Углеводородные газы. Сжиженный углеводородный газ — классификация, свойства и технологические преимущества Пропан температура кипения от давления

Особенности использования в автомобильном газобаллонном оборудовании сжиженного нефтяного газа (СНГ) в виде смеси пропана с бутаном и его аппонента сжиженного природного газа (СПГ) метана.

В широком применении для автомобилей два состава газа – пропан и метан. Какой из них лучше, дешевле, технологичнее и надежнее? Давайте разберемся, чтобы после прочтения не осталось сомнений.

Оборудование для метана используют всего на 25% автомобилей, на остальные 75% автомобилей ставят пропан. При этом метан часто ставят на коммерческом транспорте, где выбор делает не водитель, а организация собственник транспортного средства. Разберем причины такого соотношения на рынке ГБО.

Автоблогер разбирает особенности пропана и метана в пятнадцатиминутном видео: что лучше для авто, основная разница

Особенности пропан-бутана (СНГ)

Пропан - углеродный газ, побочный продукт при добыче нефти. Не имеет запаха, прозрачен и безвреден для человека. В него также добавляются одоранты, чтобы при утечках его могли почувствовать. Химическая формула - C 3 H 8 .

На заправках мы видим надпись «пропан–бутан». Бутан - это также углеродный газ, который выделяется при схожих условиях. Его смешивают с пропаном для того, чтобы добиться нужного октанового числа. Причем в различные время года составы меняются: зимой больше пропана, а летом бутана.

Хранится он в баллонах в автомобиле в сжиженном виде. То есть он жидкий, а не газообразный - «плюхается» в баллоне. Также большим преимуществом является рабочее давление, которое составляет всего 14 атмосфер. Для него нужны емкости из более легкого металла и стенки баллона намного тоньше. Сейчас наибольшее распостранение получили тороидальные баллоны в виде бублика, которые помещяются на место запаски. При этом баллон не занимает места в багажнике, но приходится жертвовать запасным колесом.

На среднестатистическом оборудовании при полной заправке можно проехать 650…850 километров, что в четыре раза больше, чем у оппонента.

Расход на пропане 11…13 литров на 100 км на среднестатистическом автомобиле с двигателем 1.6 литра на 4 поколении ГБО.

Оборудование стоит в два раза дешевле. По нашему опыту девять из десяти компаний по установке газового оборудования специализируются на пропане.

Много заправок. Также большим плюсом является то, что заправок на пропане в десятки раз больше.

Потеря мощности двигателя ниже, около 5…10%.

Плюсы пропана:

  • Дешевое оборудование.
  • Очень много компаний, которые обслуживают и устанавливают.
  • Низкое давление.
  • Хранится в сжиженном виде.
  • Легкое и компактное оборудование, можно установить в гнездо для запаски.
  • Больший пробег.
  • Меньшая потеря мощности около 5…10%.

Минусы пропана:

  • Пропан дороже метана на примерно 3 рубля за литр. Пропап стоит 17 рублей против 14 за литр метана.
  • Более взрывоопасен, чем метан. При повреждении баллона не так быстро испаряется в атмосферу.

Пропан хоть и стоит чуть дороже, но обладает большим количеством плюсов и распостраненностью заправок.

Совместимость СНГ и СПГ с последними поколениями ГБО

И напоследок об еще одном минусе метана - несовместимости с пятым и шестым поколениями ГБО. Пропан может с этими поколениями работать, а метан нет и скорее всего не сможет.

В 5 и 6 поколениях газ подается жидким в систему впрыска топлива и схож с бензином. Пропан хранится в баллонах в жидкой форме, а метан в газообразном виде. Поэтому установка метана возможна только до 4 поколения оборудования. Последние поколения дают расход примерно равный расходу бензина. Мощность при этом практически не теряется. Двигатель можно запускать сразу на газе даже при минусовых температурах.

Состав сжиженных углеводородных газов

Под СУГ понимают такие индивидуальные углеводороды или их смеси, которые при норм.условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления без изменения температуры или незначительном понижении температуры при атмосферном давлении переходит в жидкое состояние.

При нормальных условиях из предельных углеводородов (C n H 2 n +2) газами являются лишь метан, этан, пропан, и бутан.

Рассмотрим какие газы переходят в жидкое состояние при незначительном повышении давления при температуре О 0 С: этан конденсируется в жидкость при повышении давления до 3 Мпа. Пропан до 0,47 Мпа, Н-бутан до 0,116 МПа, Изобутан до 0,16 МПа. Больше всего требуемым условиям соответствует

пропан и бутан.

Рассмотрим какие углеводороды переходят в жидкое состояние при сравнительно небольшом понижении температуры и атмосферном давлении: температура кипения метана – 161,5 0 С; этана – 88,5 0 С; пропана – 42,1 0 С; н-бутана – 0,5 0 С. Наиболее подходящими для практического применения являются пропан и бутан.

На ряду с нормальными предельными углеводородами существуют изомерные соединения, отличающиеся характером расположения атомов углерода, а также некоторыми свойствами. Изомер бутана – изобутан. Пропан изомера не имеет.

Структура и ф-ла Н-бутана СН 3 -СН 2 -СН 2 - СН 3

Изобутан:

Помимо предельных в составе СУГ встречаются также группа ненасыщ. Или непредельных углеводородов, характеризуются двойной или тройной связью между атомами углерода. Это этилен, пропилен, бутилен (нормальный и изомерный). Общая формула непредельных углеводородов с двойной связью С n Н 2 n . Этилен С2Н4 СН2=СН2.

Для получения СУГ используется жирные природные газы, т.е. газы из нефтяных и конденсатных месторождений, содержащих большое количество тяжелых углеводородов. На газоперерабатывающих заводах их этих газов выделяются пропан-бутановую фракцию и газовый бензин(С5Н12). Технический пропан и бутан а также их смеси представляют собой сжиженный газ, используемый для газоснабжения потребителей.



Технические газы отличаются от чистых содержанием небольших количеств углеводорода и наличием примеси. Для технического пропана содержание С3Н8+С3Н6(пропилен) д.б. не < 93%. Содержание С2Н6 +С2Н4(этилен) не> 4%. Содержание С4Н10+С4Н8 не >3%.

Для технического бутана: С4Н10+С4Н8 д.б. не < 93%. С3Н8 +С3Н6 не> 4%. С5Н12+С5Н10 не >3%.

Для смеси тех. бутана и пропана содержание: С3Н8+С3Н6, С4Н10+С4Н8 д.б. не < 93%. С2Н6 +С2Н4 не> 4%. С5Н12+С5Н10 не >3%.

Свойство СУГ.

Возможны 3 состояния сжиженного газа, в котором находятся при хранении и использовании:

1) В виде жидкости (жидкая фаза)

2) Пар(паровая фаза), т.е. насыщенные пары, находящиеся совместно с жидкостью в резервуаре или баллоне.

3) Газа(когда давление в паровой фазе ниже давления насыщенных паров при данной температуре).

Свойства сжиженных газов легко переходят из одного состояния в другое, делает их особенно ценным источником газоснабжения, т.к. транспортировать и хранить их можно в жидком виде, а сжигать в виде газа. Т.о. при транспортировки и хранении используется преимущественно жидкие фазы, а при сжигании газообразные.

Упругость насыщенных паров газа – это важнейший параметр по которому определяется рабочее давление в баллонах и резервуарах. Она изменяется пропорционально температуре жидкой фазы и является величиной строго определенной для данной температуры.

Во все уравнения, связывающие физические параметры газообразного или жидкого вещества входят абсолютное давление и температура. А в уравнения для технических расчетов прочности стенок баллонов, резервуаров – избыточное давление.

В газообразном составе СУГ тяжелее воздуха в 1,5-2 раза. В жидком состоянии их плотность находится в пределах 510-580 кг/м 3 ,т.е. они почти в 2 раза легче воды. Вязкость СУГ очень мала,что облегчает транспортировку их по трубопроводам и благоприятствует утечкам.

СУГ имеют низкие пределы воспламенения в воздухе(2,3% для пропана, 1,7% для бутана). Разница между верхним и нижним пределами незначительна, поэтому при их сжимании допускается применение отношения воздух-сжиженный газ.

Диффузия в атмосферу осуществляется очень медленно, особенно при отсутствии ветра. Они обладают невысокими t-ми воспламенения по сравнению с большинством горючих газов (510 0 C для пропана и 490 0 C для бутана).

Возможно образование конденсата при снижении t-ры до точки росы или при повышении давления. Сжиженные газы характеризуются низкой t-рой кипения и поэтому при испарении во время внезапного выхода из трубопровода или резервуара в атмосферу охлаждается до отрицательной t-ры. Жидкая фаза попадая на незащищенную кожу человека может привести к обморожению. По характеру воздействия оно напоминает ожог.

В отличии от большинства жидкостей, которые при изменении t-ры незначительно изменяют свой обьем, жидкая фаза СУГ довольно резко увеличивает свой объем при повышении t-ры (в 16 раз больше чем вода). Поэтому при заполнении резервуаров и баллонов приходится учитывать возможность увеличения объема жидкости.

Сжимаемость сжиженных газов по сравнению с другими жидкостями весьма значительна. Если сжимаемость воды принять за единицу, то сжимаемость нефти 1,56, а пропана 15. Если жидкая фаза занимает весь объем резервуара, то при повышении t-ры ей расширяться некуда и она начинает сжиматься. Давление в резервуаре повышается. Повышение давления д.б. не больше допустимого расчетного, иначе возможна авария. Поэтому при заполнении резервуаров и баллонов предусматривается оставлять паровую подушку определенной величины, т.е. заполнять их не полностью. Величина паровой подушки для Сжиженные газы имеют более высокую, чем природные газы, объемную теплоту сгорания (в 2,5- 3,4 раза выше).

Сжиженные газы нетоксичны.У них отсутствует запах, цвет и вкус (как в жидком, так и в газообразном виде),что диктует необходимость их одоризации.

подземных резервуаров составляет 10%, для надземных и баллонов 15%.

