Способ и устройство для проведения противогололедной обработки дорожных и аэродромных покрытий. Электронное издание сдм - строительные дорожные машины и техника Приложение АТехническая характеристика распределителей противогололедных материалов

ООО Стройпроект" производит работы по проектированию, поставке оборудования, строительству и пусконаладке Автоматических Противогололедных Систем (АПС).

Автоматическая противогололедная система (АПС)

Противогололедная установка предназначена для нанесения жидкого реагента на дорожное полотно с целью предотвращения на нем гололедных явлений как по обработанной информации собственных метео- и дорожных датчиков (автоматический режим), так и по командам с диспетчерского терминала (полуавтоматический режим).

Передача информации между установкой и диспетчерским терминалом осуществляется по GSM сети.

Основной режим работы установки автоматический. В этом режиме она по показаниям входящей в ее состав автоматической дорожной метеостанции способна прогнозировать наступление гололедных явлений и самостоятельно проводить обработку дорожного полотна жидким противогололедным реагентом. Возможна работа установки в полуавтоматическом режиме, при котором установка проводит дорожного полотна по командам диспетчера с удаленного терминала.

Технические характеристики системы:

Назначение системы АПС предназначена для нанесения жидкого реагента на дорожное полотно с целью предотвращения гололедных явлений
Длина обрабатываемого дорожного участка одной гидромагистралью До 5000 метров
Количество гидромагистралей До 6 (в зависимости от конфигурации дорожного участка)
Ширина обрабатываемого дорожного участка до 11 метров
Расположение разбрызгивающих устройств(РУ) В зависимости от конструктивных особенностей дорожного участка (За волновым ограждением дорожного полотна; За декоративным обрамлением тунеля; За дорожным ограждением типа "Нью-Джерси")
Расстояние между РУ 8 - 15 метров
Время обработки дорожного участка одной гидромагистоалью До 10 минут
Время, на которое делается метеопрогноз гололедных явлений на контролируемом дорожном участке На 30 минут
Режим работы системы Автоматический, полуавтоматический при участии диспетчера
Канал связи с диспетчерским терминалом GSM
Тип здания для центральной насосной станции Контейнер (7x2,5x2,5м или 9х2,5х2,5м)
Объем емкостей для хранения реагента 7,2 до 12,6 м 3 .

Состав АПС:

  • автоматическая дорожная метеостанция (АДМС);
  • насосная станция (НС);
  • оборудование дорожного участка.

Автоматическая дорожная метеостанция (АДМС)

Автоматическая дорожная метеостанция включает в себя мачту и размещаемую на ней аппаратуру. Мачта АДМС располагается на крыше НС.

В состав аппаратуры АДМС входят:

  • датчик температуры воздуха;
  • датчик давления;
  • датчик скорости и направления ветра;
  • датчик вида и количества осадков;
  • дорожный датчик (бесконтактный, располагается над дорожным полотном).

Насосная станция представляет собой контейнер (габариты 7.0 * 2.5 * 2.5 или 9.0 * 2.5 * 2.5 метров) с размещенным внутри гидро и электро оборудованием. Изготовление корпуса насосной станции, монтаж оборудования, его испытания и тестирование проводятся в заводских условиях. Для установки на дорожный участок поставляется готовая и проверенная насосная станция.

  • комплект датчиковой аппаратуры.
  • В состав электрооборудования насосной станции входят

    • оборудование системы электроснабжения, которое обеспечивает прием электроэнергии от внешнего источника электроснабжения, ее учет и разводку по внутренним потребителям АПС;
    • оборудование системы управления (СУ);
    • оборудование системы связи с диспетчерским терминалом.

    Оборудование дорожного участка:

    В состав оборудования дорожного участка входят дорожные головки (ДГ) с размещенными внутри разбрызгивающим устройством (РУ), электроклапаном и контрольно-управляющим устройством (КУМ), а также магистральные трубопроводы для подачи жидкого реагента от НС до ДГ и электрокабели для управления работой оборудования ДГ.

    Разумов Ю.В. доцент кафедры "Дорожно-Строительных Машин"

    1. Распределители противогололедных средств.

    Машины для борьбы с гололедом бывают с механическим, физико-термическим и химическим способом воздействия на гололед. При содержании дорожных покрытий применяют в основном распределители противогололедных материалов с химическим воздействием на гололед, т. е. распределители по поверхности покрытия песка, хлоридов, реагентов и др. Специальное оборудование этих машин состоит из кузова для технологических материалов, скребкового конвейера, распределительного устройства, привода и гидросистемы. Распределители часто оснащают дополнительным оборудованием: щеточным устройством и снежным плугом, конструкция которых аналогична оборудованию подметально-уборочных машин.

    Рабочее оборудование распределителя монтируют на базе грузовых автомобилей (рис.2.9.). На автомобиль устанавливают специальный кузов-бункер сварной конструкции объемом 2,2÷3,0 м3. Боковые, передняя и иногда задняя стенки кузова расположены под углом для лучшего перемещения песка вниз к конвейеру и далее к распределительному устройству. В днище кузова расположен скребковый конвейер, ведомый вал и механизм натяжения которого смонтированы в передней части кузова. Скребковый конвейер служит для подачи материала к распределительному устройству, установленному в задней части кузова. Задний борт машины имеет отверстие для выхода скребкового конвейера, с которого материал поступает в направляющую воронку. Из воронки противогололедный материал поступает в распределительное устройство, как правило, дискового типа. Диск вращается с частотой 1,7÷8 об/мин, и под действием центробежных сил материал веером рассеивается по покрытию. Ширина полосы распределения материала составляет 4÷8 м. Привод рабочего оборудования машины бывает механический или гидравлический. В механическом приводе крутящий момент передается от основного автомобильного двигателя через коробку отбора мощности, карданные передачи, цепные и зубчатые редукторы к ведущему валу скребкового конвейера, распределительного диска и щеточного устройства.

    В машинах с гидравлическим приводом крутящий момент от двигателя автомобиля передается на гидросистему, приводящую в движение скребковый конвейер и диск. Гидропривод обеспечивает возможность плавного бесступенчатого изменения скорости скребкового конвейера и частоты вращения распределительного диска, что позволяет устанавливать необходимую плотность распределения материалов (30÷500 г/м3) и ширину обработки покрытия без изменения скорости движения автомобиля. В последнее время для борьбы с гололедом все более широкое применение находят жидкие реагенты. Для распределения жидких противогололедных материалов могут быть использованы поливочно-моечные машины или специальные распределители. Производительность пескоразбрасывателей определяют так же, как и самоходных машин непрерывного действия, с учетом потерь на загрузку кузова противогололедным материалом, переезд машины в загруженном и разгруженном состоянии и другие вспомогательные операции. Средняя производительность машин для распределения противогололедных материалов составляет 20÷90 тыс. м/ч. Применение пескоразбрасывателей на аэродромах крайне нежелательно. Особенно это противопоказано на аэродромах, где эксплуатируют самолеты с турбореактивными двигателями. Применение таких машин в аэропортах следует ограничить подъездными дорогами. Для удаления гололедной пленки и снежно-ледяного наката, образующихся на поверхности покрытий, применяют тепловые машины. Принцип работы тепловых машин заключается в воздействии на обледенелое покрытие с помощью высокотемпературного скоростного потока продуктов сгорания топливовоздушной смеси, поступающей из турбореактивного двигателя, установленного на специальной раме автомобиля. Для повышения эффективности процесса удаления льда с покрытия на ряде тепловых машин устанавливают дополнительно источники инфракрасного излучения. Лед прозрачен для инфракрасных лучей. Поэтому инфракрасное излучение, генерируемое излучателем, свободно проходит через слой льда к граничной поверхности покрытия, которая, будучи непрозрачной, поглощает лучи и нагревается. Тепло от поверхности покрытия в свою очередь передается к пограничному слою льда, что приводит к подплавлению последнего и к полному ослаблению сил, связывающих лед с покрытием. Газовоздушная струя вследствие аэродинамического напора взламывает подтаявший лед и уносит его за пределы покрытия. Производительность тепловых машин рассчитывают аналогично производительности снегоочистителей.

