Виды хвостового оперения самолетов. Выбор схемы сла. Вертикальное хвостовое оперение

Оперение самолёта

аэродинамические поверхности самолёта, обеспечивающие его продольную и путевую устойчивость и управление им. Располагается обычно в хвостовой части, иногда в носовой части фюзеляжа. По конструкции О. с. сходно с Крыло м самолёта; его общая площадь составляет 0,25-0,5 площади крыльев. О. с. различают по виду спереди (рис. ), сбоку и по виду в плане (прямоугольное, трапециевидное, эллиптическое, а также стреловидное - для скоростных самолётов). Передняя часть горизонтального О. с., несущего руль высоты, называется Стабилизатор ом, а вертикального О. с., несущего руль направления, - килем (См. Киль). Руль высоты пилот отклоняет посредством ручки управления (отклонение её на себя вызывает подъём самолёта, от себя - его спуск), руль направления - посредством педалей (при нажиме ногой на правую педаль самолёт поворачивается вправо, на левую - влево). Углы отклонения рулей обычно ±(25-30)°. Для поддержания надлежащей продольной устойчивости самолёта стабилизатор обычно имеет подъёмный механизм, изменяющий по желанию пилота Атаки угол в пределах от +5° до –15°. Иногда подъёмный механизм связывают с ручкой управления, заставляя стабилизатор работать совместно с рулём высоты. Нередко рули упраздняют и получают цельноповоротное горизонтальное О. с. Таким же делают и вертикальное О. с. Кроме того, для улучшения поперечной устойчивости самолёта, обеспечиваемой Элерон ами, правую и левую половины горизонтального О. с. связывают с элеронным управлением, посредством которого элероны отклоняются в разные стороны (дифференциальное управление). По этой схеме работают и рули V-образного О. с.

С. Я. Макаров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Оперение самолёта" в других словарях:

    Элементы конструкции самолёта, обеспечивающие его устойчивость и управляемость в полёте. Обычно состоит из горизонтального и вертикального оперений и устанавливается на хвостовой части фюзеляжа. Горизонтальное оперение состоит из неподвижной… … Энциклопедия техники

    Оперение самолёта (планера) - аэродинамические поверхности для обеспечения его устойчивости и управляемости в полёте. Различают О. вертикальное (киль и руль направления) и горизонтальное (стабилизатор и руль высоты). Размещается в хвостовой (реже в носовой) части ЛА … Словарь военных терминов

    Оперение самолёта У этого термина существуют и другие значения, см. Оперение (значения). Оперение (оперение летательного аппарата … Википедия

    - (устаревшее аэроплан) летательный аппарат тяжелее воздуха для полётов в атмосфере с помощью двигателей и неподвижных, как правило, крыльев. Благодаря большой скорости, грузоподъёмности и радиусу действия, надёжности в эксплуатации,… … Большая советская энциклопедия

    Я; ср. 1. к Оперить и Опериться. Период оперения птенцов. 2. Перьевой покров птицы. Летнее о. Яркое о. самцов. Сменить своё о. 3. Специальное приспособление в оснастке летательных аппаратов, снарядов и т.п., обеспечивающее их устойчивость в… … Энциклопедический словарь

    Летательный аппарат тяжелее воздуха с крылом, на котором при движении образуется аэродинамическая подъёмная сила, и силовой установкой, создающей тягу для полёта в атмосфере. Основные части самолёта: крыло (одно или два), фюзеляж, оперение, шасси … Энциклопедия техники

    - («Воздухолетательный снаряд») Самолёт Можайского, рисунок из книги В. Д. Спицина «Воздухоплаван … Википедия

    Аэродинамические поверхности летательного аппарата, обеспечивающие его устойчивость и управляемость. О. самолёта обычно состоит из горизонтального оперения (ГО) и вертикального оперения (ВО), располагаемых чаще всего на хвостовой части фюзеляжа… … Энциклопедия техники

    Оперение самолёта У этого термина существуют и другие значения, см. Оперение (значения). Оперение (оперение летательного аппарата … Википедия

    ПГО - Переднее горизонтальное оперение Полтавская гравиметрическая обсерватория полярная геофизическая обсерватория Приамурское географическое общество производственное геологическое объединение … Словарь сокращений русского языка