Определение свойств СУГ

При известном составе сжиженного газа, давление смеси можно рассчитать по формулам:

Плотность газовой смеси заданного состава определяется:

Мольная доля i-ого компонента смеси

– Плотность i-ого компонента смеси, кг/м 3

Она находится по таблице или рассчитывается по закону Авогадро:

Где – молекулярная масса i-ого компонента, кг/кмоль

– Молекулярный объем i-ого компонента, м 3 /кмоль

Средняя плотность жидкой смеси при известном массовом составе определяется по формуле:

При известном молекулярном составе:

,

Где – плотность i-ого компонента входящего в жидкую смесь в жидкой фазе, кг/л

Плотность газовой смеси при повышенном давление находится из уравнения состояния для реальных газов.

,

Где - абсолютное давление (МПа) и t-ра смеси.

– газовая постоянная смеси,(Дж/кг К)

z-коэффициент сжимаемости, учитывающий отклонение реальных газов от з-нов идеальных газов.

Газовая постоянная смеси рассчитывается по универсальной газовой постоянной и по молекулярной массе смеси.

Коэффициент сжимаемости определяется по графику в зависимости от приведённых параметров (давление и температура) газа.

Среднее критическое давление и температура для смеси газов определяется по его составу.

;

Объем газа, получается прииспарение смеси СУГ, м.б. найден по формуле:

– масса i-ого компонента смеси, кг

– молекулярная масса i-ого компонента смеси, кг/кмоль

V Mi -молекулярный объем i-ого компонента

Для подсчета низшей объемной температуры сгорания смеси СУГ используется следующая зависимость

низшая объемная теплота сгорания i-ого компонента, кДж/м 3

Низшая массовая температура сгорания

Пределы воспламенения смеси СУГ, не содержащих балластных примесей, определяются:

L см - нижний или верхний предел воспламенения смеси газов.

– нижний или верхний предел воспламенения i-ого компонента.

За счет разности уровней

Использование гидростатического напора применяется при заполнении подземных резервуаров из железнодорожных и автоцистерн, а так же при разливе СУГ в баллоны, если позволяет рельеф местности. Что бы слить цистерны в резервуар, необходимо соединить их паровые и жидкостные фазы.В сообщающихся сосудах жидкость устанавливается на одном уровне, поэтому жидкая фаза перетечет в нижестоящий резервуар.

Для создания достаточной скорости слива, при одинаковых температуре и давлении, в цистерне и резервуаре необходимо, что бы за счет гидростатического напора создавалась разность давлений не менее 0,7-0,1 МПа.

Минимальная необходимая величина гидростатического напора в этих условиях будет 14-20 метров столба жидкости.

В зимнее время цистерна имеет более низкую температуру, чем резервуар. При подземном размещении резервуара перепад температур может достигать 10-15 0 С. Давление газа в цистерне будет значительно ниже чем в резервуаре.

Для надежного слива необходимо, чтобы разность уровней компенсировала эту разность температур и соответственно разность давлений. Требуемая разность уровней составляет:

,

Где - давление газа в резервуаре, Па

– давление газа в цистерне

– плотность жидкой фазы СУГ, кг/м 3

Полученный мах. перепад необходим для начала слива. В дальнейшем t внутри резервуара начнет понижаться из-за поступления охлажденной жидкости из цистерны. Давление в подземной емкости станет меньше и разность уровней потребуется уже меньше. В начальный момент создать такую разность уровней почти невозможно, поэтому необходимо соединять паровые пр-ва в резервуары и цистерны. В этом случае давление выравнивается и слив пр-т с использованием полного гидростатического напора.

Летом, в начальный момент слива, возможно расположение цистерн ниже резервуара. Но здесь скажется влияние температуры в резервуаре от более нагретой жидкости из цистерны, и величина перепада давления упадет примерно до 0. Слив прекратится. Поэтому летом, при сливе, паровые фазы автоцистерны и резервуара соединять не нужно.

«+» метода:1.Простота схемы

2. Отсутствие механических агрегатов

3. Надежность работы всех устройств

4. Готовность схемы к работе в любой момент, независимо от наличия постороннего источника энергии

5. Малые затраты на ремонт и обслуживание

«-» метода:

1. Невозможность использования местности с гористым рельефом.

2. Большая продолжительность процесса.

3. Большие потери газа при отправлении его обратно в виде паров в слитых цистернах.

Газонаполнительные станции

ГНС являются базой снабжения сжиженным газами и предназначены для приема, хранения и поставки потребителям сжиженных газов, поступающих железнодорожным, автомобильным, водным транспортом, и с предприятий где производится эти газы (газобензиновые заводы).

Объем резервуаров для хранения газа на станции не более 8000 м 3 . Обычно запас газа не превышает 300-600 тонн и производительность от 6000 до 24000 т/год.

На ГНС выполняются след.работы:

Приём сжиженных газов от поставщика

Слив сж.газов в свои хранилища

Хранение СУГ в надземных, подземных или изотермических резервуарах, в баллонах или подземных пустотах.

Слив неиспарившихся остатков из баллона и сж.газа из баллонов, имеющих к-л неисправности

Разлив сж.газа в баллоны, передвижные резервуары и автоцистерны

Приём пустых и выдача наполненных баллонов

Транспортировка сж.газов по внутренней сети трубопровод

Ремонт баллонов и их переосвидетельствование

Техническое обслуживание и ремонт оборудования на станции

В ряде случаев на ГНС производится:

Заправка автомобилей, работающих на сж.газе из автозаправочной колонки

Регазификация СУГ

Смешение паров газа с воздухом или низкокалорийными газами

Выдача паров сж.газа газовоздушных и газовых смесей в городские распределительные системы.

Для выполнения этих операций на ГНС имеются след. отделения и цеха:
-сливная эстакада ж/д ветки или ввод тр-да с отключающими устройствами

База хранения СУГ,состоящая из надземных или подземных резервуаров,работающих под давлением, изотермич.резервуаров или подземных хранилищ в пустотах

Насосно-компрессорный цех для слива СУГ из ж/д цистерн в хранилища и и подача его для наполнения баллонов и автоцистерн

Цех для наполнения баллонов и слива из них неиспарившихся тяжёлых остатков

Склад суточного запаса пустых и заполненных баллонов

Колонки для заполнения автоцистерн

Коммуникации жидкой и паровой фаз, связывающие все отделения ГНС и обеспечивающих движение потоков жидкости и пара.

ГНС следует размещать вне населённых пунктов с подветренной стороны господствующих ветров, при этом следует соблюдать требуемые расстояния между ГНС и остальными сооружениями.

В зависимости от объёма хранилищ, способа установки резервуаров эти расстояния от 40 до 300 м.

По периметру территории ГНС ограждается ж/б забором выстой 3,4м. При емкости резервуаров > 200 м 3 , территория ГНС разделяется легкой оградой на 2 территории – рабочую, включающую перечисленные отделения и цеха,и вспомогательную, включающую административно-хозяйственные помещения, гаражи, водонапорную башню и резервуар для противопожарного запаса воды.

Принципиальная схема снабжения потребителей СУГ показана на рисунке:

Изотермическое хранение СУГ

Хранилища представляют собой тонкостенные резервуары большого объёма от 5000 до 50000м 3 цилиндрической формы со сводчатой или конусной крышей. Наружная пов-ть их теплоизолируется. Стальные хранилища могут быть как наземными, так и заглублёнными. Поддержание низкой t (-42⁰С –для пропана) м.б. осуществлено путём испарения части СУГ и сброса паров в газовые сети или спец. холодильной уст-кой. Поступление тепла через стенки резервуара незначительно и вызывает испарение 0,3-0,5% объёма, хранящийся жидкости в сутки.

Различают 3 основные технологические схемы изотермич. хранилищ:

С комплекс.холодильной уст-кой

С буферными ёмкостями

-с промежуточным охлаждением

“горячий” продукт, поступ-й по тубе 1 дросселируется в резервуаре 2 с падением t и p . Пары образующиеся за счёт теплопритока из вне и поступающего “гор.“ продукта подаются компрессором 3 по трубопроводу 4 в холодильный агрегат 5, где охлаждается и конденсируются. Конденсат через дроссель-вентиль 6 поступает в изотермич. резервуар.

Мощность холд. агрегата зависит от суммарного притока тепла в резервуар и опред-ся:

- поступления тепла заливаемым “гор” продуктом

Где - ск-ть слива СУГ из цистерны кг/ч;

Теплоёмкость жидкой фазы СУГ кДЖ/(кг⁰С);

И – температура в цистерне и резервуаре.

– приток тела из внешней среды;

где M – масса сжиженного газа в изотермич. резервуаре, кг;

r – теплота парообразования СУГ, кДж/кг;

0,005 – 5% испаряется в сутки.

– неучтенные теплопоступления:

b=0,04..0,12

Из формулы для определения видно, что уменьшить мощность холод.установки можно за счет снижения скорости наполнения резервуара. Обычно при сливе 3х ж/д цистерн она сост. 33-35т/ч, что требует очень мощного холод.оборудования, работающего только несколько часов в сутки (при сливе). В ост.время холод. нужны только для сжижения газа, испаряющегося в резервуаре, что сост. мах 0,5% от хранящихся СУГ.


Транспорт сжиженного газа

В странах СНГ наибольшее распространение получили перевозки СУГ в ж/д и машинныхцистернах, а также баллонах. При расстоянии до 300 км используется машинныйтранспорт, при большем – ж\д. Ж/д цистерна рассчитана на рабочее давление при перевозке пропана 2 МПа, бутана – 0,8 МПа.

Широкое применение получили горизонтальные цилиндрические цистерны объемом 50-100 м 3 . В верхней части цистерны имеется горловина, которая служит люком и предназначена для осмотра и ремонта внутренней полости цистерны. Крышка люка выполнена в виде фланца, на которой предусмотрена арматура: имеются устройства для налива и слива жидкой фазы со скоростными клапанами, подачи и отбора паровой фазы со скоростными клапанами, предохранительного клапана.

Для перевозки СУГ по машинным дорогам используется автоцистерны , вместимость от 2 до 5т. сжиженного газа. В верхней части цистерны установлен предохранительный клапан. В центре заднего днища имеется, люк на внутренней полости крышки которой располагается КИП: термометр, манометр, указатель уровня. Указатель уровня представляет собой стеклянную трубку, заключенную в стальную трубку. Для наполнения и слива цистерн с обеих сторон имеется 6 вентелей, предусмотрено 4 шланга до3,5 м.