    Изобретение относится к области противогололедной обработки дорожных покрытий, автомагистралей, объектов дорожной инфраструктуры. Устройство портивогололедной обработки дорожных и аэродромных покрытий содержит емкость для реагентов. Из емкости через насос выходит прямая гидравлическая линия, которая переходит в обратную гидравлическую линию. Обратная гидравлическая линия соединена с трубной разводкой насосной станции, которая в свою очередь соединена с прямой гидравлической линией. Прямая гидравлическая линия имеет ответвления к клапанным шкафам. Клапанные шкафы соединены через трубопровод с разбрызгивающими форсунками. Форсунки предназначены для разбрызгивания реагента на участке дороги. Каждый из клапанных шкафов управляет работой соединенной с ним разбрызгивающей форсунки и имеет индивидуальный датчик срабатывания. Датчик контролирует количество распределенного каждой форсункой реагента. Трубопровод, прямая и обратная гидравлические линии выполнены из синтетической резины на нитрильной основе. Обеспечивается повышение эффективности противогололедной обработки дорожных покрытий при экономии противогололедного реагента и долговечности системы. 2 н. и 4 з.п. ф-лы, 5 ил.

    Рисунки к патенту РФ 2524199

    Изобретение относится к способу и устройству для проведения противогололедной обработки на искусственных дорожных покрытиях (асфальтные или бетонные), таких как дорожное покрытие, автомагистрали, объекты дорожной инфраструктуры (мосты, эстакады, путепроводы, рамповые и открытые участки тоннелей, транспортные развязки) для устранения концентрации ДТП и повышения безопасности дорожного движения, а также на аэродромах в местах руления воздушных судов, рулевых дорожках и на взлетно-посадочных полосах (далее - дорожное покрытие).

    Из уровня техники (RU 2287636) известен способ автоматической обработки дорог противогололедным реагентом и стационарная система для его осуществления, который предлагается в качестве наиболее близкого аналога. Указанная система состоит из насосной станции, гидравлической системы дорожного участка и автоматической метеостанции. Насосная станция представляет собой контейнер, установленный в непосредственной близости от обрабатываемого дорожного участка, внутри которого находятся емкости для хранения реагента, насосная гидравлическая система и аппаратура управления. Оборудование дорожного участка состоит из разбрызгивающих головок, расположенных вдоль дорожного участка и установленных на гидравлической линии дорожного участка без применения гидраккумуляторов, представляющей собой жесткий трубопровод большого диаметра для обеспечения. Автоматическая метеостанция (АМС) оборудована датчиками для измерения температуры воздуха, атмосферного давления, относительной влажности, количества осадков, скорости и направления ветра, встроенными дорожными датчиками покрытия. Способ осуществления противогололедной обработки включает распределение жидкого реагента на поверхности дорожного участка посредством автоматического или дистанционного включения операции разбрызгивания, при подаче сигнала после соответствующей оценки нарастания вероятности возникновения гололедных явлений на основании метеорологических данных, выдаваемых АМС, благодаря которой реагент равномерно наносят по всей протяженности дорожного участка.

    К основным недостаткам упомянутого способа и системы необходимо отнести:

    Использование жестких пластиковых труб большого диаметра основной гидравлической линии для жидкого противогололедного реагента, вследствие чего требуется значительно больший расход дорогостоящего реагента, необходимого для заполнения данных трубопроводов;

    Расположение разбрызгивающих головок, а также кабелей управления и питания на проложенных вдоль дороги гидравлических линиях, что заставляет прокладывать ее в непосредственной близости от проезжей части;

    Применение контактных, встраиваемых датчиков покрытия, измеряющих температуру дорожного покрытия на различных глубинах, а также на поверхности дороги, что приводит к уменьшению срока службы измерительного датчика и выхода его из строя;

    Необходимость производить регулярные циклы подкачки реагента каждый раз перед началом разбрызгивания и соответствующей задержки своевременности обработки дорожных участков;

    Значительное снижение качества обработки и точности из-за неравномерности параметров давления и расхода по длине гидравлической линии (при длине гидравлической линии в 1,5 км гидравлическая система не сможет обеспечить равные показатели расхода и давления на ближайших и дальних разбрызгивающих головках, из-за потерь давления и гидравлического сопротивления);

    Оценка нарастания вероятности возникновения гололедных явлений определяется на основании метеорологических данных, выдаваемых АМС, что недостаточно для полноценного анализа состояния дорожных покрытий, т.к. метеоданные не учитывают состояние искусственного дорожного покрытия и фазу жидкости, находящейся на ее поверхности, это сводит полученные измерения лишь к метеопрогнозу с ошибкой измерений до 50% и соответствующим снижением точности в определении момента начала обработки;

    Неоправданный расход жидкого реагента в больших количествах при нанесении его перед возникновением гололедной обстановки или выпадением осадков из-за отсутствия программируемых команд на блокировку (например, при продолжительном интенсивном снегопаде) в случае задержки или долго времени реакции коммунальных служб по уборке снега (от 1 до 48 часов, в зависимости от нормативной документации).

    Таким образом, задача заявленного изобретения заключается в том, чтобы обеспечить равномерности расхода жидкости и давления по длине гидравлической линии, снижение вероятности разрушения гидравлической линии и линий управления и связи в результате ДТП, при размещении на дорожных конструкциях, а также возможность использования системы на аэродромных покрытиях, получение информации о реальном срабатывании клапанов, применения методов измерения не зависящих от разрушения и износа состояния дорожной одежды (что крайне важно для российских дорожных условий с износом дорожной одежды около 2 см в год по данным ФДА Росавтодор), экономия жидкого противогололедного реагента, повышение точности выявления момента образования гололеда, снижение вероятности возникновения ДТП и повышение безопасности дорожного движения.

    Соответственно, техническим результатом, достигаемым при использовании данного изобретения, является повышение эффективности антигололедной обработки дорожных покрытий при экономии противоголедного реагента и долговечности системы.

    Для достижения поставленного технического результата разработан стационарный комплекс, который реализует способ для проведения противогололедной обработки дорожных покрытий жидким реагентом, использующий гидравлическую линию разбрызгивающей системы по кольцевому принципу гидравлического контура, с исполнением гидравлических линий из синтетической резины на нитрильной основе, позволяющего аккумулировать давление жидкости в системе, при сохранении минимального используемого объема жидкости по всей длине линии. Комплекс имеет возможность передачи информации о реальном срабатывании каждого клапана по линии связи и управления их работой в режиме обратной связи при использовании индивидуального датчика, а также возможностью размещения разбрызгивающих устройств на расстоянии до 15 метров от основной гидравлической магистрали без изменения характеристик разбрызгивания, за счет сохранения жидкости в трубопроводе, от клапана до разбрызгивающей форсунки.

    Сбор информации о состоянии дорожного покрытия и параметров микроклимата придорожной среды с использованием методов измерения, не зависящих от разрушения и износа дорожной одежды проезжей части, и загрязнений (бесконтактные методы измерения параметров дорожного покрытия, ультразвуковые методы фиксации количества, типа и интенсивности осадков неоптического характера). Разработанный аналитический комплекс имеет возможность внесения индивидуальных настроек для каждого объекта оснащения, учитывать состояние искусственного дорожного покрытия и фазу жидкости, находящейся на ее поверхности, а также имеет систему блокировки от перерасхода жидкого противогололедного реагента.