    Тип палубный истребитель … Википедия

    Марка самолётов, созданных в ОКБ, организованном А. Н. Туполевым, см. Авиационный научно технический комплекс имени А. Н. Туполева. Самолётам, проектировавшимся в 1922 37, присваивалось наименование «АНТ» (Андрей Николаевич Туполев), а с 1942 они … Энциклопедия техники

    Су 27 … Википедия

    У этого термина существуют и другие значения, см. С 37 (значения). Су 47 «Беркут» … Википедия

    Су 47 «Беркут» Тип истребитель Разработчик ОКБ Сухого Первый полёт 24 сентября 1997 года Единиц произведено 1 … Википедия

    У этого термина существуют и другие значения, см. Крыло. В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удален … Википедия

    МПЛАТРК проекта 093 «Шань» … Википедия

    Планер LET L 13 … Википедия

Книги

  • Российский истребитель "СУ-30 СМ" 1/72 (7314) , . Су-30 СМ - двухместный многоцелевой тяжёлый истребитель, разработанный в ОКБ Сухого. Первый полёт истребитель совершил в 2012 году. Су-30 СМ предназначен как для завоевания господства в…

Теперь о горизонтальном хвостовом оперении. Оно также имеет две основные функции, первую можно охарактеризовать как балансировочную. Для того чтобы понять что тут к чему, можно провести простой эксперимент. Необходимо взять какой-либо длинный предмет, например линейку и положить ее на один вытянутый палец так, чтобы она не падала и не клонилась ни назад, ни вперед, т.е. найти ее центр тяжести. Итак, теперь у линейки (фюзеляжа) есть крыло (палец), уравновесить ее вроде не сложно. Ну а теперь необходимо представить, что в линейку закачиваются тонны топлива, садятся сотни пассажиров, загружается огромное количество груза.

Естественно, все это загрузить идеально относительно центра тяжести просто невозможно, однако есть выход. Необходимо прибегнуть к помощи пальца второй руки и поместить его сверху от условно задней части линейки, после чего сдвинуть «передний» палец к заднему. В итоге получилась относительно устойчивая конструкция. Можно еще сделать по другому: поместить «задний» палец под линейку и сдвинуть «передний» вперед, в сторону носовой части. Оба этих примера показывают принцип действия горизонтального хвостового оперения.

Более распространен именно первый тип, когда горизонтальные стабилизаторы создают силу, противоположную по направлению к подъемной силе крыльев. Ну и вторая их функция – управление по оси тангажа. Здесь все абсолютно также как и с вертикальным оперением. В наличии отклоняемая задняя кромка профиля, которая управляется из кокпита и увеличивает либо уменьшает силу, которую создает горизонтальный стабилизатор благодаря своему аэродинамическому профилю. Здесь следует сделать оговорку, относительно отклоняемой задней кромки, ведь некоторые самолеты, особенно боевые, имеют полностью отклоняемые плоскости, а не только их части, это касается и вертикального оперения, однако принцип работы и функции от этого не меняются.

Виды горизонтальных хвостовых оперений.

А теперь о том, почему конструкторы отходят от классической схемы. Сейчас самолетов огромное количество и их предназначение вместе с характеристиками очень сильно отличается. И, по сути, здесь необходимо разбирать конкретный класс самолетов и даже конкретный самолет в отдельности, но чтобы понять основные принципы будет достаточно нескольких примеров.

Первый - уже упоминаемый Ан-225, имеет двойное вынесенное вертикальное оперение по той причине, что он может нести на себе такую объемную вещь как челнок Буран, который в полете затенял бы в аэродинамическом плане единственный вертикальный стабилизатор, расположенный по центру, и эффективность его была бы чрезвычайно низкой. Т-образное оперение Ту-154 также имеет свои преимущества. Поскольку оно находится даже за задней точкой фюзеляжа, по причине стреловидности вертикального стабилизатора, плечо силы там самое большое (здесь можно опять прибегнуть к линейке и двум пальцам разных рук, чем ближе задний палец к переднему, тем большое усилие на него необходимо), потому его можно сделать меньшим и не таким мощным, как при классической схеме. Однако теперь все нагрузки, направленные по оси тангажа передаются не на фюзеляж, а на вертикальный стабилизатор, из-за чего тот необходимо серьезно укреплять, а значит и утяжелять.