Индивидуальные потребители, расположенные вблизи ГНС получают СУГ в баллонах. Баллоны доставляют бортовыми автомобилями или спец. Приспособленными для этих целей(в контейнерах). Контейнер представляет собой сварную клеть, предназначенную для 2-х или 3-х ярусного расположения баллонов.

Перевозить СУГ водным путем получило широкое распространение в странах Западной Европы.

Существует 3 типа судов для перевозки СУГ:

1) Танкеры с резервуарами под давлением 1,6 МПа

2) Танкеры с термоизолирующими резервуарами под пониженным давлением. СУГ транспортируется при промежуточном охлаждении от -5 0 С до +5 0 С и пониженном давлении (0,3…0,6 МПа)

3) Танкеры с термоизолирующими резервуарами под давлением близким к атмосферному и при низкой температуре (- 42 0 С для пропана, -161 0 С для природного газа)

Для снабжения северных районов России широко используется речной транспорт. Для снабжения СУГ потребит.в Арктике и Антарктике используется авиаперевозки.

Пленочные испарители СУГ.

Представляет собой теплообменник труба в трубе. Тонкая пленка СУГ создается путем разбрызгивания его на стенки внутренней трубы 3 с помощью форсунок 2 . Теплоноситель (горячая вода или водяной пар) поступает в кольцевое межтрубное пространство 4 , обеспечивая интенсивное испарение СУГ внутри трубы 3 . Для равномерного распределения температуры по длине испарителя теплоноситель подается в 2 точки, а отводится в одной.

Во избежание недопустимого повышения давления в испарителе на трубе 3 установлен предохранительно-сбросной клапан 5 . Неиспарившийся конденсат отводится через дренажный штуцер 6 . При необходимости увеличения производительности установки к коллектору 1 может быть присоединено несколько испарителей. Коэффициент теплопередачи примерно в 2 раза выше, чем в змеевиковых и трубчатых, поэтому они более компактны и менее металлоемки.

Температуры горения газа.

Основное количество тепла, выделяющегося при сжигании газа расходуется на нагрев продуктов сгорания до определённой температуры.

Различают следующие температуры горения газов:

Жаропроизводительность

Калориметрическую

Теоретическую

Действительную

Жаропроизводительность - это t продуктов полного сгорания горючих газов в адиабатических условиях при α=1 и при первоначальной t газа и воздуха = 0 0 С.

Q н =i пр. сгор = V пр. сгор ∙С р пр. сгор ∙t ж

i пр. сгор- теплосодержание продуктов сгорания кДж/м 3

t ж -жаропроизводительность, 0 С.

t ж = Q н / V пр. сгор ∙С р пр. сгор = Q н /(V co 2 ∙C р СО2 +V Н20 ∙С р H 20 + V N 2 ∙С р N 2)

V co 2 V Н20 V N 2 –объем сотавных частей продуктов сгорания 1 м 3 газа.

С р –средняя объёмная теплоёмкость при P=const. составных частей продуктов сгорания.

В формуле используется средняя теплоёмкость, так как Ср- величина непостоянная, растёт с повышением температуры.

t ж:для метана 2043 0 С; для пропана 2110 0 С; для водорода 2235 0 С

Эти данные при горении в сухом воздухе.

Калориметрическая- t горения газа, учитывающая коэф. Избытка воздуха и физическое тепло газа и воздуха, т.е принимается действительные значения тем-ры. другими словами это t до которой нагрелись бы продукты полного сгорания, если бы всё тепло топлива и воздуха пошло на их нагрев.

Q н +i г +i в =i пр.сгор.

i г i в- энтальпия газа и воздуха кДж/м 3

Написав уравнение в развёрнутом виде и решив его относительно калорим. тем-ры Получим:

T г t в –исходная темпетатура газа и воздуха.

T к ≈1900 0 C,

Расход газа,

Теоретическое количество воздуха необходимое для сжигания 1 метра куб. газа.

Физическое тепло газа и воздуха следует учитывать, если они перед сжиганием нагреты свыше 100 0 C, так как при меньших t эта величина незначительна по сравнению с теплотой сгорания.

Теоретическая температура горения учитывает потери тепла за счёт химической неполноты сгорания и при эндотермических реакциях диссоциации продуктов сгорания.

CO 2 ↔CO+0,5O 2 -Q

H 2 O↔H 2 +0,5O 2 -Q ;

Qx- потери теплоты за счёт химической неполноты сгорания и на диссациацию СО2 и Н20.

При t до 1500 0 C(имеет место в топках котлов и пром. Печей) величину Qx можно не учитывать так как в этом случае диссоциирует ничтожная доля продуктов сгорания. При более высоких температурах надо учитывать.).

Действительная темература горения достигается в реальных условиях сжигания топлива, она ниже теоретической, так как при ее определении учитываются теплопотери в окружающую среду, длительность процесса горения, метод сжигания газа и другие факторы.

t д = t т ∙η п

η п - опытный пирометрический коэффициент.Для большинства топок котлов и печей 0,65. Для наиболее совершенных 0,8- 0,85


Диффузионные горелки

У этого типа горелок газ и воздух отдельными потоками поступают в топку, где происходит смесеобразование и горение. Простейшая диф. Горелка представляет собой требу с высверленными в ней отверстиями.

Такие горелки м.б. прямыми, круглыми, Т- и П-образными и т.д. Газ подводится внутрь таких горелок и выходит через отверстия многочисленными струйками, образуя отдельные факелы. Количество отверстий и их диаметр зависят от производительности горелки. Шаг между отверстиями выбирается так, чтобы не было слияния факела обеспечивалось беглость огня при дожигании газа на горелке.

Диаметр отверстия д.б. от 0,5 до 5 мм. При этом следует учитывать легкуюзасоряемость отверстия малого диаметра. Для хорошего перемешивания газа с воздухом рекомендуется делать не более двух рядов отверстий в каждой трубке диф. горелки. Сечение трубы, подводящей газ д.б. не меньше суммарного сечения горелочных отверстий.

«+» диф горелок:

· Просты в изготовлении, надежны в эксплуатации (исключается проскок пламени),

· имеет большие пределы регулирования, могут работать как на низком, так и на среднем давлении газа без дутья,

· дают устойчивый светящийся факел, обладающий высокой радиацией.

«-» диф горелок:

· Имеются небольшие тепловые нагрузки;

· работают с повышенным α (1,2-1,5). Несмотря на большой избыток воздуха эти горелки часто работают с хим. недожогом.

· Большая длина факела

· Необходимость обеспечения устойчивого разряжения в топочном объеме

· Трудность автоматизации процесса сжигания газа (автоматического пропорционирования газа и воздуха)

Созданы конструкции более крупных диф горелок, обладающим неплохими эксплуатационными свойствами (прим., горелка для отопления и пром. котлов). Хорошее перемешивание газа с воздухом достигается за счет многоструйного выхода газа под углом к оси горелки, сто приводит к закручиванию потока

1-внутренний стакан

2-наружный корпус

3-тангенциальные сопловые щели

4,5- воздушные дроссели

Внутренний стакан вставляется в корпус большего диаметра. По внутреннему пространству между корпусом и стаканом проходит газ, вытекающий через 3 в топку. Около 50% потребляемого воздуха подводится через внутренний стакан. Остальное количество – через наружную кольцевую щель. Движение воздуха обусловлено наличием разряжения в топке. Производительность такой горелки от 30 до 350 м 3 /ч. Они м.б. низкого и среднего давления.

Диф горелки незаменимы в высокотемпературных печах (тепловаренных, сталеплавильных) при подогреве воздуха до температур значительно превышающих температуру воспламенения газа. Предварительное смешение газа с воздухом неосуществимо, поэтому в таких печах диф сжигание газа является не только вынужденным, но и наиболее оправданным, т.к. позволяет получить ярко светящийся сажистый факел большой степенью черноты и интенсивной радиацией.

Подовые горелки

В котельной технике диф горелки могут располагаться нафронтовой или боковой стенках топки, а также внутри нее, на поду. Горелки последнего типа получили название подовые. Используются при переводе отопительных и производственных котлов со слоевыми топками на газообразное топливо. Газ из горелки выходит в топку, куда из-под колосников поступает воздух. Газовые струйки у подовых горелок направляются под углом к потоку воздуха и равномерно распределяются по его сечению.

Процесс смешения осуществляется в спец. щели, образованной огнеупорной кладкой. Это интенсифицирует смешение газа с воздухом, уменьшает α и обеспечивает устойчивое зажигание в образующейся смеси.

1- Коллектор

Коллектор горелки устанавливается на кирпичах, расположенных на колосниковой решетке. Над коллектором огнеупорная кладка образует прямые щели, в которые входит газ, не смешенный с воздухом. Отверстия для выхода газа расположены в 2 ряда в шахматном порядке, симметричном по отношению к вертикальной плоскости с углом между рядами от 90 до 180 о. Воздух подается под колосниковую решетку вентилятором или за счет разряжения в топке, поддерживаемого тягой и проходом через щель, омывая коллектор с двух сторон.

Струя газа в результате турбулентной диффузии перемешивается с воздухом и на расстоянии 20 – 40 мм от отверстия начинает гореть. Заканчивается процесс горения на расстоянии 0,5 – 1 м от горелки. Здесь осуществляется диффузионный принцип сжигания газа. Процесс смесеобразования активизируется тем, что поток газа разбит на мелкие струйки, выходящие с большой скоростью под углом к прямому потоку воздуха. Огнеупорные стенки щели выполняют роль стабилизатора горения, предотвращая отрыв пламени, и являются косвенными излучателями.

Максимальная температура на поверхности щели от 900 – 1000 о С. На поверхности коллектора от 300 – 500 о С. Температура колосниковой решетки под щелью 75 – 80 о С. Подовые горелки обеспечивают полноесжигпние газа при α от 1,1 до 1,3. Давление газа от 500 до 5000 Па (номинальное порядка 1000Па). Давление воздуха от 600 до 1000 Па. При работе без дутья в топке д.б. разряжение 20 – 30 Па для котлов средней производительности (от 2 до 10 тонн пара в час) и не более 8 Па для небольших отопительных котлов.

Подовые горелки отопительных котлов имеют размеры: диаметр отверстий от 1,3 до 3 мм (мах 10 – 20 мм), высота щели 130 – 200 мм; ширина определяется расчетом и обычно в пределах 80 – 110 мм.

