоких скоростях скос потока уменьшается, а профильное сопротивление резко возрастает. Эффективность насадки падает.

Зазор между концом лопасти винта и насадкой составляет 1-2% радиуса винта. При большем зазоре КПД комплекса приблизительно соответствует КПД винта без насадки. При меньшем зазоре сложно обеспечить беспрепятственное вращение винта из-за вибраций и температурных деформаций частей комплекса.

Насадка создает более равномерную нагрузку на двигатель. Уменьшая вредное воздействие косого потока на винт насадка снижает переменные нагрузки на лопасти и вал винта, служит своеобразным демпфером при боковых порывах ветра. Насадка служит также защитой винта от повреждений и делает более безопасной эксплуатацию судна.

Расчет насадки достаточно сложен. Так же как и расчет воздушного винта, он часто не дает на практике расчетных результатов. Поэтому насадку проще подбирать экспериментально.

Ниже даны параметры четырехлопастного движительного комплекса «винт в кольце» в сравнении с двух и четырех лопастными винтами без насадок.

F (кольцо)