Кроме того, еще и дополнительно тянуть трубопроводы гидравлической системы управления, что еще больше прибавляет вес. Да и в целом такая конструкция более сложная, а значит менее безопасная. Что же касается истребителей, почему они используют полностью отклоняемые плоскости и парные вертикальные стабилизаторы, то основная причина - увеличение эффективности. Ведь понятно, что лишней маневренности у истребителя быть не может.

Формы оперения самолётов (вид спереди): а - крестовидная; б и в - Т-образные; г и д - двухкилевые; е - трёхкилевая; ж и з - V-образные.

4.2. Нагрузки, действующие на хвостовое оперение:



4.3. Конструктивно-силовая схема хвостового оперения. Работа силовых элементов хвостового оперения в полёте:

Различные агрегаты оперения отличаются друг от друга назначением и способами закрепления, что вносит свои особенности в силовую работу и влияет на выбор их конструктивно-силовых схем. Рассмотрим отдельно особенности устройства и силовой работы основных агрегатов оперения (стабилизатора, киля, управляемого стабилизатора, руля и элерона).

Стабилизаторы и кили имеют полную аналогию с крылом как по составу и конструкции основных элементов - лонжеронов, продольных стенок, стрингеров, нервюр, так и по типу силовых схем. Для стабилизаторов вполне успешно используются лонжеронная, кессонная и моноблочная схемы, а для килей последняя схема применяется реже из-за определенных конструктивных трудностей при передаче изгибающего момента с киля на фюзеляж. Контурный стык силовых панелей киля с фюзеляжем в этом случае требует установки большого числа силовых шпангоутов или установки на фюзеляже в плоскости силовых панелей киля мощных вертикальных балок, опирающихся на меньшее число силовых шпангоутов фюзеляжа. У стабилизаторов можно избежать передачи изгибающих моментов на фюзеляж, если лонжероны или силовые панели левой и правой его поверхностей связать между собой по кратчайшему пути в центральной его части. Для стреловидного стабилизатора это требует перелома оси продольных элементов по борту фюзеляжа и установки двух усиленных бортовых нервюр. Если продольные элементы такого стабилизатора без перелома осей доходят до плоскости симметрии самолета, то кроме бортовых силовых нервюр, передающих крутящий момент, потребуется еще одна силовая нервюра в плоскости симметрии самолета.

Управляемый стабилизатор:

На виде в плане имеет стреловидную или треугольную форму. Ось вращения управляемого стабилизатора может быть перпендикулярной к плоскости симметрии самолета или располагаться под углом к ней.

Положение оси вращения выбирается так, чтобы усилия от шарнирного момента на до- и сверхзвуковых скоростях полета были бы минимальными. Крепление управляемого стабилизатора к фюзеляжу выполняется с помощью вала и двух подшипников.
Возможны две схемы крепления вала:

· вал жестко закреплен на стабилизаторе, а подшипники крепятся на фюзеляже

· вал (ось) закреплен неподвижно на фюзеляже, а подшипники установлены на стабилизаторе

В первом случае крепление вала к стабилизатору должно обеспечить передачу на вал перерезывающей силы, изгибающего момента и момента кручения, если качалка управления закреплена на валу.

В некоторых случаях качалка управления крепится на корневой усиленной нервюре, которая собирает весь крутящий момент с замкнутого контура стабилизатора. В этом случае крутящий момент на вал не передается. При такой схеме крепления обычно используется лонжеронная схема стабилизатора, т.к. при кессонной схеме передача изгибающего момента с силовых панелей на вал вызывает конструктивные трудности

В случае закрепления вала на фюзеляже подшипники крепятся на усиленных нервюрах стабилизатора, связанных с его продольными стенками.
На внешний подшипник передается вся перерезывающая сила консоли, а изгибающий момент парой сил передается на оба подшипника. Таким образом, на внешнем подшипнике происходит суммирование двух указанных усилий (R4).