    Противогололедный комплекс состоит из измерительной части, которая отвечает за сбор, хранение и анализ информации о реальном состоянии дорожного покрытия, а также придорожной среды; исполнительной части, отвечающий за непосредственное нанесение жидкого противогололедного реагента на дорожное покрытие путем распределения через разбрызгивающие форсунки, установленные сбоку проезжей части или интегрированные в покрытие; аналитического модуля, выполняющего функцию активатора исполнительной части на основе анализа актуальных данных от измерительной части.

    Исполнительная часть состоит из насосной станции с емкостями для хранения реагента, насосами подачи, контролирующей и питающей аппаратурой, системой управления разбрызгиванием форсунок, системой трубопроводов и разбрызгивающей системы, представляющей собой сеть защитных трубопроводов с проложенными внутри гидравлическими линиями, линиями питания и управления; клапанными шкафами, с расположенными внутри клапанами, блоками управления и датчиками срабатывания; а также разбрызгивающими форсунками.

    Насосная станция размещается в непосредственной близости от объекта (на удалении до 40 м от ближайшей клапанной панели) в здании некапитального характера или технологическом помещении дорожного объекта.

    Внутри здания/помещения размещаются емкости для хранения жидкого противогололедного реагента, группа насосов, гидравлическая разводка, питающая и управляющая аппаратура.

    Разбрызгивающая система представляет собой сеть защитных трубопроводов между клапанными шкафами, расположенными вдоль гидравлической линии. От клапанных шкафов отходят гидравлические трубопроводы к разбрызгивающим форсункам.

    Трубопровод гидравлической линии имеет, например, наружный диаметр 27 мм, и внутренний 19 мм, из гибкого специального резинового материала позволяет сохранять давление жидкости в статичном состоянии.

    Специальный резиновый материал должен быть эластичным и обеспечивать растяжение стенок для возможности накапливания давления, при этом выдерживая давление до 20 бар при рабочем в 14 бар. Давление жидкости в магистральной ветке гидравлической линии аккумулируется за счет растяжения стенок трубопровода из специального эластичного материала (синтетическая резина на нитрильной основе).

    Коммуникации разбрызгивающей системы могут проходить под землей, на поверхности земли и выше поверхности, а также за облицовочными панелями на рамповых участках тоннеля на расстоянии до 15 метров (при необходимости выноса коммуникаций на аэродроме) от разбрызгивающих форсунок.

    Клапанные шкафы в заявленном устройстве расположены параллельно (в случае забивки одного клапана последующие смогут функционировать штатно) на ответвлении от магистральной прямой гидравлической линии.

    Каждый клапанный шкаф заявленного устройства содержит: клапан, прямую гидравлическую линию, обратную гидравлическую линию, линию питания, линию управления, блок управления, датчик срабатывания, трубную разводку, клемник и шкаф клапанной панели.

    Клапан предназначен для подачи противогололедной жидкости из гидравлической линии в трубопровод на разбрызгивающую форсунку. Возможно применение электромагнитных клапанов различного типа и мощности, в частности мембранных клапанов и шаровых поворотных.

    Прямая гидравлическая линия выполнена из синтетической резины на нитрильной основы, предназначается для подачи противогололедной жидкости на электромагнитный клапан.

    Обратная гидравлическая линия выполняется из гибкого полимерного материала (для защиты от повреждений на изгиб), например нейлон; предназначена для выравнивания давления по длине трубопровода и возможности выполнения промывки в летний период.

    Линия питания предназначена для питания блока управления и открытия/закрытия электромагнитных клапанов.

    Линия управления осуществляет передачу сигнала по интерфейсу RS485 и передает адресный сигнал для блока управления.

    Блок управления предназначен для распознавания адресного сигнала по линии связи RS485, контроля подачи напряжения на открытие электромагнитного клапана.

    Датчик срабатывания измеряет физические характеристики потока противогололедного реагента при его разбрызгивании и передает информацию на управляющую аппаратуру насосной станции по линии управления.

    Трубная разводка выполняет функции отделения потока жидкости из гидравлической линии прямой на электромагнитный клапан.

    Клемник предназначен для электрических соединений между линиями управления, питания, проводами блока управления, электромагнитного клапана, датчика срабатывания.

    Шкаф клапанной панели предназначен для размещения всех элементов клапанной панели и крепления на дорожном участке.

    Разбрызгивающие форсунки располагаются сбоку проезжей части, в зоне свободной от влияния дорожного движения и не находящиеся в зоне деформации в результате ДТП. Крепление разбрызгивающих форсунок осуществляется на отдельных элементах, не связанных с металлическим барьерным ограждением, внутри закладных элементов малого размера (отверстия диаметром 63 мм), в нишах бетонных банкеток или отбойного бруса.

    Существует вариант расположения разбрызгивающих форсунок интегрированных в покрытие. Такой способ размещения разбрызгивающих форсунок получил широкое распространение для покрытий увеличенного срока службы (бетонное покрытие на мостах и в тоннелях).

    Разбрызгивающие форсунки располагаются вдоль проезжей части с шагом 10-15 м (в зависимости от ширины обработки и конфигурации проезжей части). При необходимости обработки проезжей части шириной 3-4 полосы движения форсунки располагаются с обеих сторон движения в шахматном порядке.

    Обработка из разбрызгивающих форсунок происходит последовательно в сторону против движения автотранспорта, при направленном векторе разбрызгивания - по движению.

    Возможность расположение разбрызгивающих форсунок на расстоянии до 15 метров от магистральной линии обеспечивается использованием гибкого трубопровода, подключаемого к клапану с одной стороны и к разбрызгивающим форсункам с другой стороны. Благодаря применению специальных разбрызгивающих сопел на форсунках, жидкость в статическом состоянии не вытекает из трубопровода, что позволяет использовать последний большой длины, не оказывая существенного влияния на количественные и качественные характеристики разбрызгивания.

    Разбрызгивающая форсунка, устанавливая сбоку дорожного покрытия или на дорожном покрытии, производит распределение противогололедного реагента через разбрызгивающие сопла.

    Разбрызгивающие сопла обеспечивают:

    а) тип 1 выпуск струи на дальнее расстояние (до 12 и более метров),

    б) тип 2 выпуск струи для обработки участка от 1 до 5 м,

    в) тип 3 выпуск струи для обработки большого сектора на расстояние до 15 м,

    г) удерживание жидкость внутри форсунки, не позволяя вытекать ей через сопла (иметь односторонний пропускной клапан),

    Указанные свойства в пунктах «а-в» достигаются за счет геометрии выходного отверстия сопла, а в пункте «г» за счет применения обратного клапана.

    Устройство для проведения антигололедной обработки дорожных покрытий, имеющий в своем составе одну насосную станцию, может обслуживать разбрызгивающие системы длиной 1,5 км и более в одну сторону (при необходимости одна насосная станция может обслуживать одну и более разбрызгивающих систем). При необходимости разбрызгивания на большую длину может применяться серия разбрызгивающих станций.

    Одна насосная станция может обслуживать несколько разбрызгивающих систем одновременно. Возможности активации устройства для проведения антигололедной обработки дорожных покрытий следующие.

    1. Работа в полностью автоматическом автономном режиме.

    2. Работа в автоматизированном режиме (требуется подтверждение необходимости срабатывания).

    3. Запуск в принудительном ручном режиме.

    В полностью автоматическом режиме заявленное устройство работает, получая информацию с измерительной части, обрабатывает ее при помощи аналитического модуля и генерирует тревогу для активации срабатывания по заданному согласно конкретным локальным условиям объекта оснащения алгоритму. При этом учитываются необходимые факторы состояния дорожной среды и окружающей атмосферы (особая газовоздушная среда в придорожной зоне).