Еще в 52

§ простота конструкции

§ Возможность работы на низком давлении газа

§ Нет необходимости подачи воздуха под давлением

§ Полное сжигание газа различных характеристик

§ Устойчивая работа в широком диапазоне изменения нагрузок

§ Бесшумность работы, надежность и простота эксплуатации

§ Высокий коэффициент избытка воздуха

§ Малая производительность (не более120 кВт одной горелкой)

§ Ввиду конструктивных особенностей (горелка в топке) значительного α нельзя использовать высокотемпературных установках.

Смесительные горелки.

Смесительные горелки с принудительной подачей воздуха находят широкое применение. Конструктивно они выполняются так, что бы обеспечить наилучшее перемещение потоков газа и воздуха, который подводится в горелку по отдельным трубам. Проявление смесеобразования начинается в самой горелке и активно завершается в топочной камере. Вследствие этого газ сгорает коротким и несветящимся пламенем. Смешение газа с воздухом осуществляется в результате турбулентной диффузии. Поэтому они называются горелками турбулентного смешивания или просто смесителями.

Для повышения интенсивности сжигания газа следует максимально интенсифицировать смешение газа с воздухом, так как смесеобразование является тормозящим звеном всего процесса. Инжекция процесса смесеобразования достигается следующим образом: закручиванием потока воздуха направляющими лопатками, тангенциальным подводом, подачей газа в виде мелких струй под ушлом к потоку воздуха, расчленением потоков газа и воздуха на мелкие потоки, в которых происходит смесеобразование.

Положительными качествами горелок являются:

1) Возможность сжигания большого количества газа при сравнительно небольших габаритах горелки.

2) Широкий диапазон решения производительности горелки.

3) Возможность подогрева газа и воздуха до t, превышающейt воспламенения, что имеет большое значение для высокотемпературных печей.

4) Сравнительно легкая возможность выполнения консистенций с комбинированным сжиманием топлива, а именно: газ-мазут или газ-угольная пыль.

Основные недостатки:

1) Принудительная подача воздуха

2) Сжигание газа с меньшим объемным тепловым напряжением, чем при кинетическом горении.

3) Сжигание газа с химической неполнотой больше, чем при кинетическом горении.

Имеется производительность 60кВт-60МВт. Используются для обогрева промышленных печей и котлов.

Горелка турбулентного смешивания:

1-корпус, 2- сопло, 3- наконечник сопла, 4 –носик.

Газ входит в горелку через патрубок и с определенной скоростью истекает из сопла. Воздух в гарелку подается под давлением. Перед входом в носик горелки он закручивается. Смешение газа с воздухом начинается внутри горелки при выходе газа из сопла и инжектируется закрученным потоком воздуха. При многоструйной подаче газа процесс образования смеси происходит быстрее и газ сгорает в коротком факеле. При одноструйном наконечнике создается удлиненный факел. Достоинствами горелки являются простота и компактность конструкции, возможность работы при низких давлениях газа и воздуха, широкие пределы регулирования производительности.

Широко применяются многоструйные вихревые горелки, основанные на принципе дробления потоков газа и воздуха на несколько мелких потоков. Внутри них происходит инжекционный процесс смешивания, их производительность 40-940 м 3 /ч.

Смесительные горелки часто выполняются комбинированными. Они позволяют быстро переводить агрегат с одного вида топлива на другой. Кроме того газ в них может сжиматься одновременно с др. видом топлива.

Метод вытеснения.

Используется при хранении СУГ в подземных хранилищах на глубине от 100 до 1200м (в соляных пластах).

Отбор сжиженного газа осуществляется за счет вытеснения его инертной жидкой или газообразной средой. Наиболее часто используется рассол.

1-центральная колонна для рассола

2-рассолопровод

3-наружная колонна для подачи СУГ

4-трубопровод сжиженного газа

5-подземная емкость

7-сжиженный газ

Подземная емкость сообщ-ся с поверхностью 2хколонной системой:

Обсадная труба (3) и свободно подвешенная в устье скважины центральная колонна 1.

СУГ подают и отбирают из емкости по межтрубному пространству.

Центральная колонна опущена до самого низа емкости. Т.к плотность рассола больше плотности СУГ в 2 раза, то последний хранится на рассольной подушке.

Для опорожнения подземной емкости достаточно лишь подвести рассол к устью центральной колонны и под его гидростатическим давлением (1,3 МПа при глубине 100 м) СУГ будет поступать в раздаточный трубопровод с избыточным напором. Его можно транспортировать без применения насосов.

СУГ закачивается в хранилище под давлением, опред-емым противодавлением столба рассола и потерями давления на трение при движении жидкости по межтрубному пространству и центральной колонне.

«+» метода:

1. простота конструктивного исполнения

2. возможность выдать газ в 1 время даже при отсутствии постороннего источника энергии

3. надежность работы всех устройств

4.затраты энергии только на удаление рассола при закачивании сжиженного газа в хранилище

5. необходимость для закачивания только высокопроизводительных насосов, имеющих большое КПД

«-» метода:

1. необходимость постороннего источника энергии с достаточной мощностью при сливе

Сжиженный газ. Сжиженные углеводородные газы СУГ = Liquefied petroleum gas (LPG) и ШФЛУ == WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids)

Сжиженные углеводородные газы (СУГ) Liquefied petroleum gas (LPG) — смесь сжиженных под давлением лёгких углеводородов с температурой кипенияот −50 до 0 °C. Предназначены для применения в качестве топлива, а также используются в качестве сырья для органического синтеза. Состав может существенно различаться, основные компоненты: пропан, изобутан и н-бутан. Производятся СУГ в процессе ректификации широкой фракции лёгких углеводородов (ШФЛУ = WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids). ШФЛУ относится к сжиженным углеводородным газам и представляет собой легкокипящую и легковоспламеняющуюся жидкость, пожаро- и взрывоопасную, 4-го класса токсичности.

Таблица 1. Технические требования к ШФЛУ - это сырье для производства СУГ

Показатели Марка А Марка Б Марка В
Углеводородный состав, % масс. С 1 - С 2 , не более 3 5 не регламентируется
С 3 , не менее 15 не регламентируется не регламентируется
С 4 - С 5 , не менее 45 40 35
с 6 и выше, не более 11 25 30
Плотность при 20 о С, кг/м 3 515 - 525 525 - 535 535 и выше
Содержание сернистых соединений в пересчете на серу, % масс., не более 0,025 0,05 0,05
в том числе сероводорода, % масс., не более 0,003 0,003 0,003
Содержание взвешенной воды Отсутствие
Содержание щелочи Отсутствие
Внешний вид Бесцветная прозрачная жидкость.

Пары ШФЛУ образуют с воздухом взрывоопасные смеси с 1,3 - 9,5 % об. при 98 066 Па (1 ата.) 15 - 20 о С.

Таблица 2. Температуры самовоспламенения компонентов ШФЛУ, о С

Пропан (С 3 Н 8) Изо-бутан (С 4 Н 10) Н-бутан (С 4 Н 10) Изо-пентан (С 5 Н 12) Н-пентан (С 5 Н 12)
466 462 405 427 287

Предельно допустимая концентрация паров ШФЛУ в воздухе рабочей зоны составляет не более 300 мг/м 3 . ШФЛУ попадающее на кожу человека вызывает обморожение напоминающее ожог.

Таблица 3. Классификация СУГ в РФ: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический:

В зависимости от компонентного состава СУГ подразделяются на следующие марки:

Таблица 4. Свойства Параметры торговых марок: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический

Наименование показателя Пропан технический Пропан автомобильный Пропан-бутан автомобильный Пропан-бутан технический Бутан технический
1. Массовая доля компонентов
Сумма метана, этана и этилена Не нормируется
Сумма пропана и пропилена не менее 75 % масс. Не нормируется
в том числе пропана не нормируется не менее 85±10 % масс. не менее 50±10 % масс. не нормируется не нормируется
Сумма бутанов и бутиленов не нормируется не нормируется не нормируется не более 60 % масс. не менее 60 % масс.
Сумма непредельных углеводородов не нормируется не более 6 % масс. не более 6 % масс. не нормируется не нормируется
2. Доля жидкого остатка при 20 о С не более 0,7 % об. не более 0,7 % об. не более 1,6 % об. не более 1,6 % об. не более 1,8 % об.
3. Давление насыщенных паров не менее 0,16 МПа

(при минус 20 о С)

не менее 0,07 МПа

(при минус 30 о С)

не более 1,6 МПа

(при плюс 45 о С)

не нормируется не нормируется
4. Массовая доля сероводорода и меркаптановой серы
в том числе сероводорода :
не более 0,013 % масс. не более 0,001 % масс. не более 0,001 % масс. не более 0,013 % масс. не более 0,013 % масс.
не более 0,003 % масс.
5. Содержание свободной воды отсутствие
6. Интенсивность запаха, баллы не менее 3

Сжиженные углеводородные газы пожаро- и взрывоопасны, малотоксичны, имеют специфический характерный запах углеводородов, по степени воздействия на организм относятся к веществам 4-го класса опасности. СУГ в воздухе рабочей зоны (в пересчете на углерод) предельных углеводородов (пропан, бутан) — 300 мг/м 3 , непредельных углеводородов (пропилен, бутилен) — 100 мг/м 3 . СУГ образуют с воздухом при концентрации паров пропана от 2,3 до 9,5 %, нормального бутана от 1,8 до 9,1 % (по объёму), при давлении 0,1 МПа и температуре 15 — 20 о С. Температура самовоспламенения пропана в воздухе составляет 470 о С, нормального бутана — 405 о С.