В схеме с закреплением вала на фюзеляже достаточно просто обеспечивается передача изгибающего момента и при кессонной или моноблочной конструкциях стабилизатора. В этом случае силовые панели спереди и сзади опираются на продольные стенки, которые у корня сходятся к внутреннему бортовому подшипнику. Соответственно ширина силовых панелей и усилия в них от изгиба стабилизатора меняются от максимальной величины над внешним подшипником до нуля над внутренним подшипником. В результате изгибающий момент кессона стабилизатора уравновешивается реакциями подшипников. Качалка управления в таком стабилизаторе обычно устанавливается на корневой усиленной нервюре.

Подобный принцип передачи изгибающего момента можно использовать и при кессонной схеме стабилизатора с подвижным валом. В этом случае внешний конец вала должен опираться на силовую нервюру, связанную со стенками кессона.

4.4. Возможные неисправности конструктивных элементов хвостового оперения, их влияние на безопасность полётов:

См. вопр. 2.3.

4.5. Бафтинг хвостового оперения: причины и условия возникновения, возможные последствия и меры борьбы:

Конструкции,

  • возможно меньшее затенение оперения другими частями самолета - крылом, фюзеляжем , гондолами двигателей, а также одной части оперения другой.
  • отсутствие вибраций и колебаний типа флаттера и бафтинга .
  • более позднее, чем на крыле, развитие волнового кризиса .
  • Горизонтальное оперение (ГО)

    Обеспечивает продольную устойчивость, управляемость и балансировку. Горизонтальное оперение состоит из неподвижной поверхности - стабилизатора и шарнирно подвешенного к нему руля высоты. У самолетов с хвостовым расположением горизонтальное оперение устанавливается в хвостовой части самолета - на фюзеляже или на верху киля (T-образноя схема).

    Рули и элероны

    Ввиду полной идентичности конструкции и силовой работы рулей и элеронов в дальнейшем для краткости речь будет идти только о рулях, хотя все сказанное будет полностью применимо и к элеронам. Основным силовым элементом руля (и элерона, естественно), работающим на изгиб и воспринимающим практически всю перерезывающую силу, является лонжерон, который опирается на шарнирные опоры узлов подвески.

    Основная нагрузка рулей - воздушная аэродинамическая, возникающая при балансировке, маневрировании самолета или при полете в неспокойном воздухе. Воспринимая эту нагрузку, лонжерон руля работает как неразрезная многоопорная балка. Особенность его работы заключается в том, что опоры руля закреплены на упругих конструкциях, деформации которых под нагрузкой существенно влияют на силовую работу лонжерона руля.

    Восприятие крутящего момента руля обеспечивается замкнутым контуром обшивки, который в местах выреза под кронштейны крепления замыкается стенкой лонжерона. Максимальный крутящий момент действует в сечении кабанчика управления, к которому подходит тяга управления. Местом расположения кабанчика (тяги управления) по размаху руля можно существенно влиять на деформации руля при кручении.

    Аэродинамическая компенсация рулей

    В полете при отклонении рулевых поверхностей возникают шарнирные моменты, которые уравновешиваются усилиями летчика на командных рычагах управления. Эти усилия зависят от размеров и угла отклонения руля, а также от скоростного напора. На современных самолетах усилия управления получаются слишком большими, поэтому приходится в конструкции рулей предусматривать специальные средства для уменьшения шарнирных моментов и уравновешивающих их усилий управления. С этой целью используется аэродинамическая компенсация рулей, суть которой заключается в том, что часть аэродинамических сил руля создают момент относительно оси вращения, противоположный основному шарнирному моменту.

    Наибольшее распространение получили следующие виды аэродинамической компенсации:

    • роговая - на конце руля часть его площади в виде «рога» располагается спереди от оси шарниров, что обеспечивает создание момента обратного знака по отношению к основному шарнирному;
    • осевая - часть площади руля по всему размаху располагается спереди от оси шарниров (ось шарниров смещается назад), что уменьшает шарнирный момент;
    • внутренняя - обычно используется на элеронах и представляет собой пластины, прикрепленные к носку элерона спереди, которые связаны гибкой перегородкой со стенками камеры внутри крыла. При отклонении элерона в камере создается разница давлений над и под пластинами, которая уменьшает шарнирный момент.
    • сервокомпенсация - в хвостовой части руля шарнирно подвешивается небольшая поверхность, которая тягой связывается с неподвижной точкой на крыле или оперении. Эта тяга обеспечивает автоматическое отклонение сервокомпенсатора в сторону, противоположную отклонению руля. Аэродинамические силы на сервокомпенсаторе уменьшают шарнирный момент руля.