    Автоматизированный способ активации устройства предусматривает подтверждение оператором команды на запуск исполнительной разбрызгивающей части. Запрос на срабатывание системы с указанием причины активации тревоги (дорожная ситуация, осадки и прочее) приходит на компьютер, установленный на рабочем месте оператора (или контактный телефон дежурного), и в случае подтверждения активизирует разбрызгивающую систему.

    В случае необходимости ручного пуска разбрызгивающей системы оператор может выполнить пуск или с компьютера, установленного на рабочем месте, или от кнопки, расположенной в насосной станции.

    Измерительная часть устройства представляет собой систему датчиков и модулей связи для передачи, а также контроля параметров дорожной среды и возможности образования гололеда или зимней скользкости.

    Автоматическая дорожная метеостанция АДМС, которая может входить в состав измерительной части состоит из:

    1) метеомачты и основания для крепления (устанавливается в непосредственной близости от дорожного объекта),

    2) шкафа с контроллером управления (модулями коммуникации),

    3) метеодатчиков, устанавливаемых на мачте или конструкциях транспортного объекта,

    4) бесконтактных датчиков покрытия,

    5) встроенных датчиков покрытия.

    Метеодатчики фиксируют параметры, такие как:

    1) температура и влажность воздуха,

    2) скорость и направление ветра - измеряется при помощи ультразвука и не зависит от загрязнения,

    3) атмосферное давлении воздуха - необходимо для коррекции прогноза обледенения,

    4) интенсивность солнечной радиации - используется для специальных условий, в особенности горной местности для прогноза возможного образования,

    5) количество, вид и интенсивность осадков.

    Бесконтактные датчики покрытия измеряют параметры дорожной среды, не имея при этом элементов внутри дорожной одежды. Оптические измерительные элементы располагаются на уровне 4-5 м над поверхностью земли и поэтому меньше подвержены загрязнению.

    Бесконтактные датчики покрытия измеряют параметры, такие как:

    Толщина водяной пленки на поверхности дороги,

    Состояние дорожного покрытия (лед, снег, водно-соевая смесь и др.),

    Температура дорожного покрытия,

    Процентное содержание ледяных частиц в жидкой среде на поверхности дороги,

    Характеристика коэффициента сцепления на поверхности дороги

    И другие.

    Заявленное устройство может работать в автоматическом режиме, так как укомплектовано оптическими бесконтактными датчиками покрытия и датчиками контроля метеопараметров.

    Контактные (активные) датчики покрытия могут применять для измерения тех же параметров, что и бесконтактные датчики покрытия. Помимо того, активный датчик покрытия измеряет точку замерзания жидкости, находящейся на поверхности дороги, проводя циклы нагрева/охлаждения жидкости и фиксируя реальную температуру замерзания (циклы охлаждения до -15°С относительно актуальной температуры покрытия).

    Область применения встроенных датчиков покрытия распространяется на сложные локальные участки, где трудно установить бесконтактный датчик покрытия, а также на мостах и эстакадах, где применяются дорожные покрытия с увеличенным сроком службы (бетон и прочее).

    Необходимый сигнал на активацию автоматической антигололедной системы вырабатывает аналитический модуль на основе последовательного алгоритма.

    На чертежах и схемах представлены:

    Схема 1 - принцип работы противогололедного комплекса.

    Схема 2 - автоматический противогололедный комплекс.

    Фиг.1 - расположение оборудования на объекте.

    Фиг.2 - клапанный шкаф.

    Фиг.3 - специальное разбрызгивающее сопло.

    Насосная станция автоматического противогололедного комплекса располагается на объекте оснащения. Противогололедный реагент хранится в емкостях внутри помещения насосной станции или рядом с ним.

    Оборудование насосной станции обеспечивает подачу противогололденого реагента в гидравлические линии (в рабочем режиме в прямую и обратную).

    Противогололедный реагент, поступая через гидравлические линии через тройник клапанной панели, подается к электромагнитному клапану под давлением. В случае активации системы электромагнитные клапаны в определенной последовательности, в том числе и не ограничиваясь, против движения открываются на определенные временные промежутки, подавая определенное количество противогололедного реагента сначала в трубопровод, а потом и на саму разбрызгивающую форсунку.

    Измерительная часть фиксирует параметры дорожного покрытия и метеоданные и передает их в аналитический блок, который в свою очередь, используя алгоритм (см. схему 1), выдает команду на необходимость активации исполнительной части или блокировки на определенный промежуток времени.

    При работе автоматического противогололедного комплекса имеется система в составе аналитического модуля, которая позволяет предупредить перерасход противогололедного реагента при наличии за счет фиксации наличия большого количества снега на покрытии, а также блокировки повторного разбрызгивания системы по причине начала снегопада. Для достижения поставленной цели учитывается информация о наличии снега на покрытии от контактных и бесконтактных датчиков покрытия, а также временная задержка по срабатыванию в результате начала снегопада.

    Фиксация параметров дорожного покрытия и метеоданных происходит постоянно. Проведение противогололедной обработки при помощи исполнительной части заблаговременно предотвращает образование зимней скользкости путем изменения химического состава жидкости, нанесенной на поверхность.

    Заявленное устройство работает следующим образом.

    Из емкости (1) для реагентов через насос (2) реагент, минуя трубную разводку (3), по прямой гидравлической линии (4) направляется вдоль обрабатываемой поверхности, в данном случае участок дороги (7), параллельно распределяясь по клапанным шкафам (6), расположенным также на протяжении участка дороги (7), и обратно по обратной гидравлической линии (5) в сторону емкости для реагентов. Доходя до трубной разводки (3), реагент опять возвращается в прямую гидравлическую линию (4), что обеспечивает минимизацию потерь реагента. Из клапанных шкафов (6) реагент поступает на разбрызгивающие форсунки (8), которые разбрызгивают его в области их обработки (9) на участке дороги (7).

    На фиг.2 представлен клапанный шкаф, где:

    10 - блок управления,

    11 - клемник,

    12 - линия управления,

    13 - датчик срабатывания,

    14 - шкаф клапанной панели,

    15 - линия питания,

    16 - прямая гидравлическая линия,

    17 - обратная гидравлическая линия.

    Устройство антигололедной обработки дорожных и аэродромных покрытий содержит емкость для реагентов, выходящую из нее через насос прямую гидравлическую линию, имеющую ответвления к клапанным шкафам, которая переходит в обратную гидравлическую линию, соединенную с трубной разводкой насосной станции, которая в свою очередь соединена с прямой гидравлической линией, причем клапанные шкафы соединены через трубопровод с разбрызгивающими форсунками, которые предназначены для разбрызгивания реагента на участке дороги, причем трубопровод, прямая и обратная гидравлические линии выполнены из синтетической резины на нитрильной основе, а каждый из клапанных шкафов управляет работой (работа, включение, выключение), соединенной с ней разбрызгивающей форсункой. Трубопровод, прямая и обратная гидравлические линии проходят под землей, над землей или по земле. Разбрызгивающие форсунки располагаются вдоль проезжей части с шагом 10-15 м. Соединение обратной гидравлической линии через трубную разводку насосной станции с прямой гидравлической линией обеспечивает кольцевой принцип движения реагента (см. фиг.1), обеспечивая тем самым экономию реагента.

    Разбрызгивающие форсунки укомплектованы специальными разбрызгивающими соплами (см. фиг.3).

    Сопла могут быть выполнены из нержавеющей стали, латуни, пластика, композитных материалов. На фиг.3 представлено специальное сопло, где:

    18 - задняя часть сопла,

    19 - разбрызгивающая часть сопла,

    20 - обратный клапан,

    21 - стабилизатор потока жидкости,

    22 - выходное отверстие сопла,

    23 - резьбовое соединение частей сопла,

    24 - втулка клапана,

    25 - пружина клапана,

    26 - крепление к корпусу разбрызгивающей форсунки.