Таблица 4. Физические характеристики: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Химическая формула СН 4 С 2 Н 6 С 2 Н 4 С 3 Н 8 С 3 Н 6 С 4 Н 10 С 4 Н 10 С 4 Н 8 С 4 Н 8 С 5 Н 12
Молекулярная масса, кг/кмоль 16,043 30,068 28,054 44,097 42,081 58,124 58,124 56,108 56,104 72,146
Молекулярный объем, м 3 /кмоль 22,38 22,174 22,263 21,997 21,974 21,50 21,743 22,442 22,442 20,87
Плотность газовой фазы, кг/м 3 , при 0 о С 0,7168 1,356 1,260 2,0037 1,9149 2,7023 2,685 2,55 2,5022 3,457
Плотность газовой фазы, кг/м 3 , при 20 о 0,668 1,263 1,174 1,872 1,784 2,519 2,486 2,329 2,329 3,221
Плотность жидкой фазы, кг/м 3 , при 0 о 416 546 566 528 609 601 582 646 646 6455
Температура кипения, при 101,3 кПа минус 161 минус 88,6 минус 104 минус 42,1 минус 47,7 минус 0,5 минус 11,73 минус 6,9 3,72 36,07
Низшая теплота сгорания, МДж/м 3 35,76 63,65 59,53 91,14 86,49 118,53 118,23 113,83 113,83 146,18
Высшая теплота сгорания, МДж/м 3 40,16 69,69 63,04 99,17 91,95 128,5 128,28 121,4 121,4 158
Температура воспламенения, о С 545-800 530-694 510-543 504-588 455-550 430-569 490-570 440-500 400-440 284-510
Октановое число 110 125 100 125 115 91,20 99,35 80,30 87,50 64,45
Теоретически необходимое количество воздуха

для горения, м 3 /м 3

3,52 16,66 14,28 23,8 22,42 30,94 30,94 28,56 28,56 38,08

Таблица 5. Критические параметры (температура и давление) газов: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Газы могут быть превращены в жидкое состояние при сжатии, если температура при этом не превышает определенного значения, характерного для каждого однородного газа. Температура при которой данный газ не может быть сжижен никаким повышением давления, называется критической температурой. Давление, необходимое для сжижения газа при этой критической температуре, называется критическим давлением.

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Критическая температура, о С минус 82,5 32,3 9,9 96,84 91,94 152,01 134,98 144,4 155 196,6
Критическое давление, МПа 4,58 4,82 5,033 4,21 4,54 3,747 3,6 3,945 4,10 3,331

Таблица 6. Упругость насыщенных паров МПа, Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Упругостью насыщенных паров сжиженных газов называется давление, при котором жидкость находится в равновесном состоянии со своей газовой фазой. При такой двухфазной системе не происходит ни конденсации паров ни испарения жидкости. Каждому компоненту СУГ при определенной температуре соответствует определенная упругость паров, возрастающая с ростом температуры.

Температура, о С Этан Пропан Изобутан н-Бутан н-Пентан Этилен Пропилен н-Бутилен Изобутилен
минус 50 0,553 0,07 1,047 0,100 0,070 0,073
минус 45 0,655 0,088 1,228 0,123 0,086 0,089
минус 40 0,771 0,109 1,432 0,150 0,105 0,108
минус 35 0,902 0,134 1,660 0,181 0,127 0,130
минус 30 1,050 0,164 1,912 0,216 0,152 0,155
минус 25 1,215 0,197 2,192 0,259 0,182 0,184
минус 20 1,400 0,236 2,498 0,308 0,215 0,217
минус 15 1,604 0,285 0,088 0,056 2,833 0,362 0,252 0,255
минус 10 1,831 0,338 0,107 0,0680 3,199 0,423 0,295 0,297
минус 5 2,081 0,399 0,128 0,084 3,596 0,497 0,343 0,345
0 2,355 0,466 0,153 0,102 0,024 4,025 0,575 0,396 0,399
плюс 5 2,555 0,543 0,182 0,123 0,030 4,488 0,665 0,456 0,458
плюс 10 2,982 0,629 0,215 0,146 0,037 5,000 0,764 0,522 0,524
плюс 15 3,336 0,725 0,252 0,174 0,046 0,874 0,594 0,598
плюс 20 3,721 0,833 0,294 0,205 0,058 1,020 0,688 0,613
плюс 25 4,137 0,951 0,341 0,240 0,067 1,132 0,694 0,678
плюс 30 4,460 1,080 0,394 0,280 0,081 1,280 0,856 0,864
плюс 35 4,889 1,226 0,452 0,324 0,096 1,444 0,960 0,969
плюс 40 1,382 0,513 0,374 0,114 1,623 1,072 1,084
плюс 45 1,552 0,590 0,429 0,134 1,817 1,193 1,206
плюс 50 1,740 0,670 0,490 0,157 2,028 1,323 1,344
плюс 55 1,943 0,759 0,557 0,183 2,257 1,464 1,489
плюс 60 2,162 0,853 0,631 0,212 2,505 1,588 1,645

Таблица 6. Зависимость плотности от температуры: Пропан, Изобутан, н-Бутан

Температура, о С Пропан Изобутан н-Бутан
Удельный объём Плотность Удельный объём Плотность Удельный объём Плотность
Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3 Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3 Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3
минус 60 1,650 0,901 0,606 1,11
минус 55 1,672 0,735 0,598 1,36
минус 50 1,686 0,552 0,593 1,810
минус 45 1,704 0,483 0,587 2,07
минус 40 1,721 0,383 0,581 2,610
минус 35 1,739 0,308 0,575 3,250
минус 30 1,770 0,258 0,565 3,870 1,616 0,671 0,619 1,490
минус 25 1,789 0,216 0,559 4,620 1,639 0,606 0,610 1,650
минус 20 1,808 0,1825 0,553 5,480 1,650 0,510 0,606 1,960
минус 15 1,825 0,156 0,548 6,400 1,667 0,400 0,600 2,500 1,626 0,624 0,615 1,602
минус 10 1,845 0,132 0,542 7,570 1,684 0,329 0,594 3,040 1,635 0,514 0,612 1,947
минус 5 1,869 0,110 0,535 9,050 1,701 0,279 0,588 3,590 1,653 0,476 0,605 2,100
0 1,894 0,097 0,528 10,340 1,718 0,232 0,582 4,310 1,664 0,355 0,601 2,820
плюс 5 1,919 0,084 0,521 11,900 1,742 0,197 0,574 5,070 1,678 0,299 0,596 3,350
плюс 10 1,946 0,074 0,514 13,600 1,756 0,169 0,5694 5,920 1,694 0,254 0,5902 3,94
плюс 15 1,972 0,064 0,507 15,51 1,770 0,144 0,565 6,950 1,715 0,215 0,583 4,650
плюс 20 2,004 0,056 0,499 17,740 1,794 0,126 0,5573 7,940 1,727 0,186 0,5709 5,390
плюс 25 2,041 0,0496 0,490 20,150 1,815 0,109 0,5511 9,210 1,745 0,162 0,5732 6,180
плюс 30 2,070 0,0439 0,483 22,800 1,836 0,087 0,5448 11,50 1,763 0,139 0,5673 7,190
плюс 35 2,110 0,0395 0,474 25,30 1,852 0,077 0,540 13,00 1,779 0,122 0,562 8,170
плюс 40 2,155 0,035 0,464 28,60 1,873 0,068 0,534 14,700 1,801 0,107 0,5552 9,334
плюс 45 2,217 0,029 0,451 34,50 1,898 0,060 0,527 16,800 1,821 0,0946 0,549 10,571
плюс 50 2,242 0,027 0,446 36,800 1,9298 0,053 0,5182 18,940 1,843 0,0826 0,5426 12,10
плюс 55 2,288 0,0249 0,437 40,220 1,949 0,049 0,513 20,560 1,866 0,0808 0,536 12,380
плюс 60 2,304 0,0224 0,434 44,60 1,980 0,041 0,505 24,200 1,880 0,0643 0,532 15,400

Наиболее распространенным является использование СУГ в качестве топлива в двигателях внутреннего сгорания. Обычно для этого используется смесь пропан-бутан. В некоторых странах СУГ использовались с 1940 года как альтернативное топливо для двигателей с искровым зажиганием. СУГ являются третьим наиболее широко используемым моторным топливом в мире. В 2008 более 13 миллионов автомобилей по всему миру работали на пропане. Более 20 млн тонн СУГ используются ежегодно в качестве моторного топлива.

Использование СУГ в качестве топлива в промышленных и коммунально-бытовых нагревательных аппаратах позволяет осуществлять регулирование процесса горения в широком диапазоне, а возможность хранения СУГ в резервуарах делает его более предпочтительным по сравнению с природным газом в случае использования СУГ на автономных узлах теплоснабжения.

Таблица 7. Использование СУГ для производства продуктов для органического синтеза

Основное направление химической переработки СУГ — это термические и термокаталитические превращения. В первую очередь здесь подразумеваются процессы пиролиза и дегидрирования, приводящие к образованию ненасыщенных углеводородов — ацетилена, олефинов, диенов, которые широко применяются для производства высокомолекулярных соединений и кислородсодержащих продуктов. Это направление включает в себя также процесс производства сажи термическим разложением в газовой фазе, а также процесс производства ароматических углеводородов. Схема превращений углеводородных газов в конечные продукты представлена в таблице.

Продукты прямого превращения

углеводородных газов

Производное вещество Конечный продукт
первичное вторичное
Этилен Полиэтилен Полиэтиленовые пластмассы
Окись этилена Поверхностно-активные вещества
Этиленгликоль Полиэфирное волокно, антифриз и смолы
Этаноламины Промышленные растворители, моющие вещества, мыло
Хлорвинил Хлорполивинил Пластиковые трубы, пленки
Этанол Этиловый эфир, уксусная кислота Растворители, химические преобразователи
Ацетальдегид Уксусный ангидрид Ацетатная целлюлоза, аспирин
Нормальный бутан
Винилцетат Поливиниловый спирт Пластификаторы
Поливинилацетат Пластиковые пленки
Этилбензол Стирол Полистироловые пластмассы
Акриловая кислота Волокна, пластмассы
Пропиональдегид Пропанол Гербициды
Пропионовая кислота Консервирующие средства для зерна
Пропилен Акрилонитрил Адипонитрил Волокна (нейлон-66)
Полипропилен Пластичные пленки, волокна
Окись пропилена Пропиленкарбонат Полиуретановые пены
Полипропиленгликоль Специальные растворители
Аллиловый спирт Полиэфирные смолы
Изопропанол Изопропилацетат Растворители типографических красок
Ацетон Растворитель
Изопропилбензол Фенол Фенольные смолы
Акролеин Акрилаты Латексные покрытия
Аллилхлориды Глицероль Смазочные вещества
Нормальные и изомолярные альдегиды Нормальный бутанол Растворитель
Изобутанол Амидные смолы
Изопропилбензол
Номальные бутены Полибутены Смолы
Вторичный бутиловый спирт Метилэтиловый кетон Промышленные растворители, покрытия, связывающие вещества
Депарафинизирующие добавки к нефти
Изобутилен Изобутиленметиловый бутадиеновый сополимер
Бутиловая смола Пластмассовые трубы, герметики
Третичный бутиловый спирт Растворители, смолы
Метилбутиловый третичный эфир Повыситель октанового числа бензина
Метакролеин Метилметакрилат Чистые пластиковые листы
Бутадиен Стирилбутадиеновые полимеры Буна-каучуковая синтетическая резина
Адипонитрил Гексаметилендиамин Нейлон
Сульфолен Сульфолан Очиститель промышленного газа
Хлоропрен Синтетическая резина
Бензол Этилбензол Стирол Полистироловые пластмассы
Изопропилбензол Фенол Фенольные смолы
Нитробензол Анилин
Линейный алкилбензол Разлагающиеся под действием бактерий моющие вещества
Малеиновый ангидрид Модификаторы пластмасс
Циклогексан Капролактам Нейлон-6
Адипиновая кислота Нейлон-66
Толуол Бензол Этилбензол, стирол Полистироловые пластмассы
Изопропилбензол, фенол Фенольные смолы
Нитробензол, хлорбензол, анилин, фенол Красители, резина, фотохимикаты