    Углы отклонения и эффективность работы такого компенсатора пропорциональны углам отклонения руля, что не всегда оправдывает себя, т.к. усилия управления зависят не только от углов отклонения руля, но и от скоростного напора. Более совершенным является пружинный сервокомпенсатор, у которого за счет включения в кинематику управления пружины с предварительной затяжкой углы отклонения пропорциональны усилиям управления руля, что наилучшим образом отвечает назначению сервокомпенсатора - уменьшать эти усилия.

    Средства аэродинамической балансировки самолета

    Любой установившийся режим полета самолета, как правило, выполняется с отклоненными рулями, что обеспечивает уравновешивание - балансировку - самолета относительно его центра масс. Возникающие при этом усилия на органах управления в кабине принято называть балансировочными. Чтобы зря не утомлять летчика и избавить его от этих ненужных усилий на каждой рулевой поверхности устанавливается триммер , позволяющий полностью снимать балансировочные усилия.

    Триммер конструктивно полностью идентичен сервокомпенсатору и также шарнирно подвешивается в хвостовой части руля, но, в отличие от сервокомпенсатора, имеет дополнительное ручное или электромеханическое управление. Летчик, отклоняя триммер в сторону противоположную отклонению руля, добивается уравновешивания руля на заданном угле отклонения при нулевых усилиях на командном рычаге. В некоторых случаях используется комбинированная поверхность триммер-сервокомпенсатор, который при включении привода работает в качестве триммера, а при отключенном - выполняет функции сервокомпенсатора.

    Следует добавить, что триммер может использоваться лишь в таких системах управления, в которых усилия на командных рычагах напрямую связаны с шарнирным моментом руля - системы механического безбустерного управления или системы с обратимыми бустерами. В системах с необратимыми бустерами - гидроусилителями - естественные усилия на огранах управления очень малы, и для имитации лётчику «механического управления» дополнительно создаются пружинными загрузочными механизмами и от шарнирного момента руля не зависят. В таком случае триммеры на рулях не ставятся, а балансировочные усилия снимаются специальными устройствами - механизмами эффекта триммирования, установленными в проводке управления.

    Другим средством балансировки самолета в установившемся режиме полета может служить переставной стабилизатор. Обычно такой стабилизатор крепится шарнирно на задних узлах подвески, а передние узлы соединяются с силовым приводом, который, перемещая носовую часть стабилизатора вверх или вниз, изменяет углы его установки в полете. Подбирая нужный угол установки, летчик может уравновесить самолет при нулевом шарнирном моменте на руле высоты. Этот же стабилизатор обеспечивает и требуемую эффективность продольного управления самолета на взлете и посадке.

    Средства устранения флаттера рулей и элеронов

    Причиной возникновения изгибно-элеронного и изгибно-рулевого флаттера является их массовая несбалансированность относительно оси шарниров . Обычно центр масс рулевых поверхностей расположен позади оси вращения. В результате при изгибных колебаниях несущих поверхностей силы инерции, приложенные в центре масс рулей, за счет деформаций и

    Хотя требования ТЗ и НЛГС определяют основные цели разработки проекта, конструктор должен выработать свою концепцию, выделающую главное в проекте и куазывающую на пути его реализации

    В основу классификации аэродинамических схем самолетов положено взаимное расположение несущих, стабилизирующих и управляющих аэродинамических поверхностей.

    Среди легких самолетов классическая схема самолета с хвостовым оперением получила наибольшее распространение. Она в наибольшей степени удовлетворяет комплексу требований, предьявляемых к легким самолетам по устойчивости, управляемости, безопасности и другим летно-техническим характеристикам.