    Для предотвращения вытекания жидкости в статичном состоянии применяется обратный клапан 20.

    Разбрызгивающая форсунка, установленная в том числе, но не ограничиваясь, сбоку дорожного покрытия или на дорожном покрытии, производит распределение противогололедного реагента через сопла.

    Пояснения к геометрии выходного отверстия сопла разбрызгивающей форсунки:

    а) тип 1 - выпуск струи на дальнее расстояние (до 12 и более метров).

    Применяется выпускное отверстие 22 круглого сечения, без стабилизатора потока 21 (для уменьшения сопротивления), при этом угол распыления становится минимальным, следовательно, вся энергия потока направлена на перемещение вперед.

    б) тип 2 - выпуск струи для обработки участка от 1 до 5 м.

    Применяется выпускное отверстие 22 плоского сечения (овального, вытянутого), совместно с стабилизатором потока 21. В этом случае угол распыления принимается максимальным с тем расчетом, чтобы покрыть необходимую площадь (рассчитывается индивидуально исходя из требований к конкретному объекту). Плоскость потока в начальный момент времени принимается параллельной дорожному покрытию.

    в) тип 3 - выпуск струи для обработки большого сектора на расстояние до 8 и более метров.

    Применяется выпускное отверстие 22 овального сечения, близкого к круглому, совместно с стабилизатором потока 21. В этом случае применяется средний угол распыления. Данный тип сопел может применяться в разбрызгивающих форсунках, имеющих три и более сопел в своем составе, для покрытия большого сектора дорожного покрытия.

    Заявленное изобретение является новой, поскольку совокупность ее существенных признаков неизвестна из уровня техники и, соответственно, отвечает условию патентоспособности изобретения "новизна".

    Заявленное изобретение имеет изобретательский уровень, поскольку для специалиста оно явным образом не следует из уровня техники.

    Заявленное изобретение отвечает условию патентоспособности "промышленная применимость", поскольку она может использоваться в промышленности.

    Хотя настоящее изобретение было раскрыто со ссылкой на предпочтительные варианты ее осуществления, это не предназначено для ограничения настоящего изобретения, специалисты с общими знаниями в данной области техники настоящего изобретения могут модифицировать и осуществить его, не отступая от идеи и объема изобретения, следовательно, объем охраны настоящего изобретения должен регулироваться объемом, заданным в формуле изобретения.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    1. Устройство противогололедной обработки дорожных и аэродромных покрытий, характеризующееся тем, что содержит емкость для реагентов, выходящую из нее через насос прямую гидравлическую линию, имеющую ответвления к клапанным шкафам, которая переходит в обратную гидравлическую линию, соединенную с трубной разводкой насосной станции, которая в свою очередь соединена с прямой гидравлической линией, причем клапанные шкафы соединены через трубопровод с разбрызгивающими форсунками, которые предназначены для разбрызгивания реагента на участке дороги, причем трубопровод, прямая и обратная гидравлические линии выполнены из синтетической резины на нитрильной основе, а каждый из клапанных шкафов управляет работой соединенной с ним разбрызгивающей форсунки и имеет индивидуальный датчик срабатывания, который контролирует количество распределенного каждой форсункой реагента, причем разбрызгивающие форсунки укомплектованы разбрызгивающими соплами, в которых выходные отверстия имеют круглую или вытянутую форму, и содержится обратный клапан.

    2. Устройство по п.1, характеризующееся тем, что трубопровод, прямая и обратная гидравлические линии проходят под землей.

    3. Устройство по п.1, характеризующееся тем, что трубопровод, прямая и обратная гидравлические линии проходят над поверхностью земли.

    4. Устройство по п.1, характеризующееся тем, что трубопровод, прямая и обратная гидравлические линии проходят по поверхности земли.

    5. Устройство по п.1, характеризующееся тем, что разбрызгивающие форсунки располагаются вдоль проезжей части с шагом 10-15 м.

    6. Способ противогололедной обработки дорожных и аэродромных покрытий, отличающийся тем, что осуществляется при помощи устройства по п.1.

    ОДМ 218.5.006-2008

    ОТРАСЛЕВОЙ ДОРОЖНЫЙ МЕТОДИЧЕСКИЙ ДОКУМЕНТ

    Предисловие

    1. РАЗРАБОТАН: Федеральным государственным унитарным предприятием "РОСДОРНИИ". Методический документ разработан в соответствии с пунктом 3 статьи 4 Федерального закона от 27.12.2002 N 184-ФЗ "О техническом регулировании" и является актом рекомендательного характера в дорожном хозяйстве.

    2. ВНЕСЕН: Управлением эксплуатации и сохранности автомобильных дорог Федерального дорожного агентства.

    3. ИЗДАН: На основании распоряжения Федерального дорожного агентства от 10 сентября 2008 г. N 383-р .

    Раздел 1. Область применения

    Раздел 1. Область применения

    Отраслевой дорожный методический документ "Методические рекомендации по применению экологически чистых антигололедных материалов и технологий при содержании мостовых сооружений" является актом рекомендательного характера и разработан в качестве дополнений к "Руководству по борьбе с зимней скользкостью на автомобильных дорогах" (ОДМ 218.3.023-2003).

    Методические рекомендации содержат перечень противогололедных материалов, возможных к применению для борьбы с зимней скользкостью на автодорожных мостах и других искусственных сооружениях, раскрывают особенности эксплуатации автодорожных мостов в зимних условиях, требования к ПГМ и нормы их распределения, а также необходимые мероприятия по коррозионной защите конструктивных элементов мостов и обеспечению антигололедного состояния дорожных покрытий на искусственных сооружениях.

    Положения, изложенные в документе, рекомендуется использовать при зимнем содержании и ремонте автодорожных мостов.

    Раздел 2. Нормативные ссылки

    В настоящем методическом документе использованы ссылки на следующие документы:

    а) Руководство по оценке уровня содержания автомобильных дорог.* Временное. М., 2003.
    ________________
    * Документ не приводится. За дополнительной информацией обратитесь по ссылке , здесь и далее по тексту. - Примечание изготовителя базы данных.

    б) Методические рекомендации по ремонту и содержанию автомобильных дорог общего пользования (Проект). М., 2008.

    в) Руководство по оценке транспортно-эксплуатационного состояния мостовых конструкций . ОДН 218.0.017-2003. М., 2003.

    г) Руководство по защите металлоконструкций от коррозии и ремонту лакокрасочных покрытий металлических пролетных строений эксплуатируемых автодорожных мостов *. М., 2003.
    ________________
    * На территории Российской Федерации документ не действует. Действует ОДМ 218.4.002-2009 , здесь и далее по тексту. - Примечание изготовителя базы данных.

    д) Методические рекомендации по содержанию мостовых сооружений на автомобильных дорогах . Росавтодор. М., 1999.

    е) Руководство по борьбе с зимней скользкостью на автомобильных дорогах . ОДМ 218.3.023-2003. М., 2003.

    ж) Требования к противогололедным материалам. ОДН 218.2.027-2003 . М., 2003.

    з) Методика испытаний противогололедных материалов . ОДМ 218.2.028-2003. М., 2003.

    к) Методические рекомендации по защите водотоков от загрязнений водами поверхностного стока с эксплуатируемых автодорожных мостов*. М., 1991.
    ________________
    * Документ является авторской разработкой. За дополнительной информацией обратитесь по ссылке . - Примечание изготовителя базы данных.

    м) Методические рекомендации по применению наполнителя "Грикол" в составах асфальтобетонных смесей для устройства покрытия с антигололедными свойствами . М., 2002.

    н) Показатели и нормы экологической безопасности автомобильной дороги . М., 2003.

    Раздел 3. Термины и определения

    В настоящем методическом документе применяются следующие термины с соответствующими определениями:

    Зимнее содержание - работы и мероприятия по защите дорог и искусственных сооружений на них в зимний период от снежных отложений, заносов и лавин, очистке от снега, предупреждению образования и ликвидации зимней скользкости и борьбе с наледями.