Кроме перечисленного СУГ используют в качестве аэрозольного энергоносителя. Аэрозолем является смесь активного компонента (духов, воды, эмульгатора) с пропиленом. Это коллоидный раствор, в котором тонкодиспергированные (размером 10 — 15 мкм) жидкие или твердые вещества взвешены в газовой или жидкой, легкоиспаряющейся фазе сжиженного углеводородного газа. Дисперсная фаза — активный компонент, из-за которого и вводят пропеллент в аэрозольные системы, применяющиеся для распыления духов, туалетной воды, полирующих веществ и др.

Утверждения об отличных характеристиках топливных смесей обычно слишком общие и малоинформативные. Мы восполняем недостаток информации - в этой статье приведены фактические данные о сжиженных углеводородных газах (СУГ). Они будут полезны всем, кто уже использует такое топливо или только планирует автономную газификацию своего дома (коммерческого объекта).

Что такое СУГ и в чем их главная особенность?

Под названием «сжиженные углеводородные газы» имеются в виду смеси низкомолекулярных углеводородов - пропана и бутана. Их основное отличие состоит в легком переходе из газообразной фазы в жидкую и наоборот:

  • В условиях нормального атмосферного давления и при обычной температуре окружающей среды компоненты смеси являются газами.
  • С незначительным увеличением давления (без снижения температуры) углеводороды СУГ превращаются в жидкости. При этом их объем резко уменьшается.

Такие свойства позволяют легко транспортировать и хранить СУГ. Ведь достаточно закачать смесь в закрытую емкость под давлением, чтобы она стала жидкой и получила небольшой объем. А перед эксплуатацией СУГ испаряется, и дальше его можно использовать точно так же, как обычный природный газ. При этом смесь бутана и пропана имеет более высокий коэффициент полезного действия. Удельная теплота сгорания сжиженного газа примерно на 25 % выше, чем природного.

Производят СУГ на газоперерабатывающих заводах из попутного нефтяного газа или конденсатной фракции природного газа. Во время переработки сырье разделяют на легкие и тяжелые фракции - этан, метан, газовый бензин и т.д. Две из них - пропан и бутан - дальше перерабатываются в сжиженный газ. Их очищают от примесей, смешивают в нужном соотношении, сжижают и транспортируют в хранилища или к потребителю.

Свойства составляющих СУГ - пропана и бутана

Оба газа являются низкомолекулярными предельными углеводородами:

  • Пропан (С 3 Н 8). В линейную молекулу входят три атома углерода и восемь - водорода. Газ идеально подходит для применения в российских климатических условиях - его температура кипения составляет -42,1 °С. При этом до -35 °С пропан сохраняет высокую упругость паров. То есть, он хорошо испаряется естественным путем и транспортируется по наружному трубопроводу даже в самую суровую зиму. Чистый сжиженный пропан можно использовать в надземных газгольдерах и баллонах - сбоев в поступлении газа во время морозов не будет.
  • Бутан (С 4 Н 10). Состоит из четырех атомов углерода и десяти атомов водорода. Молекула может быть линейной или разветвленной. Бутан имеет более высокую теплотворную способность, чем пропан, и дешевле стоит. Но у него есть серьезный недостаток. Температура кипения бутана - всего -0,5 °С. Это значит, что при малейшем морозе он будет оставаться в жидком состоянии. Естественное испарение бутана при температуре ниже -0,5 °С прекращается, и для получения газа приходится использовать дополнительный подогрев.

Из приведенной информации получаем важный вывод: температура сжиженной пропан-бутановой смеси в газгольдере или баллоне всегда должна быть положительной. Иначе бутан не будет испаряться и появятся проблемы с газоснабжением. Чтобы добиться нужной температуры, газгольдеры устанавливают подземно (здесь их подогревает геотермальное тепло). Другой вариант - оборудовать емкость электроподогревом (испарителем). Заправленные баллоны всегда держат в помещениях.

От чего зависит качество СУГ?

Итак, сжиженный газ, поставляемый для систем автономной газификации, это всегда смесь. В официальных документах она проходит как СПБТ - смесь пропана и бутана технических. Кроме этих двух газов, в СУГ всегда есть небольшой объем примесей - воды, щелочей, непредельных углеводородов и т.д. Качество смеси зависит от соотношения в ней пропана и бутана, а также от количества и типа примесей:

  1. Чем больше в СПБТ пропана, тем лучше она будет испаряться в холодное время года. Правда, сжиженные газы с повышенной концентрацией пропановой составляющей дороже стоят, поэтому их обычно используют лишь в качестве зимнего топлива. В любом случае, в условиях российского климата нельзя использовать смесь с содержанием бутана более 60 %. Она будет испаряться только при наличии испарителя.
  2. Чем больше в СУГ примесей, тем хуже для газового оборудования. Непредельные углеводороды не сгорают полностью, а полимеризуются и коксуются. Их остатки загрязняют оборудование и резко сокращают срок его службы. Тяжелые фракции - вода и щелочи - также не идут на пользу технике. Многие вещества остаются в резервуаре и трубопроводах в виде неиспаряемого конденсата, который снижает эффективность системы. Кроме того, примеси не дают такого количества тепла, как пропан и бутан, поэтому их повышенная концентрация понижает КПД топлива.
Полезные факты о сжиженных газах
  • Пропан-бутановая смесь отлично смешивается с воздухом, равномерно горит и полностью сгорает, не оставляя на элементах оборудования сажи и нагара.
  • СУГ в газообразном состоянии тяжелее воздуха: пропан - в 1,5 раза, бутан - в 2 раза. При утечке смесь опускается вниз. Поэтому резервуары со сжиженным газом нельзя устанавливать над подвалами и колодцами. Зато подземный газгольдер абсолютно безопасен - даже при его повреждении газовая смесь уйдет в нижние слои грунта. Там она не сможет смешаться с воздухом и взорваться или загореться.
  • Жидкая фаза СУГ имеет очень высокий коэффициент теплового расширения (0,003 для пропана и 0,002 для бутана на каждый градус повышения температуры). Это примерно в 16 раз выше, чем у воды. Поэтому газгольдеры нельзя заправлять более чем на 85 %. Иначе при повышении температуры жидкая смесь может сильно расшириться и в лучшем случае занять весь объем резервуара. Тогда места для испарения просто не останется и газ в систему поступать не будет. В худших случаях чрезмерное расширение жидкой смеси приводит к разрывам газгольдеров, большим утечкам и образованию взрыво- и пожароопасных смесей с воздухом.
  • При испарении 1 л жидкой фазы СУГ образуется 250 л газа. Поэтому так опасны резервуары со сжиженной смесью, установленные внутри помещений. Даже при незначительной утечке жидкой фазы происходит ее моментальное испарение, и комната наполняется огромным количеством газа. Газо-воздушная смесь в этом случае быстро достигает взрывоопасного соотношения.
  • Испарение жидкой фазы на воздухе происходит очень быстро. Пролитый на кожу человека сжиженный газ вызывает обморожение.
  • Чистые пропан и бутан - газы без запаха. К ним специально добавляют сильно пахнущие вещества - одоранты. Как правило, это соединения серы, чаще всего - этилмеркаптан. Они имеют очень сильный и неприятный запах, который «сообщает» человеку об утечке газа.
  • Смесь обладает высокими теплотворными способностями. Так, при сжигании 1 куб. м газообразного пропана используется 24 куб. м воздуха, бутана - 31 куб. м воздуха. В результате сгорания 1 кг смеси выделяется в среднем 11,5 кВт·ч энергии.

Углеводородные газы

. Состав сжиженных углеводородных газов

Под СУГ понимают такие индивидуальные углеводороды или их смеси, которые при норм. условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления без изменения температуры или незначительном понижении температуры при атмосферном давлении переходит в жидкое состояние.

При нормальных условиях из предельных углеводородов (C n H 2 n +2) газами являются лишь метан, этан, пропан, и бутан. При О 0 С этан конденсируется в жидкость при повышении давления до 3 Мпа. Пропан до 0,47 Мпа, Н-бутан до 0,116 МПа, Изобутан до 0,16 МПа. Рассмотрим, какие углеводороды переходят в жидкое состояние при сравнительно небольшом понижении температуры и атмосферном давлении 4подходящей для практического применения являются пропан и бутан. На ряду с нормальными предельными углеводородами существуют изомерные соединения, отличающиеся характером расположения атомов углерода, а также некоторыми свойствами. Изомер бутана - изобутан.

Структура и ф-ла Н-бутана

СН 3 -СН 2 -СН 2 - СН 3

Изобутан:

Помимо предельных в состав СУГ встречаются также группа ненасыщ. Или непредельных углеводородов, характеризуются двойной или тройной связью между атомами углерода. Это этилен, пропилен, бутилен (нормальный и изомерный). Общая формула непредельных углеводородов с двойной связью С n Н 2 n . Этилен С2Н4 СН2=СН2. Для получения сжиженных углеводородных газов используется жирные природные газы, т.е. газы из нефтяных и конденсатных месторождений, содержащих большое количество тяжелых углеводородов. На газоперерабатывающих заводах их этих газов выделяются пропан-бутановую фракцию и газовый бензин(С5Н12). Технический пропан и бутан а также их смеси представляют собой сжиженный газ, используемый для газоснабжения потребителей.