    Основные ее достоинства:

    • благодаря развитой хвостовой части без затруднений обеспечивается необходимая продольная и путевая устойчивость
    • сохраняется безотрывное обтекание горизонтального оперения в некоторой области закритических углов атаки крыла обеспечивая достаточную эффективность продольного управления на больших углах атаки.
    Расположение крыла

    Расположение крыла по отношению к фюзеляжу в вертикальной плоскости рекомендуется рассматривать в первую очередь.

    Как правило, на легких самолетах, применяют схемы с низким (Рис 1а) или высоким (Рис 1б) расположением крыла.

    Рис 1 Схемы расположения крыла
    а - низкоплан, б - высокоплан

    Рекомендуется расположение крыла по отношению к фюзеляжу определять главным образом эксплуатационными требованиями. Вопросы аэродинамики и веса конструкции становятся важными при выборе высоко- или низкорасположенного крыла только после того, как учтены вопросы технического обслуживания и максмальной эксплуатационной гибкости самолета.

    Различия в характеристиках высокоплана и низкоплана имеют место при взлете и посадке из за экранного эффекта вследствие близости земли. Этот эффект уменьшается с увеличением высоты крыла над ВПП. Экранный эффект земли прежде всего выражается в уменьшении индуктивного сопротивления, что может привести к уменьшению взлетной и увеличению посадочной дистанции.

    Кроме того, из за экранного эффекта земли происходит уменьшение скоса потока в области горизонтального оперения, ведущего к появлению момента на пикирование. Это явление потребует боьшего отклонения руля высоты для отрыва носового колеса при взлете или при выравнивании самолета на посадке и может стать определяющим фактором при выборе площади руля высоты. Экранный эффект земли может вызвать и противоположный эффект, заставляя самолет "приземлиться самостоятельно". Это означает, что после выполнения нормального захода на посадку потребуется незначительное или вообще не потребуется отклонение руля высоты для выравнивания самолета. Такое явление можно наблюдать в случае, когда низкорасположенное крыло вследствие близости земли дает заметное приращение подьемной силы, а указанный выше момент горизонтального оперения на пикирование будет компенсироваться моментом на кабрирование в результате прироста подьемной силы крыла. Такое поведение самолета считается благоприятным, однако достичь этого целенаправленным начальным выбором схемы практически невозможно.

    Различия между высокопланом и низкопланом в минимальном сопротивлении могут быть уменьшены соответствующим выбором зализов и обтекателей. Считается, что с точки зрения максимального аэродинамического качества высокоплан выгоднее низкоплана.

    Низкорасположенное крыло может выполнять роль энергоемкой массы при вынужденной посадке самолета, хотя имеется опасность пожара при контакте с поверхностью земли, поскольку в крыле обычно находятся топливные отсеки и баки, повреждение которых при посадке более вероятно. При не слишком сильном ударе о землю вероятность повреждения и возникновения пожара у высокопланов меньше. При вынужденной посадке высокоплана на воду фюзеляж будет погружен, в этом случае необходимо предусматривать аварийный выход из кабины через верхний люк.

    Дополнительные нагрузки на фюзеляж высокоплана со стороны крыла при аварийной посадке как правило приводят к дополнительным затратам веса конструкции фюзеляжа для их восприятия (по сравнению с низкопланом).

    Из за аэродинамического влияния крыла на вертикальное оперение при высоком расположении крыла площадь вертикального оперения должна быть больше, чем у низкоплана.

    Уборка основных стоек шасси высокоплана представляет отдельную проблему для конструктора. При расположении двигателей на крыле, основные стойки шасси можно крепить к крылу и убирать в мотогондолы (Рис 2а) или хвостовые балки (при двухбалочной схеме). Однако стойки при этом имеют значительную высоту и вес.

    Рис 2 Варианты компоновки шасси высокоплана:
    а - шасси, убирающееся в гондолу двигателя
    б - неубирающееся шасси
    в - шасси, убирающееся в гондолу на фюзеляже

    Другим возможным вариантом является размещение стоек на фюзеляже (Рис 2б). Этот вариант требует усиления конструкции фюзеляжа для восприятия нагрузок при посадке и сопровождается дополнительным увеличением веса. В случае уборки стоек и колес шасси в фюзеляж это увеличение веса фюзеляжа повышается из за компенсации соответсвующего выреза. В случае уборки колес и стоек шасси в обтекатели на фюзеляже (Рис 2в) появляется дополнительный вес этих обтекателей. Частично увеличение веса из за уборки шасси в фюзеляж (обтекатели) низкоплана компенсируется более короткими стойками по сравнению с шасси для высокоплана. Кроме того, при размещении шасси на фюзеляже трудно получить широкую колею основных стоек шасси.