    Зимняя скользкость - снежные отложения и ледяные образования на поверхности дорожного покрытия, приводящие к снижению коэффициента сцепления колеса автомобиля с поверхностью покрытия.

    Рыхлый снег - образуется на дорожном покрытии при выпадении твердых осадков в безветренную погоду и откладывается в виде ровного по толщине слоя.

    Снежный накат - представляет собой слой снега, уплотненного колесами автомобильного транспорта при определенных метеорологических условиях.

    Стекловидный лед - появляется на покрытии в виде гладкой стекловидной пленки толщиной 1-3 мм при различных погодных условиях.

    Противогололедные материалы (ПГМ) - твердые (сыпучие) или жидкие дорожно-эксплуатационные материалы (фрикционные, химические) или их смеси, применяемые для борьбы с зимней скользкостью на автомобильных дорогах.

    Экологически чистые - безопасные противогололедные материалы (ЭКПГМ) - твердые и жидкие ПГМ, не вызывающие вредного воздействия на окружающую природную среду (воду, почву, растения и т.п.) и конструктивные элементы автомобильной дороги (мосты, ограждения, покрытия и т.п.).

    Фрикционные ПГМ - материалы, повышающие коэффициент сцепления со снежно-ледяными отложениями на покрытии, для обеспечения безопасных условий движения.

    Химические ПГМ - реагенты, способные плавить снежно-ледяные отложения на дорожных покрытиях при отрицательных температурах воздуха.

    Раздел 4. Общие положения

    а) Важнейшими сооружениями на автомобильных дорогах являются искусственные сооружения и в первую очередь автодорожные мосты, основная задача которых - бесперебойный и безопасный пропуск автомобильного транспорта и пешеходов через водные препятствия в различные сезоны года. Особенно неблагоприятные условия для движения автомобилей и пешеходов возникают в зимний период, когда на дорожном полотне образуются снежно-ледяные отложения, способствующие ухудшению транспортно-эксплуатационного состояния и безопасности дорожного движения на мостовом сооружении.

    Поэтому к одной из основных задач зимнего содержания относятся мероприятия по предупреждению образования и ликвидации снежно-ледяных отложений на дорожном полотне и тротуарах мостовых сооружений. Решение этой задачи достигается путем проведения различных работ по поддержанию проезжей части в состоянии, удовлетворяющем требованиям ГОСТ Р 50597-93 "Автомобильные дороги. Требования к эксплуатационному состоянию, допустимому по условиям обеспечения безопасности дорожного движения".

    б) Улучшение состояния мостовых сооружений в зимних условиях достигается путем обработки поверхности покрытия химическими или комбинированными противогололедными материалами (ПГМ) с последующей уборкой дорожной шуги с проезжей части автодорожных мостов.

    В качестве химических противогололедных материалов для борьбы с зимней скользкостью на мостовых сооружениях в настоящее время все шире начинают использовать реагенты, не оказывающие отрицательного влияния не только на окружающую природную среду, но и на конструктивные элементы автодорожных мостов. К таким реагентам относят противогололедные материалы, выпускаемые на ацетатной (НСНСОО), формиатной (НСООН), карбамидной (CO(NH)) и на других бесхлорных основах, а также хлорсодержащие материалы с антикоррозионными и биологическими добавками (экологически безопасные противогололедные материалы - (ЭК ПГМ), резко уменьшающими отрицательное влияние на бетонные, металлические конструкции мостов и элементы окружающей среды.

    Эффективность использования этих материалов для борьбы с зимней скользкостью на автодорожных мостах в первую очередь зависит от возможности учета постоянных метеорологических данных для конкретного объекта и использования современных передвижных и стационарных распределительных установок.

    в) Методические рекомендации по применению экологически чистых противогололедных материалов и технологий при содержании мостовых сооружений разработаны впервые на основании отечественного и зарубежного опыта в качестве дополнения к Руководству по борьбе с зимней скользкостью на автомобильных дорогах . ОДМ 218.3.023-2003.

    г) Рекомендации регламентируют порядок проведения мероприятий по борьбе с зимней скользкостью, методы испытаний ПГМ, а также работы, которые обеспечивают требуемые условия эксплуатации мостовых сооружений с помощью применения различных ПГМ и технологий.

    Раздел 5. Особенности эксплуатации мостовых сооружений в зимних условиях

    а) Эксплуатируемые мостовые сооружения постоянно подвержены воздействию транспортных нагрузок и различных природных явлений. К природным явлениям прежде всего относятся переменные во времени температура и влажность воздуха, атмосферные осадки, воздействия воды.

    б) В особо тяжелых условиях находятся искусственные сооружения, эксплуатируемые в районах с частыми переходами через ноль, т.е. от отрицательных температур к положительным и наоборот.

    в) Негативное влияние на состояние искусственных сооружений на автомобильных дорогах оказывают динамические нагрузки от транспортных средств, вызывающие усталостные явления в материале сооружения.

    г) В большей степени внешним климатическим и транспортным воздействиям подвержено мостовое полотно - покрытие проезжей части, деформационные швы и сопряжения моста с насыпью, тротуары, перила и ограждения безопасности.

    д) На железобетонных пролетных строениях сочетание внешних воздействий и нагрузок вызывает сначала на бетоне поверхностные дефекты в виде его шелушения, затем появление скола слабо сцепленных частиц бетона и образование глубоких выколов, отслоение защитного слоя с оголением и коррозией арматурных стержней.

    е) В металлических пролетных строениях от воздействия внешней среды наблюдается коррозия металла. При разрушении защитных покрытий на металле образуется налет ржавчины, который постепенно увеличивается в размерах, достигая уровня, понижающего несущую способность главных элементов пролетных строений.

    ж) На автодорожных мостах, которые обладают меньшей теплоемкостью, чем дорожная одежда на земляном полотне, и имеют более низкую температуру покрытия в ночное время, чаще возникают условия гололедообразования.

    з) Образованию скользкости на мостах способствует более высокая относительная влажность в поймах рек и других водоемов, особенно в переходный период до установления ледового покрова, а также на искусственных сооружениях около крупных ТЭЦ и предприятий. Поэтому эффективность борьбы с зимней скользкостью на таких объектах, особенно на внеклассных мостовых сооружениях, всецело зависит от своевременного использования достоверных метеорологических данных, которые могут быть получены от автоматических дорожных метеостанций, установленных в непосредственной близости от объекта.

    и) С мостовых сооружений запрещается сброс снега и льда.

    к) Перед началом зимнего сезона необходима тщательная заделка (ремонт) мест разрушения покрытия и всех конструктивных элементов сооружения, особенно с обнаженной металлической арматурой, нарушенными гидроизоляцией, деформационными швами и водоотводом.

    Производят работы по очистке от ржавчины и загрязнений и покраску лакокрасочными материалами металлических элементов и конструкций.

    л) На конструктивных выступах мостов, эстакад, путепроводов (ригелях, насадках, консолях тротуаров и т.п.) необходимо производить удаление снега, если его толщина превышает 10 см. В первую очередь очищают южную сторону сооружения.

    м) Весной после окончания зимних работ на искусственных сооружениях осуществляют тщательную промывку различных элементов (пазух, деформационных швов, опорных частей и т.п.) с применением специальных моющих средств для снижения коррозии, которая усиливается при повышении температуры воздуха.

    н) Все виды зимней скользкости на мостах и других искусственных сооружениях подразделяют на рыхлый снег, снежный накат, стекловидный лед.

    Раздел 6. Требования к состоянию дорожного покрытия на искусственных сооружениях в зимний период

    а) К работам по уходу за искусственным сооружением относят очистку элементов мостового полотна и несущих конструкций от снега и льда.