Технические газы отличаются от чистых содержанием небольших количеств углеводорода и наличием примеси. Для технического пропана содержание С3Н8+С3Н6 (пропилен) д.б. не <93%. Содержание С2Н6 +С2Н4 (этилен) не > 4%. Содержание С4Н10+С4Н8 не >3%.

Для технического бутана: С4Н10+С4Н8 д.б. не <93%. С3Н8 +С3Н6 не> 4%. С5Н12+С5Н10 не >3%.

Для смеси тех. бутана и пропана содержание: С3Н8+С3Н6, С4Н10+С4Н8 д.б. не < 93%. С2Н6 +С2Н4 не> 4%. С5Н12+С5Н10 не >3%.

2. Технические сжиженные газы. Марки СУГ

Состав сжиженных газов, применяемых в газоснабжении выбираются с учетом климатических условий, где он используется. И определяется требованиями ГОСТ 20448 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления. Технические условия». Состав подбирается так, чтобы при низких температурах зимой упругость паров смеси была достаточной для нормальной работы регуляторов. А при высоких температурах летом не превышала мах давления, на которые рассчитаны баллоны и резервуары для СУГ. Согласно ГОСТ давление насыщенных паров смеси д.б. не менее 0,16 МПа при t=+45 0 C. Если сжиженный пропан может применяться при температурах от -35 до +45, то бутан в условиях с естественным испарением не м.б. использован при темературах ниже 0, хотя при t >0 он имеет значительное преимущество перед пропаном. Поэтому подбором состава сжиженного газа можно получать желаемые свойства.

ГОСТ на СУГ устанавливают 3 марки сжиженного газа:

1) Смесь пропана и бутана технических зимняя СПБТЗ

2) Смесь пропана и бутана технических летняя СПБТЛ

) Бутан технический

Деление смеси пропана и бутана на зимнюю и летнюю марки связано с наружными t-ми, определяющими упругость нас. паров сжиженных газов, находящихся в баллонах или подземных резервуарах.

Зимой в составе смеси д.б. больше пропана и пропилена, летом количество их м.б. уменьшено. С той же целью лимитируются мах содержание бутана и бутилена в смеси, т.к. при низких температурах они имеют малую упругость паров.

С учетом оптимальной упругости насыщенных паров ГОСТ предусматривает содержание пропана и пропилена в зимней марке не <75% по массе. А в летней марке и бутане техническим содержанием этих компонентов не нормируется. Сумма бутанов и бутиленов в зимней марке не нормируется, в летней не >60%, в бутане техническом не <60% по массе. Ограничение в составе сжиженных газов содержания лёгких компонентов (этан, этилен) связано с тем, что наличие значительного количества этих углеводородов приводит к резкому увеличению упругости паров. Например, при 35 0 C упругость насыщенных паров этана достигает 4,9 МПа. В то же время наличие незначительного количества легких компонентов в сжиженном газе повышает общее давление насыщенных паров смеси, что обеспечивает в зимнее время нормальное газоснабжение потребителей.

Наличие значительного количества пентана также недопустимо, т.к. это приводит к резкому снижению давления насыщенных паров и повышению точки росы (t-ра конденсации пентана около 3 0 C).

3. Свойство СУГ

Возможны 3 состояния сжиженного газа, в котором находятся при хранении и использовании:

1) В виде жидкости (жидкая фаза)

2) Пар (паровая фаза), т.е. насыщенные пары, находящиеся совместно с жидкостью в резервуаре или баллоне.

) Газа (когда давление в паровой фазе ниже давления насыщенных паров при данной температуре).

Свойства сжиженных газов легко переходят из одного состояния в другое, делает их особенно ценным источником газоснабжения, т.к. транспортировать и хранить их можно в жидком виде, а сжигать в виде газа. Т.о. при транспортировке и хранении используется преимущественно жидкие фазы, а при сжигании газообразные.

Упругость насыщенных паров газа - это важнейший параметр, по которому определяется рабочее давление в баллонах и резервуарах. Давление и температура сжиженных газов строго соответствует друг другу.

Упругость насыщенных паров СУГ изменяется пропорционально температуре жидкой фазы и является величиной строго определенной для данной температуры.

Во все уравнения, связывающие физические параметры газообразного или жидкого вещества входят абсолютное давление и температура. А в уравнения для технических расчетов прочности стенок баллонов, резервуаров - избыточное давление.

В газообразный составе СУГ тяжелее воздуха в 1,5-2,1 раза. В жидком состоянии они почти в 2 раза легче воды.

Скрытая теплота парообразование весьма незначительная (приблизительно 116кВт/кг), поэтому расход теплоты на испарение сжиженного газа составляет 0,7% от потенциально содержащейся в них тепловой энергии. Вязкость очень мала, что обеспечивает транспортировку СУГ по трубопроводом, но то же время благоприятствует утечкам. Для них характерны низкие пределы воспламенения воздуха (2,3% для пропана, 1,7% для бутана).

Разница между верхним и нижним пределами незначительна, поэтому при их сжимании допускается применение отношения воздух-сжиженный газ. Обладает невысокими t-ми воспламенения по сравнению с большинством горючих газов (510 0 C для пропана и 490 0 C для бутана). Возможно образование конденсата при снижении t до точки росы или при повышении давления. Сжиженные газы характеризуются низкой t-рой кипения и поэтому при испарении во время внезапного выхода из трубопровода или резервуара в атмосферу охлаждается до отрицательной t-ры. Жидкая фаза попадая на незащищенную кожу человека может привести к обморожению. По характеру воздействия оно напоминает ожог.

В отличии от большинства жидкостей, которые при изменении t-ры незначительно изменяют свой объём, жидкая фаза СУГ довольно резко увеличивает свой объем при повышении t-ры (в 16 раз больше чем вода).

Сжимаемость сжиженных газов по сравнению с другими жидкостями весьма значительна. Если сжимаемость воды принять за единицу, то сжимаемость нефти 1,56, а пропана 15. Если жидкая фаза занимает весь объем резервуара, то при повышении t-ры ей расширяться некуда, и она начинает сжиматься. Давление в резервуаре повышается. Повышение давления д.б. не больше допустимого расчетного, иначе возможна авария. Поэтому при заполнении резервуаров и баллонов предусматривается оставлять паровую подушку, т.е. заполнять их не полностью. Величина паровой подушки для подземных резервуаров составляет 10%, для подземных и баллонов 15%.

Сжиженные газы имеют более высокую, чем природные газы, объемную теплоту сгорания (приближенно в 3 раза выше).

Сжиженные газы нетоксичны, но низкие пределы воспламенения и медленная диффузия в атмосферу в сочетании отсутствия у них запаха, цвета и вкуса (как в жидком, так и в газообразном виде) диктует необходимость их одоризации.

4. Достоинства и недостатки СУГ

Как топливо сжиженные газы обладают всеми достоинствами природных газов. Кроме того для них можно отметить дополнительно:

Возможность создать у потребителя необходимый запас газа в жидком виде.

2. Простота транспортировки

Выделение наибольшего количества теплоты при сжигании

Отсутствие в составе СУГ коррозионно-активных веществ

Доступность использования в любом виде и в любых условиях

Недостатки СУГ:

Переменность состава и теплоты сгорания при естественном испарении

2. Малые значения низшей границы предела воспламенения

Плотность пропана и бутана больше плотности воздуха, что при утечках вызывает скопление СУГ в низких местах и создаются взрывоопасные ситуации

Низкая температура воспламенения

Возможность обморожения обслуживающего персонала при аварийных ситуациях

Большой коэффициент объёмного расширения

5. Диаграммы состояния сжиженных газов

Для расчёта процессов и оборудования необходимо знать взаимосвязь различных параметров СУГ с достаточной точностью. Это можно сделать по диаграммам состояния. По ним можно определить:

Упругость паров при данной температуре

2. Давление перегретых паров при данных условиях

Удельный объём и плотность жидкой, паровой и газовой фазы; их энтальпию

Степень сухости и влажности паров

Теплоту парообразования

Работу сжатия компрессором и повышения температуры при сжатии

Эффект охлаждения жидкости и газа при снижении давления (дросселировании)

Скорость истечения газа из сопел газогорелочных устройств

Диаграмма состояния строится на сетке из горизонтальных линий постоянных абсолютных давлений и вертикальных линий постоянных энтальпий. На сетку диаграммы наносят следующие точки и линии.


) Точка «К» критического состояния данного углеводорода по критическим давлению и температуре.

2) Пограничная кривая ПКЖ, проходящая через точку критического состояния и делящая диаграмму на 3 зоны:

I. Характеризует жидкую фазу

II. Парожидкостная фаза. Газовая фаза

Ветвь ЖК характеризует состояние насыщение жидкости при различных давлениях, а ветвь КП состояние насыщенного пара при этих давлениях.

4) Линии постоянной температуры изображаются ломаной ТЕМЛ с горизонтальным участком ЕМ (постоянное давление и температура при кипении жидкой фазы). Изотермы температур выше критической точки данного углеводорода изображается кривыми T’E’

) Линии постоянных удельных объёмов (изохоры)

ОБ - в области жидкой фазы

О’Б’ - в области парожидкостной фазы

Б’Б’’ - в области газовой фазы

Эти же линии соответствуют постоянной плотности

Точка О на пограничной кривой ЖК показывает удельный объём жидкой фазы.

Точка Б’ на КП - паровой фазы, находящейся в резервуарах или баллонах в эксплуатационных условиях

) Линии постоянной энтропии AD, A’D’ (адиабаты). Они используются при определении параметров углеводородов при сжатии их в компрессоре и при истечении из сопел газогорелочных устройств

Давление жидкой и паровой фазы в замкнутом объёме при заданной температуре определяется по точке пересечения изотермы с одной из пограничных кривых КМ или КП.

Давление в точке пересечения М и Е будет искомым. Если изотерма не пересекает пограничную кривую то это значит что при данной температуре газ не перейдёт в жидкое состояние, а давление его можно определить если известны его удельный объём, например изобара в точке пересечения изотермы T’E’ и изохоры Б’Б”.