    На практике вариант размещения основных стоек шасси на фюзеляже высокоплана как правило применяется в случае неубирающегося шасси (Рис 2б).

    Перечисленные выше особенности размещения шасси на самолете говорят в пользу схемы низкоплана.

    У низкопланов шасси могут убираться в гондолы двигателей (Рис 3а), в отсек фюзеляжа или в отсек между лонжеронами крыла (Рис 3б). Поскольку обшивка крыла легкого самолета является неработающей или слабонагруженной, то компенсация соответствующего выреза в таком крыле будет сопровождаться минимальными затратами веса.


    Рис 3 Схемы уборки шасси для низкоплана

    Монопланы с подкосным крылом в настоящее время проектируются по схеме высокоплана. Подкосы, прикрепленные к нижней поверхности крыла,создают меньше возмущений и меньше по весу по сравнению с другими вариантами, так как расчетными для них являются растягивающие нагрузки.

    Схемы оперения

    Конструкция хвостового оперения существенно зависит от общей схемы самолета. Из за особенностей размещения, эффективность оперения находится под влиянием крыла и воздушного винта. Установка оперения на фюзеляже или хвостовых балках определяет и конструктивную схему фюзеляжа (балок) в этом месте.

    Примеры схем хвостового оперения, заимствованные из практики приведены на рис 4. Возможны и другие варианты хвостового оперения, которые здесь не рассматриваются (например схема V-образного оперения).


    Рис 4 Основные схемы оперения

    Наиболее распространенной является схема с одним килем и стабилизатором, установленным на фюзеляже или киле - (Рис 4 а, б, в). Она обеспечивает конструктивную простоту и жесткость, хотя в случае Т-образного хвостового оперения (Рис 4в) необходимо принимать меры, предотвращающие его флаттер.

    Схема Т-образного оперения обладает и рядом приемуществ. Расположение горизонтального оперения в верхней части киля создает для последнего эффект концевой шайбы, что может способствовать уменьшению потребной площади вертикального оперения. С другой стороны высокорасположенное горизонтальное оперение находится в зоне небольшого скоса потока от крыла при средних (полетных) углах атаки, что позволяет уменьшить потребную площадь горизонтального оперения. Таким образом площадь Т-образного оперения может быть меньше площади оперения с низким расположением горизонтального оперения.

    Необходимая площадь вертикального оперения в значительной мере определяется длиной и площадью боковой проекции части фюзеляжа, находящейся впереди центра тяжести самолета. Чем длиннее носовая част фюзеляжа, (и больше площадь ее боковой проекции) тем при прочих равных условиях больше площадь вертикального оперения, необходимая для устранения дестабилизирующего момента этой части фюзеляжа.

    Если двигатели расположены на крыле, то полет с одним отказавшим двигателем является условием для выбора размеров киля и руля направления многодвигательного самолета.

    Значительная высота вертикального оперения (в случае его потребной площади) может привести к появлению моментов по крену при отклонении руля направления в результате большого плеча между центром давления вертикального оперения и продольной осью самолета. Если такая опасность существует, заслуживает внимания разнесенная двухкилевая схема хвостового оперения, уменьшающая этот эффект (Рис 4д). Для двухбалочной (Рис 4г) или рамной схемы самолета выбор такого оперения очевиден. Поскольку расположение килей на концах горизонтального оперения создает эффект концевых шайб, то площадь горизонтального оперения может быть уменьшена.

    Схема расположения двигателей

    Легкие самолеты с поршневыми двигателями как правило бывают двух схем: один тянущий двигатель, установленный в носовой части фюзеляжа, или два тянущих двигателя, установленных на крыле.