    б) Проезжую часть и тротуары очищают от снега и льда, при гололеде посыпают песком, топливным шлаком или дробленым щебнем.

    в) После снегопада и при оттепелях талый снег и материалы борьбы с гололедом сдвигают к ограждениям с последующей уборкой их с моста. Уборку снега из валов производят шнековыми и шнекороторными дорожными машинами, автогрейдерами, бульдозерами и другими механизмами с погрузкой снега в самосвалы и вывозом за пределы сооружения на снегосвалки.

    г) Водоотводные устройства при необходимости в весенний период промывают горячей водой.

    д) Периодичность работ по уборке проезжей части определяется местными условиями, но не реже 1 раза в 10 дней, при снегопадах - ежедневно. Директивные сроки по очистке от снега и завершению борьбы с зимней скользкостью, в том числе и уборка валов снежной массы, сдвинутой со средней части мостовых сооружений, соответствуют (ГОСТ 50597-93):

    - при интенсивности >3000 авт./сут - 4 ч,

    - при интенсивности 1000-3000 авт./сут - 5 ч,

    - при интенсивности <1000 авт./сут - 6 ч.

    е) Рыхлый (уплотненный) снег на тротуарах в населенных пунктах после снегоочистки не должен превышать 5 (3) см. Срок очистки тротуаров в населенных пунктах составляет не более 1 сут.

    ж) Не допускаются не посыпанные фрикционным материалом тротуары в населенных пунктах. Нормативное время посыпки после окончания снегопада в местах с интенсивностью движения пешеходов:

    - свыше 250 чел./ч не более 1 ч;

    - 100-250 чел./ч не более 2 ч;

    - до 100 чел./ч не более 3 ч.

    з) Не допускается наличие противогололедных материалов на ограждениях и перилах.

    и) Не допускается засорение лотков водоотводных трубок и окон в тротуарных блоках.

    к) Рыхлый (талый) снег на проезжей части допускается толщиной не более 1 (2) см для А1, А2, A3, Б; 2 (4) см - для дорог Б2.

    Нормативная ширина очистки 100%.

    л) Срок ликвидации зимней скользкости с момента образования (и уборки снега с момента окончания снегопада) до полного устранения не более 3 (4) ч для A1, A2, A3; 4 (5) ч для В; 8-12 ч для Г1; 10 (16) ч для Г2.

    м) Снежный накат не допускается на A1, A2, A3, Б; и допускается до 4 см для В, Г1; до 6 см для Г2 при интенсивном движении не более 1500 авт./сут.

    н) Основные требования к состоянию дорожного покрытия на искусственных сооружениях в зимних условиях приведены в "Руководстве по оценке уровня содержания автомобильных дорог". М., 2003.

    Раздел 7. Борьба с зимней скользкостью на мостовых сооружениях

    а) Мероприятия по предотвращению и ликвидации зимней скользкости на мостовых сооружениях включают:

    - профилактическую обработку покрытий химическими противогололедными материалами;

    - ликвидацию образовавшегося ледяного или снежно-ледяного слоя химическими противогололедными материалами и/или специальной дорожной техникой;

    - повышение шероховатости проезжей части путем распределения фрикционных материалов (песка, высевок, щебня, шлака);

    - устройство специальных покрытий с антигололедными свойствами.

    б) Для повышения эффективности борьбы с зимней скользкостью проводят мероприятия по:

    - устройству автоматических систем распределения жидких ПГМ и антигололедных покрытий на особо ответственных искусственных сооружениях;

    - повседневному обеспечению метеорологическими данными для своевременной организации борьбы с зимней скользкостью, особенно при профилактической обработке покрытий, на искусственных сооружениях путем создания системы дорожных метеостанций (постов).

    в) С целью предупреждения образования снежно-ледяных отложений на покрытии распределение ПГМ производят предварительно (основываясь на метеопрогнозе) или непосредственно с момента начала снегопада (для предупреждения снежного наката).

    г) Распределение ПГМ во время снегопадов позволяет сохранить выпадающий снег в рыхлом состоянии.

    После прекращения снегопада образовавшуюся на дороге рыхлую снежную массу удаляют с проезжей части последовательными проходами плужно-щеточных снегоочистителей.

    д) Химические реагенты для борьбы с зимней скользкостью на мостовых сооружениях используют только экологически безопасные. К экологически безопасным относятся ПГМ, выпускаемые на основе ацетатов, формиатов, карбамидов и других подобных реагентов.

    е) После разрыхления наката (вследствие частичного плавления и воздействия колес автомобильного транспорта) обычно в течение 2-3 ч рыхлую водо-снежную массу (шугу) убирают последовательными проходами плужно-щеточных снегоочистителей.

    ж) При образовании на покрытии стекловидного льда (наиболее опасного вида зимней скользкости) работы по его ликвидации состоят в распределении химического ПГМ в интервале (выдержке) до полного таяния льда, в очистке и уборке проезжей части от образовавшегося раствора или шуги.

    з) При фрикционном способе борьбы с зимней скользкостью на мостах применяют песок, каменные высевки, щебень и шлак в соответствии с требованиями ОДН.218.2.028-2003.

    и) Противогололедные материалы распределяют равномерно по поверхности покрытий в соответствии с необходимыми нормами распределения, указанными в табл.1.

    Таблица 1

    Ориентировочные нормы химических противогололедных материалов на проезжей части мостовых сооружений (г/м)

    Группа ПГМ

    Рыхлый снег или накат при, °C

    Стекловидный лед, °C

    Ацетатная

    Формиатная

    Нитратная

    Комплексная


    В настоящее время отечественная промышленность выпускает противогололедные материалы в жидком виде на ацетатной основе типа "Нордвэй" (ТУ 2149-005-59586231-2006*), на формиатной основе - типа "ФК" (ТУ 2149-064-58856807-05*); в твердом виде на нитратно-карбамидном сырье типа "НКММ" (ТУ 2149-051-761643-98*) и "АНС" (ТУ У-6-13441912.001-97*). К комплексной группе относятся многокомпонентные ПГМ, состоящие из нескольких солей, основным представителем которой является "Биодор" марки "Мосты", выпускаемый по ТУ 2149-001-93988694-06*.
    ________________
    * ТУ, упомянутые здесь и далее по тексту, являются авторской разработкой. За дополнительной информацией обратитесь по ссылке . - Примечание изготовителя базы данных.

    к) Нормы распределения фрикционных материалов назначают в зависимости от интенсивности движения:

    - <100 авт./сут - 100 г/м;

    - 500 авт./сут - 150 г/м;

    - 750 авт./сут - 200 г/м;

    - 1000 авт./сут - 250 г/м;

    - 1500 авт./сут - 300 г/м;

    - >2000 авт./сут - 400 г/м.

    л) Распределение жидких и твердых ПГМ осуществляется дорожными машинами, оснащенными автоматическими специальными распределителями и бортовыми компьютерами, характеристика которых приведена в Приложении А.

    м) С целью повышения эффективности использования жидких противогололедных материалов все шире применяются стационарные автоматические системы распределения (типа "СОПО"), оснащенные насосной станцией, метеостанцией и дорожным датчиком.

    Автоматические системы обладают неоспоримыми техническими преимуществами перед традиционными распределителями по следующим характеристикам:

    - повышению безопасности дорожного движения в зимний период за счет резкого сокращения интервала времени (от момента оповещения до момента распределения) для обработки покрытия ПГМ;

    - автоматическому контролю за состоянием дорожного покрытия и количеством ПГМ на поверхности проезжей части;

    - отсутствию на проезжей части сооружения распределительной и снегоуборочной техники, снижающих пропускную способность, и, как следствие, уменьшающих количество вредных выбросов в окружающую среду;

    - снижению используемого количества реагента за счет применения профилактической обработки покрытия, что предотвращает образование снежного наката или льда;

    - сокращению выброса реагента на прилегающие территории за счет оптимальной дозированной нормы распределения в автоматическом режиме.