Удельный объём насыщенной жидкости или пара можно определить по температуре или давлению в точке пересечения заданной изобары или изотермы с пограничными кривыми жидкости КМ или пара КП. Удельный объём газовой определяется по давлению и температуре в точке пересечения соответствующих изобар и изотерм.

Энтальпия жидкой паровой и газовой фазы определяется на оси абсцисс при заданных значениях давления и температуры в точке пересечения изобар с пограничными кривыми, линиями постоянной сухости или изотермами.

Теплота парообразования при заданном давлении определяется как разность энтальпий в точке Е и М заданной изобары с общими пограничными кривыми

Степень сухости пара Х определяется Л изобары с кривой постоянной сухости пара при данной энтальпии.

При расчёте процессов на диаграмму наносят вспомогательные линии. Так при дросселировании жидкой фазы от Р нач до Р кон наносят вертикальную линию МС (процесс идёт без подвода или отвода теплоты). Температура конца дросселирования определяется в точке С. Пересечение кривой сухости пара с изобарой Р кон показывает какое количество пара образовалось при дросселировании. Сжатие газа изображается на диаграмме адиабатами. Температура газа в конце сжатия определяется изотермой, проходящей через точку D’. Теоретическая работа сжатия 1кг газа определяется разностью теплосодержаний в точках D’ и A’.


Действительная работа сжатия будет несколько больше и определяется по формуле

Адиабатный КПД процесса сжатия (0,85-0,9)

6. Смеси газов и жидкостей. Пересчёт состава смесей

сжиженный углеводородный газоснабжение

Состав сжиженного газа в жидкой и паровой фазах может выражаться массовыми g i , объёмными y i и малярными долями для газов r i , для жидкостей Х.


Где m i - масса, кг

V i - объём, м 3

N i - число молей i-го компонента в смеси.

Для газовых (идеальных смесей) мольные и объёмные доли равны это следует из закона Авогадро

Пересчёт состава сжиженного газа из одного вида в другой производится следующим образом:

Для жидких смесей:

А) при известном массовом составе компонентов, объёмный и молярный состав определяется по формулам

Где ρ i и M i - соответственно плотность и молярная масса

Б) при заданном объёмном составе, массовый и молярный находятся по формулам

В) при известном молярном составе, массовый и объёмный определяются по формулам

Г) Для газовых смесей пересчёт из молярного в массовый производится по (5), а из массового в объёмный и мольный по (1) и (2).

7. Определение свойств СУГ

При известном составе сжиженного газа, давление смеси можно рассчитать по формулам:


Плотность газовой смеси заданного состава определяется:


Мольная доля i-ого компонента смеси

Плотность i-ого компонента смеси, кг/м 3

Она находится по таблице или рассчитывается по закону Авогадро:

Где - молекулярная масса i-ого компонента, кг/кмоль

Молекулярный объем i-ого компонента, м 3 /кмоль

Средняя плотность жидкой смеси при известном массовом составе определяется по формуле:

При известном молекулярном составе:

,

Где - плотность i-ого компонента входящего в жидкую смесь в жидкой фазе, кг/л

Плотность газовой смеси при повышенном давление находится из уравнения состояния для реальных газов.

,

Где - абсолютное давление (МПа) и t-ра смеси.

Газовая постоянная смеси, (Дж/кг К)

z-коэффициент сжимаемости, учитывающий отклонение реальных газов от з-нов идеальных газов.

Газовая постоянная смеси рассчитывается по универсальной газовой постоянной и по молекулярной массе смеси.


Коэффициент сжимаемости определяется по графику в зависимости от приведённых параметров (давление и температура) газа.

Среднее критическое давление и температура для смеси газов определяется по его составу.


Объем газа, получается при испарение смеси СУГ, м.б. найден по формуле:


Масса i-ого компонента смеси, кг

Молекулярная масса i-ого компонента смеси, кг/кмоль

V Mi -молекулярный объем i-ого компонента

Для подсчета низшей объемной температуры сгорания смеси СУГ используется следующая зависимость


Низшая объемная теплота сгорания i-ого компонента, кДж/м 3

Низшая массовая температура сгорания


Пределы воспламенения смеси СУГ, не содержащих балластных примесей, определяются:

L см - нижний или верхний предел воспламенения смеси газов.

Нижний или верхний предел воспламенения i-ого компонента.

. Схемы перелива СУГ. Перемещение СУГ за счет разности уровней

Существует ряд методов перемещения сжиженного газа из ж/д или автоцистерн в стационарные емкости. И наоборот, наполнения транспортных емкостей и баллонов из стационарных хранилищ. Свойства СУГ, являются кипящими жидкостями, с малой плотностью и температурой парообразования обусловливают специфичность для перемещения метода схем и оборудования.

СУГ перемещают:

за счет разности уровней

сжатием газов

с помощью подогрева или охлаждения

при помощи компрессора

при помощи насоса

взаимным вытеснением жидкости

За счет разности уровней

Использование гидростатического напора применяется при заполнении подземных резервуаров из железнодорожных и автоцистерн, а так же при разливе СУГ в баллоны, если позволяет рельеф местности. Что бы слить цистерны в резервуар, необходимо соединить их паровые и жидкостные фазы.

В сообщающихся сосудах жидкость устанавливается на одном уровне, поэтому жидкая фаза перетечет в нижестоящий резервуар.


Для создания достаточной скорости слива, при одинаковых температуре и давлении, в цистерне и резервуаре необходимо, что бы за счет гидростатического напора создавалась разность давлений не менее 0,7-0,1.

Минимальная необходимая величина гидростатического напора в этих условиях будет 14-20 метров жидкости.

В зимнее время цистерна имеет более низкую температуру, чем резервуар т.е. P газа в цистерне будет меньше, чем в резервуаре.

Поэтому для слива разность уровней должна компенсировать эту разность давлений

,

Где - давление газа в резервуаре, Па

Давление газа в цистерне

Плотность жидкой фазы СУГ, кг/м 3

Летом, в начальный момент слива, возможно расположение цистерн ниже резервуара. Но здесь скажется влияние температуры в резервуаре от более нагретой жидкости из цистерны, и величина перепада давления упадет примерно до 0. Слив прекратится. Поэтому летом, при сливе, паровые фазы автоцистерны и резервуара соединять не нужно.

«+» метода:

Простота схемы

2. Отсутствие механических агрегатов

Надежность работы всех узлов

Готовность схемы к работе в любой момент, независимо от наличия постороннего источника энергии

«-» метода:

Невозможность использования местности с гористым рельефом.

2. Большая продолжительность процесса.

Большие потери газа при отправлении его обратно в виде паров в слитых цистернах.

9. Газонаполнительные станции

ГНС являются базой снабжения систем газами и поставки потребителям сжиженных газов, поступающих с газобензиновых заводов.

На ГНС выполняются след. работы:

· -приём сжиженных газов от поставщика

· -слив сж. газов в свои хранилища

· -хранение СУГ в надземных, подземных или изотермических резервуарах, в баллонах или подземных пустотах.

· -слив неиспарившихся остатков из баллона и сж. газа из баллонов, имеющих к-л неисправности

· -разлив сж. газа в баллоны, передвижные резервуары и автоцистерны

· -приём пустых и выдача наполненных баллонов

· -транспортировка сж. газов по внутренней сети трубопровод

· -ремонт баллонов и их переосвидетельствование

Техническое обслуживание и ремонт оборудования на станции

В ряде случаев на ГНС производится:

· -заправка автомобилей, работающих на сж. газе из автозаправочной колонки

· -смешение паров газа с воздухом или низкокалорийными газами

· -выдача паров сж. газа газовоздушных и газовых смесей в гор. распределительные системы

Для выполнения этих операций на ГНС имеются след. подразделения и цеха:

· -сливная эстакада ж/д ветки или ввод тр-да с отключающими устройствами

· -база хранения СУГ, состоящая из надземных или подземных резервуаров, работающих под давлением, изотермич. резервуаров

· -насосно-компрессионый цех для слива СУГ их ж/д цистерн в хранилища и подача его для наполнения

· -цех для наполнения баллонов и слива из них неиспарившихся тяжёлых остатков

· -склад суточного запаса пустых и заполненных баллонов

· -колонки для заполнения автоцистерн

· -коммуникации жидкой и паровой фаз, связывающие все отделения ГНС и обеспечивающих их перемещение.

В зависимости от объёма хранилищ, способа установки резервуаров эти расстояния от 40 до 300 м.

Литература

1. Абрамочкин Е.Г.: Современная оптика гауссовых пучков. - М.: ФИЗМАТЛИТ, 2010

2. Алексеев Г.В.: Оптимизация в стационарных задачах тепломассопереноса и магнитной гидродинамики. - М.: Научный мир, 2010

Амусья М.Я.: Поглощение фотонов, рассеяние электронов, распад вакансий. - СПб.: Наука, 2010

Антонов В.Ф.: Физика и биофизика. - М.: ГЭОТАР-Медиа, 2010

Банков С.Е.: Электромагнитные кристаллы. - М.: ФИЗМАТЛИТ, 2010

Барабанов А.Л.: Симметрии и спин-угловые корреляции в реакциях и распадах. - М.: ФИЗМАТЛИТ, 2010

Белоконь А.В.: Математическое моделирование необратимых процессов поляризации. - М.: ФИЗМАТЛИТ, 2010

Бобошина С.Б.: Курс общей физики. - М.: Дрофа, 2010

Бройер Х.-П: Теория открытых квантовых систем. - Ижевск: Институт компьютерных исследований, 2010

Виноградов Е.А.: Термостимулированные электромагнитные поля твердых тел. - М.: ФИЗМАТЛИТ, 2010

Вирченко Ю.П.: Случайные множества с марковскими измельчениями в одномерном пространстве погружения. - Белгород: БелГУ, 2010

Г.П. Берман и др.; пер. с англ. Е.В. Бондаревой; под науч. ред. С.В. Капельницкого: Магнитно-резонансная силовая микроскопия и односпиновые измерения. - Ижевск: Ижевский институт компьютерных исследований, 2010

Голенищев-Кутузов А.В.: Фотонные и фононные кристаллы. - М.: ФИЗМАТЛИТ, 2010

Дьячков П.Н.: Электронные свойства и применение нанотрубок. - М.: БИНОМ. Лаборатория знаний, 2010