    Расположение двигателя перед крылом является наиболее приемлемой схемой с аэродинамической и конструктивной точек зрения. Поток от винтов работающих двигателей оказывает благаприятный эффект на срывные характеристики крыла и повышает подьемную силу, особенно при выпущенных закрылках, создавая своеобразную встроенную защиту от сваливания самолета. С другой стороны при отказе двигателя до перевода винта в режим флюгирования, он создает значительное сопротивление при авторотации, нарушая обтекание крыла. Моменты по крену и рысканию, создаваемые при отказе двигателя, представляют серьезную проблему управления, особенно на взлете. Кроме того, изменение мощности двигателя в полете будет влиять на скос потока за крылом и изменять балансирущий момент от хвостового оперения.

    По сравнению назкопланом, высокорасположенное крыло в общем случае создает больше возможностей в отношении расположения в вертикальной плоскости двигателей относительно профиля крыла, так как в этом случае легче обеспечить необходимый зазор между винтом и землей.

    На самолетах с низким расположением крыла конструкторы часто вынуждены использовать сравнительно высокое положение двигателей на верхней поверхности крыла для обеспечения необходимого зазора между винтом и землей. Это может привести к неблагаприятной интерференции между гондолой и крылом, приводящей к преждевременному срыву потока и появлению дополнительного индуктивного сопротивления.

    В отношении одномоторных легких самолетов можн установить следующее:

    • Наиболее распространенной схемой является схема с низким расположением крыла. Высокорасположенное крыло как правило делается с внешним подкосом.
    • Двигатель располагается в носовой части фюзеляжа
    • Наиболее распространенной схемой хвостового оперения является схема с низким расположением горизонтального оперения на фюзеляже или в корневой части вертикального оперения. При Т-образном оперении или П-образной схемах хвостового оперения возникают проблемы, на которые необходимо обратить внимание перед окончательным выбором этих схем оперения:
      • высокорасположенное горизонтальное оперение затрудняет его осмотр без стремянки
      • расположение горизонтального оперения вне струи винта уменьшает эффективность горизонтального оперения на взлете.
    • При низком расположении горизонтального оперения для улучшения штопорных характеристик часто применяют разнесение горизонтального и вертикального оперения по строительной горизонтали (горизонтальное оперение располагается около задней кромки или позади вертикального). Однако это не означает, что при других схемах низкого расположения горизонтального оперения нельзя обеспечить вывод самолета из штопора.
    • В большинстве случаев вертикальное оперение расположено на фюзеляже и не имеет подфюзеляжных частей (гребней)
    • Как правило шасси самолета имеет трехопорную схему с носовой опорой.

    Для двухмоторных самолетов можно установить следующее:

    • Как правило оба двигателя располагаются на крыле.
    • Схема низкоплан применяется чаще, чем высокоплан Среди высокопланов подкосные крылья не являются доминирующими.
    • В большинстве схем применяется низкорасположенное горизонтальное оперение. При этом расположение горизонтального оперения и двигателей обеспечивает обдувку оперения струями воздушных винтов. Однако следует учитывать, что струя винта мощного двигателя может создать проблему усталости конструкции оперения.
    • Другая концепция расположения горизонтального оперения относительно струй винтов состоит в таком расположении оперения, при котором работа двигателей не будет влиять на работу горизонтального оперения. Эта концепция реализуется в виде Т-образной схемы оперения, а при низком расположении горизонтального оперения - приданием ему поперечного "V".
    • Схема вертикального оперения как правило однокилевая. Для повышения эффективности вертикального оперения на больших углах скольжения применяется форкиль.
    • Двухкилевое оперение используется редко. Отличительной чертой схем самолетов с двухкилевым вертикальным оперением является малая площадь боковой проекции хвостовой части фюзеляжа, что уменьшает путевую устойчивость самолета.
    • Как правило шасси выполнено по трехопорной схеме с носовой опорой
    • В большинстве случаев шасси самолета делается неубирающимся. Неубирающееся шасси как правило применяется у высокопланов
    • Двигатели в гондолах вынесены таким образом, чтобы плоскости вращения воздущных винтов были впереди кабины экипажа
    по материалам: Н. П. Арепьев "Вопросы проектирования легких самолетов. Выбор схемы и параметров"