    Раздел 8. Требования к противогололедным материалам, применяемым на мостовых сооружениях

    а) Противогололедные материалы, предназначенные для борьбы с зимней скользкостью, должны удовлетворять настоящим требованиям и соответствовать условиям их применения (температуре воздуха, количеству осадков, состоянию покрытия и т.д.).

    б) На мостовых сооружениях предпочтение отдают ПГМ на основе ацетатов (соли уксусной кислоты), формиатов (соли муравьиной кислоты) и нитратов (соли азотной кислоты). В настоящее время отечественная химическая промышленность начала выпуск комплексных ПГМ для мостовых сооружений. При применении других ПГМ конструктивные элементы мостов должны быть защищены антикоррозионными покрытиями. Классификация ПГМ, применяемых для борьбы с зимней скользкостью на мостовых сооружениях, приведена на рисунке.

    Классификация противогололедных материалов для борьбы с зимней скользкостью на искусственных сооружениях

    Классификация противогололедных материалов для борьбы с зимней скользкостью на искусственных сооружениях

    в) Химические ПГМ, применяемые для борьбы с зимней скользкостью, должны выполнять следующие функции:

    - понижать температуру замерзания воды;

    - ускорять плавление снежно-ледяных отложений на дорожных покрытиях;

    - проникать сквозь слои снега и льда, разрушая межкристаллические связи, и снижать силы смерзания с дорожным покрытием;

    - не увеличивать скользкость дорожного покрытия, особенно при использовании ПГМ в виде растворов;

    - быть технологичными при хранении, транспортировке и применении;

    - не увеличивать экологическую нагрузку на окружающую природную среду и не оказывать токсичного действия на человека и животных;

    - не вызывать увеличения агрессивного воздействия на металл, бетон, кожу и резину.

    г) Свойства химических ПГМ оценивают по ряду показателей, объединенных в четыре группы: органолептические, физико-химические, технологические и экологические, основные требования к которым приведены в табл.2.

    Таблица 2

    Требования к химическим противогололедным материалам, применяемым для борьбы с зимней скользкостью на мостовых сооружениях

    Наименование показателей

    Органолептические:

    1. Состояние

    Гранулы, кристаллы, чешуйки

    Водный раствор без механических включений, осадка и взвеси

    От белого до светло-серого (допускается светло-коричневый, светло-розовый)

    Светлый, прозрачный (допускается со слабой окраской желтого или голубого цвета)

    Отсутствует (для населенных пунктов)

    Физико-химические:

    4. Зерновой состав, %

    Массовая доля частиц размером:

    Свыше 10 мм

    Не допускается

    свыше 5 мм до 10 мм вкл., не более

    свыше 1 мм до 5 мм вкл., не менее

    1 мм и менее, не более

    5. Массовая доля растворимых солей (концентрация), %, не менее

    6. Температура начала кристаллизации, °С, не выше

    7. Влажность, %, не более

    8. Массовая доля нерастворимых в воде веществ, %, не более

    9. Водородный показатель, ед. рНЕсли процедура оплаты на сайте платежной системы не была завершена, денежные
    средства с вашего счета списаны НЕ будут и подтверждения оплаты мы не получим.
    В этом случае вы можете повторить покупку документа с помощью кнопки справа.

    Произошла ошибка

    Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
    списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

    Антигололедные машины. Предназначены для поддержания в зимний период сцепных свойств покрытия на уровне, гарантирующем безопасное движение транспорта. Наиболее массовым способом борьбы с гололедом является распределение по обледеневшему покрытию песка, гранитной крошки, кристаллических и жидких хлоридов и различных комбинаций этих веществ. Песок и гранитная крошка повышают сцепление колес с обледеневшим покрытием, но при интенсивном движении их быстро выносит на обочины. Хлориды инициируют таяние льда и снежного наката (температура замерзания соленой воды значительно ниже 0°С), но при резком падении температуры могут привести к еще большему обледенению. Кроме того, наличие избытка воды на поверхности покрытия при высоких скоростях транспорта чревато опасностью аквапланирования.

    Машины для распределения сыпучих антигололедных материалов, как правило, являются универсальными и в теплое время года переоборудуются в поливомоечные. Они монтируются на шасси серийных грузовых автомобилей (рис. 13), либо на специализированных пневмоколесных шасси.

    Песок, гранитная крошка или смесь песка с солью засыпаются в бункер в форме трапециевидной призмы, обращенной меньшим основанием вниз. Открытый верх бункера забран двускатной решеткой, играющей роль сита. По днищу бункера проложен цепной скребковый конвейер (питатель), выносящий содержимое к заднему торцу бункера, где установлено распределительное устройство. Горизонтальный диск с радиальными вертикальными лопастями на нижней плоскости, закрытый кожухом, вращаясь, разбрасывает антигололедный материал через щели в кожухе по окружающей поверхности относительно равномерным слоем. Расход материала может регулироваться скоростью питателя, скоростью вращения диска, размером и ориентацией расходных щелей кожуха.

    Универсальный разбрасыватель КО-104А (рис. 13) предназначен для распределения по поверхности дорожного покрытия пескосоляной смеси или других химических реагентов, применяемых при зимнем содержании улиц, площадей и дорог. В летнее время разбрасыватель переоборудуется и может быть использован как самосвал для перевозки сыпучих грузов.

    Специальное оборудование машины смонтировано на шасси автомобиля ГАЗ-53А и состоит из кузова, скребкового конвейера, разбрасывающего диска и гидропривода конвейера. При переоборудовании разбрасывателя в самосвал дополнительно устанавливают: кронштейн гидроподъемника, гидроподъемник, механизм закрытия борта, кран управления.

    Технологический материал, предназначенный для распределения по поверхности улицы или дороги, подается скребковым конвейером из кузова через бункер на разбрасывающий диск, который, вращаясь, равномерно разбрасывает его по поверхности дороги. Плотность посыпки регулируется тремя способами: изменением скорости движения конвейера, ограничением шиберной заслонкой количества поступающего с конвейера технологического материала для посыпки, изменением частоты вращения разбрасывающего диска.

    Рисунок 13 - Разбрасыватель универсальный KO-104A

    1 - редуктор привода конвейера 2 - бункер; 3 - рычаг шибера, 4 - скребковый конвейер, 5 - кузов. 6 - решетка, 7 - механизм натяжения конвейера, 8 - пульт управления, 9 - кронштейн запасного колеса, 10 - насос; 11 - надрамник, 12 - гидросистема; 13- разбрасывающий диск

    Кузов - цельнометаллическая сварная конструкция с наклонными боковыми стенками, устанавливается на подрамнике, закрепленном на лонжеронах шасси. На верху кузова установлена решетка из металлических прутьев для предохранения от попадания в него крупных камней, глины или смерзшегося песка. Сзади на кузов навешивается борт, к которому крепится бункер. Задний и передний борта кузова имеют проемы для прохода верхней ветви конвейера. Спереди, на боковых балках кузова установлен механизм натяжения ветвей конвейера. Конвейер разбрасывателя (скребкового типа) установлен на звездочках ведущего и ведомого валов, находящихся в бункере на передних кронштейнах кузова. Верхняя часть конвейера проходит внутри кузова (скребки движутся по его дну), нижняя - под дном кузова (по направляющим). Внутри бункера установлен ведущий вал конвейера и шиберная заслонка, позволяющая регулировать высоту слоя разбрасываемых материалов. Поднимают и опускают заслонку вручную рычагом Разбрасывающий диск с гидромотором установлен под бункером и обеспечивает распределение технологических материалов, поступающих из бункера.